Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 137
Filter
1.
Mycobiology ; 52(3): 172-182, 2024.
Article in English | MEDLINE | ID: mdl-38948453

ABSTRACT

Truffles, belonging to the genus Tuber, are ectomycorrhizal (ECM) fungi that form underground ascocarps and primarily establish symbiosis with oaks and hazels. The cultivation of Tuber spp. involves transplanting inoculated seedlings that have formed ectomycorrhiza with Tuber species, with mulching being effective for truffle cultivation. In this study, we investigated the effects of mulching on the mycelial growth of four Tuber species (T. himalayense, T. koreanum, T. melanosporum, and T. borchii) in the Korean natural environment, highlighting the potential for Korea as a truffle cultivation site. We developed and tested species-specific primers for quantifying the soil mycelial biomass of Tuber spp. by qRT-PCR, determined the superior mulch color for mycelial growth, and identified the Tuber species exhibiting the highest growth rate in the Korean field environment. Our results demonstrated that white mulch significantly enhanced mycelial growth in Tuber species than black mulch, likely owing to its ability to maintain low soil temperatures, control weeds, and improve host plant growth. Among the Tuber species, T. himalayense showed the greatest growth potential in the Korean natural environment. Additionally, a significant and positive correlation was observed between the mycelial biomass of Tuber species and the growth of inoculated seedlings, as measured by the total stem length and the number of leaves, thereby indicating the importance of symbiosis between ECM fungi and host plants. This study provides valuable insights into truffle cultivation in Korea and highlights the potential of using white mulch to promote mycelial growth, thereby contributing essential data for understanding the appropriate environmental conditions for Tuber spp. cultivation in Korea. Further study is needed to assess the long-term impact of mulching and to explore the effectiveness of other mulching materials.

2.
mSphere ; : e0066723, 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38864637

ABSTRACT

Botrytis cinerea is a necrotrophic phytopathogen able to attack more than 200 different plant species causing strong yield losses worldwide. Many synthetic fungicides have been developed to control this disease, resulting in the rise of fungicide-resistance B. cinerea strains. The aim of this study was to identify Streptomyces strains showing antagonistic activity against B. cinerea to contribute to plant protection in an environmentally friendly way. We isolated 15 Actinomycete strains from 9 different Swiss soils. The culture filtrates of three isolates showing antifungal activity inhibited spore germination and delayed mycelial growth of B. cinerea. Infection experiments showed that Arabidopsis thaliana plants were more resistant to this pathogen after leaf treatment with the Streptomyces filtrates. Bioassay-guided isolation of the active compounds revealed the presence of germicidins A and B as well as of oligomycins A, B, and E. While germicidins were mostly inactive, oligomycin B reduced the mycelial growth of B. cinerea significantly. Moreover, all three oligomycins inhibited this fungus' spore germination, suggesting that these molecules might contribute to the Streptomyces's ability to protect plants against infection by the broad host-pathogen Botrytis cinerea. IMPORTANCE: This study reports the isolation of new Streptomyces strains with strong plant-protective potential mediated by their production of specialized metabolites. Using the broad host range pathogenic fungus Botrytis cinerea, we demonstrate that the cell-free filtrate of selected Streptomyces isolates efficiently inhibits different developmental stages of the fungus, including mycelial growth and the epidemiologically relevant spore germination. Beyond in vitro experiments, the strains and their metabolites also efficiently protected plants against the disease caused by this pathogen. This work further identifies oligomycins as active compounds involved in the observed antifungal activity of the strains. This work shows that we can harness the natural ability of soil-borne microbes and of their metabolites to efficiently fight other microbes responsible for significant crop losses. This opens the way to the development of environmentally friendly health protection measures for crops of agronomical relevance, based on these newly isolated strains or their metabolic extracts containing oligomycins.

3.
Fungal Biol ; 128(2): 1691-1697, 2024 04.
Article in English | MEDLINE | ID: mdl-38575242

ABSTRACT

Curcumin, a natural bioactive compound derived from Curcuma longa, has been widely recognized for its antifungal properties. In this study, we investigated the effects of curcumin on the phytopathogenic fungus Alternaria alternata and its pathogenicity in cherry tomato fruit. The results demonstrated that curcumin treatment significantly inhibited mycelial growth and spore germination of A. alternata in a dose-dependent manner. Scanning electron microscopy revealed alterations in the morphology of A. alternata mycelia treated with curcumin. Furthermore, curcumin treatment led to an increase in malondialdehyde and hydrogen peroxide contents, indicating cell membrane damage in A. alternata. Moreover, curcumin exhibited a remarkable inhibitory effect on the incidence and lesion diameters of black rot caused by A. alternata in cherry tomato fruit. Gene expression analysis revealed upregulation of defense-related genes (POD, SOD, and CAT) in tomato fruit treated with curcumin. Additionally, curcumin treatment resulted in decreased activity of exocellular pathogenic enzymes (polygalacturonase, pectin lyase, and endo-1,4-ß-d-glucanase) in A. alternata. Overall, our findings highlight the potential of curcumin as an effective antifungal agent against A. alternata, providing insights into its inhibitory mechanisms on mycelial growth, spore germination, and pathogenicity in cherry tomato fruit.


Subject(s)
Curcumin , Solanum lycopersicum , Curcumin/pharmacology , Antifungal Agents/pharmacology , Alternaria
4.
Arch Microbiol ; 206(5): 225, 2024 Apr 20.
Article in English | MEDLINE | ID: mdl-38642078

ABSTRACT

Cordyceps militaris has been extensively cultivated as a model cordyceps species for commercial purposes. Nevertheless, the problems related to strain degeneration and breeding technologies remain unresolved. This study assessed the physiology and fertility traits of six C. militaris strains with distinct origins and characteristics, focusing on single mating-type strains. The results demonstrated that the three identified strains (CMDB01, CMSY01, and CMJB02) were single mating-type possessing only one mating-type gene (MAT1-1). In contrast, the other three strains (CMXF07, CMXF09, and CMMS05) were the dual mating type. The MAT1-1 strains sourced from CMDB01, CMSY01, and CMJB02 consistently produced sporocarps but failed to generate ascospores. However, when paired with MAT1-2 strains, the MAT1-1 strains with slender fruiting bodies and normal morphology were fertile. The hyphal growth rate of single mating-type strains (CMDB01, CMSY01, and CMJB02) typically surpassed that of dual mating-type strains (CMXF07, CMXF09, and CMMS05). The growth rates of MAT1-2 and MAT1-1 strains were proportional to their ratios, such that a single mating-type strain with a higher ratio exhibited an increased growth rate. As C. militaris matured, the adenosine content decreased. In summary, the C. militaris strains that consistently produce sporocarps and have a single mating type are highly promising for production and breeding.


Subject(s)
Cordyceps , Cordyceps/genetics , Genes, Mating Type, Fungal , Plant Breeding , Adenosine , Spores, Fungal/genetics
5.
BMC Biotechnol ; 24(1): 11, 2024 Mar 05.
Article in English | MEDLINE | ID: mdl-38443850

ABSTRACT

BACKGROUND: One of the current challenges is to secure wheat crop production to meet the increasing global food demand and to face the increase in its purchasing power. Therefore, the current study aimed to exploit a new synthesized nanocomposite to enhance wheat growth under both normal and drought regime. The effectiveness of this nanocomposite in improving the microbiological quality of irrigation water and inhibiting the snail's growth was also assessed. RESULTS: Upon the employed one-step synthesis process, a spherical Fe/Cu/P nanocomposite was obtained with a mean particle size of 4.35 ± 1.524 nm. Cu2+, Fe2+, and P4+ were detected in the dried nanocomposite at 14.533 ± 0.176, 5.200 ± 0.208, and 34.167 ± 0.203 mg/ml concentration, respectively. This nanocomposite was found to exert antibacterial activity against Escherichia coli and Salmonella typhi. It caused good inhibition percent against Fusarium oxysporum (43.5 ± 1.47%) and reduced both its germination rate and germination efficiency. The lethal concentration 50 (LC50) of this nanocomposite against Lanistes carinatus snails was 76 ppm. The treated snails showed disturbance in their feeding habit and reached the prevention state. Significant histological changes were observed in snail digestive tract and male and female gonads. Drought stress on wheat's growth was mitigated in response to 100 and 300 ppm treatments. An increase in all assessed growth parameters was reported, mainly in the case of 100 ppm treatment under both standard and drought regimes. Compared to control plants, this stimulative effect was accompanied by a 2.12-fold rise in mitotic index and a 3.2-fold increase in total chromosomal abnormalities. CONCLUSION: The finding of the current study could be employed to mitigate the effect of drought stress on wheat growth and to enhance the microbiological quality of irrigation water. This is due to the increased efficacy of the newly synthesized Fe/Cu/P nanocomposite against bacteria, fungi, and snails. This methodology exhibits potential for promoting sustainable wheat growth and water resource conservation.


Subject(s)
Anti-Infective Agents , Triticum , Copper/pharmacology , Escherichia coli , Water , Phosphates , Iron
6.
Metabolites ; 14(2)2024 Jan 27.
Article in English | MEDLINE | ID: mdl-38392986

ABSTRACT

γ-Aminobutyric (GABA) acid is a nutrient and signaling molecule existing in many plants, participating in the regulation of metabolism and various physiological activities. Two strains of Hypsizygus marmoreus (a white variety and a brown variety) were investigated to study the impact of exogenous GABA on mycelial growth and the response to stress. Mycelial growth, microscopic morphology, antioxidant profile, and gad2 expression in H. marmoreu were investigated under salt, dehydration, or cold stress. The results indicated that 5 mM GABA stimulated mycelial growth under standard cultivation conditions, whereas GABA addition over 10 mM hindered the growth. Under salt, dehydration, or cold stress, treatment with 5 mM GABA significantly enhanced the mycelial growth rate and density of both H. marmoreus strains by promoting front hyphae branching. Meanwhile, the activities of key antioxidant enzymes such as peroxidase (POD), catalase (CAT), and ascorbate peroxidase (APX) were enhanced by GABA, thereby augmenting the defensive network against abiotic stress. Additionally, gad2 expression and GABA concentration were increased under abiotic stresses as a resistance regulation response. The exogenous addition of GABA strengthened the upregulation of gad2 expression and GABA production. These findings indicated that exogenously adding low concentrations of GABA effectively enhanced the mycelial growth and antioxidant profile of H. marmoreus, thereby improving its resistance against stresses.

7.
Braz J Microbiol ; 55(1): 235-244, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38150151

ABSTRACT

Cordyceps militaris is a fungus with numerous therapeutic properties that has gained worldwide popularity due to its potential health benefits. The fruiting body of this mushroom is highly expensive and takes a longer time to produce, making mycelial a sustainable and cost-effective alternative. The study investigates and optimizes cultural and nutritional conditions to maximize mycelial biomass. The initial optimization was done by the conventional single-factor approach, followed by Plackett-Burman design to screen the most significant variables, with yeast extract, temperature, and glucose being the most significant, contributing 11.58%, 49.74%, and 27.98%, respectively, in mycelial biomass production. These variables were then optimized using response surface methodology (RSM) based on central composite design (CCD). The study observed that temperature and glucose had the highest impact on mycelial biomass, with p-values of 0.0128 and 0.0191, respectively. Under the optimized conditions, temperature 20 °C, glucose 2.5% (w/v), and yeast extract 0.8% (w/v), the maximal yield of mycelial biomass reached 547 ± 2.09 mg/100 mL, which was 1.95-fold higher than the yield in the basal medium. These findings suggest that optimizing the cultural and nutritional conditions can enhance mycelial biomass production of Cordyceps militaris, offering a sustainable and cost-effective source of this valuable fungus.


Subject(s)
Cordyceps , Nitrogen , Carbon , Biomass , Glucose
8.
Pestic Biochem Physiol ; 195: 105534, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37666587

ABSTRACT

Ring rot induced by Botryosphaeria dothidea is a major cause of growth and postharvest losses in various fruits. There is an urgent need to develop green fungicides due to pesticide resistance and environmental pressure. Here, we demonstrated the efficacy of dictamnine (DIC, 4-methoxyfuro [2,3-ß] quinoline, purity 98%), a compound isolated from the stems and leaves of Clausena lansium, in effectively suppressing pear ring rot by inhibiting the mycelial growth of B. dothidea. The median effective concentration of DIC was 15.48 µg/mL. Application of DIC to B. dothidea resulted in structural disruption of the cell wall and plasma membrane, leading to mycelial deformation, breakage, and cell death. Transcriptome analysis revealed significant inhibition of the synthetic pathways for fungal cell wall and membrane components by DIC. Particularly, the expression of chitin synthase, a key enzyme of chitin synthesis, was prominently down-regulated. Moreover, the chitin content in DIC-treated B. dothidea mycelia exhibited a substantial dose-dependent reduction. Based on these results, it is promising to develop DIC as an antifungal pesticide for controlling ring rot disease in pear fruits. Our study provides new insights into the underlying mechanism through which DIC inhibits the mycelial growth of B. dothidea.


Subject(s)
Pyrus , Quinolines , Chitin
9.
Food Microbiol ; 115: 104324, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37567633

ABSTRACT

In dairy industry, filamentous fungi are used as adjunct cultures in fermented products for their technological properties but they could also be responsible for food spoilage and mycotoxin production. The consumer demands about free-preservative products has increased in recent years and lead to develop alternative methods for food preservation. Modified Atmosphere Packaging (MAP) can inhibit fungal growth and therefore increase the food product shelf-life. This study aimed to evaluate radial growth as a function of CO2 and more particularly carbonic acid for fourteen adjuncts and/or fungal spoiler isolated from dairy products or dairy environment by using predictive mycology tools. The impact of the different chemical species linked to CO2 (notably carbonic acid) were study because it was reported previously that undissociated carbonic acid impacted bacterial growth and bicarbonates ions were involved in modifications of physiological process of fungal cells. A significant diversity in the responses of selected strains was observed. Mucor circinelloides had the fastest growth rates (µ > 11 mm. day-1) while Bisifusarium domesticum, Cladosporium herbarum and Penicillium bialowiezense had the slowest growth rates (µ < 1 mm. day-1). Independently of the medium pH, the majority of strains were sensitive to total carbonic acid. In this case, it was not possible to conclude if CO2 active form was gaseous or aqueous so modeling were performed as a function of CO2 percentage. Only Geotrichum candidum and M. circinelloides strains were sensitive to undissociated carbonic acid. Among the fourteen strains, P. bialowiezense was the less sensitive strain to CO2, no growth was observed at 50% of CO2 only for this strain. M. lanceolatus was the less sensitive strain to CO2, the CO250 which reduce the growth rates by 50% was estimated at 138% of CO2. Low CO2 percentage improved the growth of Penicillium expansum, Penicillium roqueforti and Paecilomyces niveus. Mathematical models (without and with optimum) were suggested to describe the impact of CO2 percentage or undissociated carbonic acid concentration on fungal growth rate.


Subject(s)
Carbon Dioxide , Carbonic Acid , Carbon Dioxide/pharmacology , Fungi , Dairy Products/microbiology , Food Preservation/methods
10.
Heliyon ; 9(6): e17291, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37383212

ABSTRACT

Fungal diseases are among the biotic factors limiting the production of faba bean in Ethiopia. The objective of this study was to isolate and identify seedborne mycoflora associated with faba bean seed samples, determine their effects on seed germination and disease transmission, and evaluate the antimicrobial activities of seven plant extracts and four Trichoderma spp. against the pathogen isolated from the seed. Fifty seed samples were collected from different farmers' saved seeds of five major faba bean-producing varieties of the Ambo district and were tested by agar plate methods as recommended by the International Seed Testing Association (ISTA). A total of 7 fungal species belonging to 6 genera, viz. Fusarium oxysporum (Schlechlendahl), Fusarium solani (Mart.) Sacc, Aspergillus spp. Penicillium spp. Botrytis spp. Rhizoctonia solani (Kühn) and Alternaria spp. were isolated and identified. Among these, Fusarium spp., Aspergillus spp, and Penicillium spp. were the most predominant fungi in all seed samples. Seed-to-seedling transmission test results confirmed that F. oxysporum, F. solani and R. solani were major causal pathogens that caused root rot and damping-off disease in faba beans and were transmitted from seeds to seedlings. A higher germination rate was observed in Golja-GF2 (97%), and a lower germination rate was observed in Kure Gatira-KF8 (81%). A study on in vitro evaluation of plant extract and Trichoderma spp. against F. oxysporum, F. solani and R. solani revealed that plant extracts at 5%, 10% and 20% concentrations significantly inhibited the mycelial growth of all tested fungi. Inhibitory effects on the three tested fungi (R. solani, F. solani and F. oxysporum) were recorded on T. longibrachiatum (87.91%), T. atroviride (86.87%), Trichoderma virens (86.16%) and T. harzianum (85.45%). The inhibitory effect of the aqueous plant extracts on mycelial growth increased with an increase in concentration, and the hot water extracts showed higher effects compared to the cold water extract in all tested fungi. This study showed that the highest inhibitory effect of Allium sativum L. extracted at a 20% concentration against mycelial growth inhibition of the three test fungi (F. oxysporum, R. solani and F. solani) was 84.60%, 83.61% and 83.47%, respectively. However, Nicandra physalodes (L.) Gaertn.) extracts at the same concentration showed the lowest inhibitory effects on the three tested fungi (74.94%, 73.94% and 73.24%).

11.
Plants (Basel) ; 12(9)2023 Apr 27.
Article in English | MEDLINE | ID: mdl-37176858

ABSTRACT

The use of agrochemicals has caused environmental problems and toxicity to humans, so natural alternatives for disease control during harvest and postharvest have been evaluated. The aim of this study was to evaluate cinnamon essential oil, neem oil, and black sapote fruit extract for in vitro inhibition of fungi isolated from chayote fruit. The extracts were applied at 300, 350, and 400 ppm in Petri dishes and the mycelial growth of Fusarium oxysporum, Fusarium solani, Goetrichum sp., and Phytophthora capsici was evaluated for 7 days, and the percentage of mycelial growth inhibition per day was calculated. Cinnamon oil showed a fungicidal effect at all concentrations. Neem oil at 400 ppm showed a 42.3% reduction in the growth of F. solani and 27.8% reduction in the growth of F. oxysporum, while at 350 ppm it inhibited the mycelial growth of Phytophthora capsici by 53.3% and of Goetrichum sp. by 20.9%; finally, the black sapote extract at 400 ppm inhibited 21.9-28.6% of the growth of all fungi. The growth of postharvest fungi on chayote fruit could be prevented or reduced by applying the plant extracts evaluated at adequate concentrations.

12.
BioTechnologia (Pozn) ; 104(1): 65-74, 2023.
Article in English | MEDLINE | ID: mdl-37064273

ABSTRACT

Ganoderma sinense, a well-known medicinal macrofungus of Basidiomycetes, is widely used in traditional medicine for promoting health and longevity in East Asia. The fruiting bodies of G. sinense contain polysaccharides, ergosterol, and coumarin, which have antitumor, antioxidant, and anticytopenia activities. Mushroom cultivation requires suitable conditions for the formation of fruiting bodies and yield. However, little is known about the optimal culture conditions for mycelial growth and cultivation of G. sinense. In this study, the successful cultivation of a G. sinense strain collected from the wild was reported. The optimal culture conditions were identified by examining one factor at a time. The results of this study revealed that the nutritional requirements for the optimal mycelial growth of G. sinense were fructose (15 g/l) as the carbon source and yeast extract (1 g/l) as the nitrogen source. The optimal pH and temperature for G. sinense were 7 and 25-30°C, respectively. The mycelia grew fastest in treatment II (69% rice grains + 30% sawdust + 1% calcium carbonate). G. sinense produced fruiting bodies under all tested conditions and showed the highest biological efficiency (2.95%) in treatment B (96% sawdust, 1% wheat bran, 1% lime). In summary, under optimal culture conditions, G. sinense strain GA21 showed satisfactory yield and a high potential for commercial cultivation.

13.
mSphere ; 8(2): e0001223, 2023 04 20.
Article in English | MEDLINE | ID: mdl-36786584

ABSTRACT

The peroxins encoded by PEX genes involved in peroxisome biogenesis play a crucial role in cellular metabolism and pathogenicity in fungi. Herein, we characterized a filamentous fungus-specific peroxin Pex14/17 in the Arthrobotrys oligospora, a representative species of nematode-trapping fungi. The deletion of AoPEX14/17 resulted in a remarkable reduction in mycelial growth, conidia yield, trap formation, and pathogenicity. Compared with the wild-type strain, the ΔAopex14/17 mutant exhibited more lipid droplet and reactive oxygen species accumulation accompanied with a significant decrease in fatty acid utilization and tolerance to oxidative stress. Transcriptomic analysis indicated that AoPEX14/17 was involved in the regulation of metabolism, genetic information processing, environmental information processing, and cellular processes. In subcellular morphology, the deletion of AoPEX14/17 resulted in a decrease in the number of cell nuclei, autophagosomes, and Woronin bodies. Metabolic profile analysis showed that AoPex14/17 affects the biosynthesis of secondary metabolites. Yeast two-hybrid assay revealed that AoPex14/17 interacted with AoPex14 but not with AoPex13. Taken together, our results suggest that Pex14/17 is the main factor for modulating growth, development, and pathogenicity in A. oligospora. IMPORTANCE Peroxisome biogenesis genes (PEX) play an important role in growth, development, and pathogenicity in pathogenic fungi. However, the roles of PEX genes remain largely unknown in nematode-trapping (NT) fungi. Here, we provide direct evidence that AoPex14/17 regulates mycelial growth, conidiation, trap formation, autophagy, endocytosis, catalase activity, stress response to oxidants, lipid metabolism, and reactive oxygen species production. Transcriptome analysis and metabolic profile suggested that AoPex14/17 is involved in multiple cellular processes and the regulation of secondary metabolism. Therefore, our study extends the functions of PEX genes, which helps to elucidate the mechanism of organelle development and trap formation in NT fungi and lays the foundation for the development of efficient nematode biocontrol agents.


Subject(s)
Ascomycota , Nematoda , Animals , Secondary Metabolism , Reactive Oxygen Species/metabolism , Nematoda/microbiology , Ascomycota/genetics
14.
J Fungi (Basel) ; 9(2)2023 Feb 17.
Article in English | MEDLINE | ID: mdl-36836383

ABSTRACT

Fungal infections cause losses amounting to between 20 and 25% of the fruit industry's total outcome, with an escalating impact on agriculture in the last decades. As seaweeds have long demonstrated relevant antimicrobial properties against a wide variety of microorganisms, extracts from Asparagopsis armata, Codium sp., Fucus vesiculosus, and Sargassum muticum were used to find sustainable, ecofriendly, and safe solutions against Rocha pear postharvest fungal infections. Alternaria alternata, Botrytis cinerea, Fusarium oxysporum, and Penicillium expansum mycelial growth and spore germination inhibition activities were tested in vitro with five different extracts of each seaweed (n-hexane, ethyl acetate, aqueous, ethanolic, and hydroethanolic). An in vivo assay was then performed using the aqueous extracts against B. cinerea and F. oxysporum in Rocha pear. The n-hexane, ethyl acetate, and ethanolic extracts from A. armata showed the best in vitro inhibitory activity against B. cinerea, F. oxysporum, and P. expansum, and promising in vivo results against B. cinerea using S. muticum aqueous extract were also found. The present work highlights the contribution of seaweeds to tackle agricultural problems, namely postharvest phytopathogenic fungal diseases, contributing to a greener and more sustainable bioeconomy from the sea to the farm.

15.
J Fungi (Basel) ; 9(1)2023 Jan 09.
Article in English | MEDLINE | ID: mdl-36675915

ABSTRACT

SUMOylation is an essential protein modification process that regulates numerous crucial cellular and biochemical processes in phytopathogenic fungi, and thus plays important roles in multiple biological functions. The present study characterizes the SUMOylation pathway components, including SMT3 (SUMO), AOS1 (an E1 enzyme), UBC9 (an E2 enzyme), and MMS21 (an E3 ligase), in Fusarium oxysporum f. sp. niveum (Fon), the causative agent of watermelon Fusarium wilt, in terms of the phylogenetic relationship, gene/protein structures, and basic biological functions. The SUMOylation components FonSMT3, FonAOS1, FonUBC9, and FonMMS21 are predominantly located in the nucleus. FonSMT3, FonAOS1, FonUBC9, and FonMMS21 are highly expressed in the germinating macroconidia, but their expression is downregulated gradually in infected watermelon roots with the disease progression. The disruption of FonUBA2 and FonSIZ1 seems to be lethal in Fon. The deletion mutant strains for FonSMT3, FonAOS1, FonUBC9, and FonMMS21 are viable, but exhibit significant defects in vegetative growth, asexual reproduction, conidial morphology, spore germination, responses to metal ions and DNA-damaging agents, and apoptosis. The disruption of FonSMT3, FonAOS1, FonUBC9, and FonMMS21 enhances sensitivity to cell wall-perturbing agents, but confers tolerance to digestion by cell wall-degrading enzymes. Furthermore, the disruption of FonSMT3, FonAOS1, and FonUBC9 negatively regulates autophagy in Fon. Overall, these results demonstrate that the SUMOylation pathway plays vital roles in regulating multiple basic biological processes in Fon, and, thus, can serve as a potential target for developing a disease management approach to control Fusarium wilt in watermelon.

16.
Plant Dis ; 107(5): 1386-1398, 2023 May.
Article in English | MEDLINE | ID: mdl-36366834

ABSTRACT

Grapevine trunk diseases (GTDs) are serious threats in all viticultural areas of the world, and their management is always complex and usually inadequate. Fragmented and inconsistent information on the epidemiology and environmental requirements of the causal fungi is among the reasons for poor disease control. Therefore, we conducted a quantitative analysis of literature data to determine the effects of temperature on mycelial growth and the effects of temperature and moisture duration on spore germination. Using the collected information, we then developed mathematical equations describing the response of mycelial growth to temperature, and the response of spore germination to temperature and moisture for the different species and disease syndromes. We considered 27 articles (selected from a total of 207 articles found through a systematic literature search) and 116 cases; these involved 43 fungal species belonging to three disease syndromes. The mycelial growth of the fungi causing Botryosphaeria dieback (BD) and the esca complex (EC) responded similarly to temperature, and preferred higher temperatures than those causing Eutypa dieback (ED) (with optimal temperature of 25.3, 26.5, and 23.3°C, respectively). At any temperature, the minimal duration of the moist period required for 50% spore germination was shorter for BD (3.0 h) than for EC (17.2 h) or ED (15.5 h). Mathematical equations were developed accounting for temperature-moisture relationships of GTD fungi, which showed concordance correlation coefficients ≥0.888; such equations should be useful for reducing the risk of infection.


Subject(s)
Ascomycota , Vitis , Xylariales , Temperature , Germination , Syndrome , Vitis/microbiology , Plant Diseases/microbiology , Ascomycota/physiology , Spores
17.
Cells ; 11(22)2022 11 16.
Article in English | MEDLINE | ID: mdl-36429064

ABSTRACT

Sparassis latifolia, a highly valued edible fungus, is a crucial medicinal and food resource owing to its rich active ingredients and pharmacological effects. Excessive oxalic acid secreted on a pine-sawdust-dominated substrate inhibits its mycelial growth, and severely restricts the wider development of its cultivation. However, the mechanism underlying the relationship between oxalic acid and slow mycelial growth remains unclear. The present study reported the transcriptome-based response of S. latifolia induced by different oxalic acid concentrations. In total, 9206 differentially expressed genes were identified through comparisons of three groups; 4587 genes were down-regulated and 5109 were up-regulated. Transcriptome analysis revealed that excessive oxalic acid mainly down-regulates the expression of genes related to carbohydrate utilization pathways, energy metabolism, amino acid metabolism, protein synthesis metabolism, glycan biosynthesis, and signal transduction pathways. Moreover, genes encoding for wood-degrading enzymes were predominantly down-regulated in the mycelia treated with excessive oxalic acid. Taken together, the study results provide a speculative mechanism underlying the inhibition of saprophytic growth by excessive oxalic acid and a foundation for further research on the growth of S. latifolia mycelia.


Subject(s)
Oxalic Acid , Polyporales , Polyporales/genetics , Gene Expression Profiling , Transcriptome/genetics
18.
J Fungi (Basel) ; 8(10)2022 Sep 30.
Article in English | MEDLINE | ID: mdl-36294604

ABSTRACT

Phytophthora cactorum is considered an important plant pathogen which is causing major damage to strawberry plants worldwide. In the current study, the ability of the active ingredients of seven different fungicides, azoxystrobin, cymoxanil, dimethomorph, fenamidone, fluopicolide, metalaxyl and propamocarb, to suppress the mycelial growth, sporangial formation and zoospore release of P. cactorum isolates, was tested. The variation in resistance against various fungicides was found among the isolates. The active ingredients are also unequally efficient against different life stages of P. cactorum, which is probably associated with their different modes of action. A significant level of resistance was recorded against metalaxyl and dimethomorph; however, these were totally inefficient against the zoospore release, while azoxystrobin did not inhibit mycelial growth. The only fungicide efficient against all three P. cactorum life stages tested was fluopicolide, although the calculated resistance factor gives evidence of the rise of resistance in the majority of isolates even against this fungicide. Significant differences were found between responses to fungicides of isolates from strawberry and from other host species. Based on the Mahalanobis distances calculated in the discriminant analysis comprising all of the assays performed, the similarities among isolates were estimated.

19.
Cells ; 11(15)2022 08 05.
Article in English | MEDLINE | ID: mdl-35954267

ABSTRACT

Sparassis latifolia is an edible and medicinal mushroom in Asia commercially cultivated on substrates containing pine sawdust. Its slow mycelial growth rate greatly increases the cultivation cycle. In this study, we mainly studied the role of oxalic acid (OA) secreted by S. latifolia in its saprophytic process. Our results show that crystals observed on the mycelial surface contained calcium oxalate monohydrate (COM) and calcium oxalate dihydrate (COD) according to X-ray diffraction (XRD). Vegetative mycelia secreted large amounts of OA during extended culture periods. However, high concentrations of OA decreased the mycelial growth rate significantly. Moreover, the degradation of lignocellulose was significantly inhibited under high concentrations of OA. These changes could be attributed to the significantly decreased activities of lignocellulose-degrading enzymes. In conclusion, by establishing a link between OA secretion by the mycelium and the slow growth rate of its saprophytic process, this work provides fundamental information for shortening the cultivation cycle of S. latifolia.


Subject(s)
Oxalic Acid , Polyporales , Calcium Oxalate , Mycelium
20.
Food Res Int ; 157: 111247, 2022 07.
Article in English | MEDLINE | ID: mdl-35761558

ABSTRACT

Filamentous fungi are used in the dairy industry as adjunct cultures in fermented products, but can also lead to food spoilage, waste and economic losses. The control of filamentous fungi with abiotic factors contributes to longer food shelf life and prevention of fungal spoilage. One of the main abiotic factors for controlling fungal growth in foods is water activity (aw). This study aimed to evaluate radial growth as a function of aw for sixteen fungal adjuncts and/or spoilers isolated from dairy products or a dairy environment. Glycerol (a non-ionic compound) and sodium chloride (NaCl, an ionic compound) were used to adjust the aw of culture media. This study showed significant diversity in the responses of the tested fungal strains as a function of medium aw. The growth response of Penicillium bialowiezense and Sporendonema casei was binary, with no clear decrease of growth rate until the growth limit, when the aw was reduced. For the strains of Bisifusarium domesticum, Mucor circinelloides and Penicillium camemberti, a decrease of aw had the same impact on radial growth rate regardless of the aw belonging to their growth range. For the strains of Aspergillus flavus, Cladosporium herbarum, Geotrichum candidum, Mucor lanceolatus, Penicillium expansum, Penicillium fuscoglaucum, Penicillium nalgiovense, Paecilomyces niveus, Penicillium roqueforti, Penicillium solitum and Scopulariopsis asperula, the impact of a decrease in aw was more pronounced at high aw than at low aw. A mathematical model was suggested to describe this impact on the radial growth rate. For all tested species, radial growth was more sensitive to NaCl than glycerol. The ionic strength of NaCl mainly explains the difference in the effects of the two solutes.


Subject(s)
Sodium Chloride , Water , Dairy Products/microbiology , Glycerol , Sodium Chloride/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...