Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 441
Filter
1.
Plants (Basel) ; 13(13)2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38999594

ABSTRACT

Botrytis cinerea is a necrotrophic fungus that causes considerable economic losses in commercial crops. Fungi of the genus Botrytis exhibit great morphological and genetic variability, ranging from non-sporogenic and non-infective isolates to highly virulent sporogenic ones. There is growing interest in the different isolates in terms of their methodological applications aimed at gaining a deeper understanding of the biology of these fungal species for more efficient control of the infections they cause. This article describes an improvement in the protoplast production protocol from non-sporogenic isolates, resulting in viable protoplasts with regenerating capacity. The method improvements consist of a two-day incubation period with mycelium plugs and orbital shaking. Special mention is made of our preference for the VinoTaste Pro enzyme in the KC buffer as a replacement for Glucanex, as it enhances the efficacy of protoplast isolation in B459 and B371 isolates. The methodology described here has proven to be very useful for biotechnological applications such as genetic transformations mediated by the CRISPR/Cas9 tool.

2.
Int J Biol Macromol ; 276(Pt 2): 133954, 2024 Jul 17.
Article in English | MEDLINE | ID: mdl-39029834

ABSTRACT

Mycelium-based leather substitutes with a three-dimensional reticulated structure have attracted attention owing to the negative environmental impacts of natural and synthetic leather. This study utilised Ganoderma lucidum mycelium to prepare a mycelium-based leather substitute with zinc cross-linking (MF-Zn) and evaluated its physicochemical properties and sensory performance; the conventional Cr3+ tanning method was used as reference. Results demonstrated that Zn2+ and Cr3+ formed cross-links with the -OH and -NHOCH3 groups in the polysaccharides of chitin, while Zn2+ selectively bonded to a fraction of -NH2 groups in cystine and phenylalanine. The mycelium-based leather substitute with Zn cross-linking exhibited impressive tensile strength and tear strength of 7.0 MPa and 16.4 kN/m, respectively, while demonstrating desirable organoleptic properties. The free radical-scavenging capacity of MF-Zn was assessed, revealing a DPPH radical and hydroxyl radical scavenging rates of 39.4% and 52.7%, respectively. By successfully investigating the cross-linking mechanism of mycelial fibres with Zn2+ and obtaining the stabilised mycelium-based leather substitute, this study establishes a fundamental basis for the development of sustainable leather substitutes, meeting the requirements and facilitating significant advancements in low-carbon leather substitute production.

3.
Biomimetics (Basel) ; 9(6)2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38921217

ABSTRACT

Mycelium-based green composites (MBCs) represent an eco-friendly material innovation with vast potential across diverse applications. This paper provides a thorough review of the factors influencing the production and properties of MBCs, with a particular focus on interdisciplinary collaboration and long-term sustainability goals. It delves into critical aspects such as fungal species selection, substrate type selection, substrate preparation, optimal conditions, dehydrating methods, post-processing techniques, mold design, sterilization processes, cost comparison, key recommendations, and other necessary factors. Regarding fungal species selection, the paper highlights the significance of considering factors like mycelium species, decay type, hyphal network systems, growth rate, and bonding properties in ensuring the safety and suitability of MBCs fabrication. Substrate type selection is discussed, emphasizing the importance of chemical characteristics such as cellulose, hemicellulose, lignin content, pH, organic carbon, total nitrogen, and the C: N ratio in determining mycelium growth and MBC properties. Substrate preparation methods, optimal growth conditions, and post-processing techniques are thoroughly examined, along with their impacts on MBCs quality and performance. Moreover, the paper discusses the importance of designing molds and implementing effective sterilization processes to ensure clean environments for mycelium growth. It also evaluates the costs associated with MBCs production compared to traditional materials, highlighting potential cost savings and economic advantages. Additionally, the paper provides key recommendations and precautions for improving MBC properties, including addressing fungal strain degeneration, encouraging research collaboration, establishing biosecurity protocols, ensuring regulatory compliance, optimizing storage conditions, implementing waste management practices, conducting life cycle assessments, and suggesting parameters for desirable MBC properties. Overall, this review offers valuable insights into the complex interplay of factors influencing MBCs production and provides guidance for optimizing processes to achieve sustainable, high-quality composites for diverse applications.

4.
Front Microbiol ; 15: 1391558, 2024.
Article in English | MEDLINE | ID: mdl-38846565

ABSTRACT

Sanghuangprous vaninii is a medicinal macrofungus cultivated extensively in China. Both the mycelia and fruiting bodies of S. vaninii have remarkable therapeutic properties, but it remains unclear whether the mycelia may serve as a substitute for the fruiting bodies. Furthermore, S. vaninii is a perennial fungus with therapeutic components that vary significantly depending on the growing year of the fruiting bodies. Hence, it is critical to select an appropriate harvest stage for S. vaninii fruiting bodies for a specific purpose. With the aid of Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform (TCMSP), metabolomics based on ultra-high performance liquid chromatography coupled to triple quadrupole mass spectrometry (UHPLC-QQQ-MS) was used to preliminarily determine 81 key active metabolites and 157 active pharmaceutical metabolites in S. vaninii responsible for resistance to the six major diseases. To evaluate the substitutability of the mycelia and fruiting bodies of S. vaninii and to select an appropriate harvest stage for the fruiting bodies of S. vaninii, we analyzed the metabolite differences, especially active metabolite differences, among the mycelia and fruiting bodies during three different harvest stages (1-year-old, 2-year-old, and 3-year-old). Moreover, we also determined the most prominent and crucial metabolites in each sample of S. vaninii. These results suggested that the mycelia show promise as a substitute for the fruiting bodies of S. vaninii and that extending the growth year does not necessarily lead to higher accumulation levels of active metabolites in the S. vaninii fruiting bodies. This study provided a theoretical basis for developing and using S. vaninii.

5.
Pol J Microbiol ; 73(2): 237-252, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38905279

ABSTRACT

This study aimed to elucidate the influence of various culture medium components, including carbon sources, nitrogen sources, inorganic salts, suspension agents, and temperature, on the mycelial growth characteristics of Phallus dongsun. Employing single-factor experiments and response surface methodology within glass Petri dishes, the research identified that carrot powder, soybean powder, and ZnSO4 notably enhanced the proliferation of aerial mycelium, significantly augmenting the growth rate of P. dongsun mycelium. The resultant mycelium was observed to be dense, robust, and fluffy in texture. In particular, ZnSO4 markedly accelerated the mycelium growth rate. Furthermore, xanthan gum was found to effectively modulate the medium's viscosity, ensuring a stable suspension and facilitating nutrient equilibrium. The optimal cultivation temperature was determined to be 25°C, with mycelial growth ceasing below 5°C and mycelium perishing at temperatures exceeding 35°C. The optimal medium composition was established as follows: wheat starch 5 g/l, carrot powder 5 g/l, soybean powder 7.50 g/l, glucose 10 g/l, ZnSO4 0.71 g/l, NH4Cl 0.68 g/l, xanthan gum 0.5 g/l, and agar 20 g/l. Under these optimized conditions, the mycelium of P. dongsun exhibited a rapid growth rate (1.04 ± 0.14 mm/day), characterized by a thick, dense, and well-developed structure. This investigation provides a theoretical foundation for the conservation, strain selection, and breeding of P. dongsun.


Subject(s)
Culture Media , Mycelium , Temperature , Mycelium/growth & development , Culture Media/chemistry , Nitrogen , Carbon/chemistry , Polysaccharides, Bacterial/chemistry
6.
Bioresour Technol ; 406: 131037, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38925407

ABSTRACT

White rot fungi are promising organisms for the production of mycelial-based biofoams, providing a sustainable means of valorizing lignocellulosic wastes. This study explores the utilization of two indigenous fungal species, isolated from Argentina and belonging to the genera Trametes, for producing biofoams from brewery waste. The resulting biofoams exhibited an average density of 0.30 g cm-3, a Young's modulus of approximately 1 MPa, and a compressive stress of around 19 MPa. Additionally, the variation of laccase activity throughout the biofoam production process was evaluated. Surprisingly, residual laccase activity was detected in the biofoams following oven drying at temperatures of 60, 80, and 100 °C. This detection highlights the untapped enzymatic potential of the biofoams and positions them as promising green catalysts for various biotechnological applications.


Subject(s)
Beer , Cellulose , Laccase , Cellulose/chemistry , Cellulose/metabolism , Laccase/metabolism , Beer/microbiology , Trametes/enzymology , Biotechnology/methods , Temperature
7.
Anim Sci J ; 95(1): e13964, 2024.
Article in English | MEDLINE | ID: mdl-38831612

ABSTRACT

This study evaluated the effects of supplementation with Antrodia cinnamomea mycelium by-product (ACBP) on growth performance and immune response in weaning piglets. Total available content and antioxidant capacity of ACBP were determined. Ninety-six black pigs were randomly distributed to 24 pens. Study compared four groups which were supplemented with ACBP at 0%, 2.5%, 5%, or 10% for 6 weeks after weaning at 4 weeks. Results showed that ACBP on total phenolic, total flavonoid, and total triterpenoids contents were 13.68 mg GAE/g DW, 1.67 µg QE/g DW, and 15.6 mg/g, respectively. Weaning piglets fed 2.5% ACBP showed a significant decreased body weight gain compared with those supplemented with 5% ACBP, 10% ACBP, and control groups. Results showed that all ACBP groups increased the villi height of jejunum significantly. Incidence of diarrhea in 11 weeks with supplementation with 5% and 10% ACBP diets were lower than in control group. The 10% ACBP group showed significantly lower expression of immune response genes (IL-1ß, IL-6, IL-8, TNF-α, and IFN-γ) than the 2.5% and 5% ACBP groups. Based on results, dietary supplementation with 10% ACBP did not significantly affect body weight but could decrease piglet diarrhea condition and expression of IL-1ß and IL-6 genes.


Subject(s)
Animal Feed , Antioxidants , Diet , Dietary Supplements , Mycelium , Weaning , Weight Gain , Animals , Swine/growth & development , Swine/immunology , Weight Gain/drug effects , Diet/veterinary , Antioxidants/metabolism , Diarrhea/veterinary , Triterpenes/pharmacology , Triterpenes/administration & dosage , Gene Expression/drug effects , Cytokines/metabolism , Jejunum/metabolism , Phenols/analysis , Animal Nutritional Physiological Phenomena , Swine Diseases/microbiology , Swine Diseases/prevention & control , Swine Diseases/immunology , Polyporales/chemistry
8.
Poult Sci ; 103(9): 103975, 2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38945001

ABSTRACT

Submerged cultivation using low-value agro-industrial side streams allows large-scale and efficient production of fungal mycelia, which has a high nutritional value. As the dietary properties of fungal mycelia in poultry are largely unknown, the present study aimed to investigate the effect of feeding a Pleurotus sapidus (PSA) mycelium as a feed supplement on growth performance, composition of the cecal microbiota and several physiological traits including gut integrity, nutrient digestibility, liver lipids, liver transcriptome and plasma metabolome in broilers. 72 males, 1-day-old Cobb 500 broilers were randomly assigned to 3 different groups and fed 3 different adequate diets containing either 0% (PSA-0), 2.5% (PSA-2.5) and 5% (PSA-5.0) P. sapidus mycelium in a 3-phase feeding system for 35 d. Each group consisted of 6 cages (replicates) with 4 broilers/cage. Body weight gain, feed intake and feed:gain ratio and apparent ileal digestibility of crude protein, ether extract and amino acids were not different between groups. Metagenomic analysis of the cecal microbiota revealed no differences between groups, except that one α-diversity metric (Shannon index) and the abundance of 2 low-abundance bacterial taxa (Clostridia UCG 014, Eubacteriales) differed between groups (P < 0.05). Concentrations of total and individual short-chain fatty acids in the cecal digesta and concentrations of plasma lipopolysaccharide and mRNA levels of proinflammatory genes, tight-junction proteins, and mucins in the cecum mucosa did not differ between groups. None of the plasma metabolites analyzed using targeted-metabolomics differed across the groups. Hepatic transcript profiling revealed a total of 144 transcripts to be differentially expressed between group PSA-5.0 and group PSA-0 but none of these genes was regulated greater 2-fold. Considering either the lack of effects or the very weak effects of feeding the P. sapidus mycelium in the broilers it can be concluded that inclusion of a sustainably produced fungal mycelium in broiler diets at the expense of other feed components has no negative consequences on broilers´ performance and metabolism.

9.
Mycobiology ; 52(2): 124-134, 2024.
Article in English | MEDLINE | ID: mdl-38690030

ABSTRACT

In recent decades, an enormous potential of fungal-based products with characteristics equal to, or even outperforming, classic petroleum-derived products has been acknowledged. The production of these new materials uses mycelium, a root-like structure of fungi consisting of a mass of branching, thread-like hyphae. Optimizing the production of mycelium-based materials and fungal growth under technical conditions needs to be further investigated. The main objective of this study was to select fast-growing fungi and identify optimized incubation conditions to obtain a dense mycelium mat in a short time. Further, the influence of the initial substrate characteristics on hyphae expansion was determined. Fungal isolates of Ganoderma lucidum, Pleurotus ostreatus, and Trametes versicolor were cultivated for seven days on substrate mixtures consisting of various proportions of pine bark and cotton fibers. Furthermore, the substrates were mixed with 0, 2, and 5 wt.% calcium carbonate (CaCO3), and the incubator was flushed with 0, 5, and 10 vol.% carbon dioxide (CO2). All samples grew in the dark at 26 °C and a relative humidity of 80%. Evaluation of growth rate shows that cotton fiber-rich substrates performed best for all investigated fungi. Although Pleurotus ostreatus and Trametes versicolor showed comparatively high growth rates of up to 5.4 and 5.3 mm d-1, respectively, mycelium density was thin and transparent. Ganoderma lucidum showed a significantly denser mycelium at a maximum growth rate of 3.3 mm d-1 on a cotton fiber-rich substrate (75 wt.%) without CaCO3 but flushed with 5 vol.% CO2 during incubation.

10.
J Agric Food Chem ; 72(19): 11002-11012, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38700031

ABSTRACT

Due to the increasing demand for natural food ingredients, including taste-active compounds, enzyme-catalyzed conversions of natural substrates, such as flavonoids, are promising tools to align with the principles of Green Chemistry. In this study, a novel O-methyltransferase activity was identified in the mycelium of Lentinula edodes, which was successfully applied to generate the taste-active flavonoids hesperetin, hesperetin dihydrochalcone, homoeriodictyol, and homoeriodictyol dihydrochalcone. Furthermore, the mycelium-mediated OMT activity allowed for the conversion of various catecholic substrates, yielding their respective (iso-)vanilloids, while monohydroxylated compounds were not converted. By means of a bottom-up proteomics approach, three putative O-methyltransferases were identified, and subsequently, synthetic, codon-optimized genes were heterologously expressed in Escherichia coli. The purified enzymes confirmed the biocatalytic O-methylation activity against targeted flavonoids containing catechol motifs.


Subject(s)
Biocatalysis , Catechol O-Methyltransferase , Flavonoids , Fungal Proteins , Shiitake Mushrooms , Shiitake Mushrooms/enzymology , Shiitake Mushrooms/genetics , Shiitake Mushrooms/chemistry , Shiitake Mushrooms/metabolism , Catechol O-Methyltransferase/genetics , Catechol O-Methyltransferase/metabolism , Catechol O-Methyltransferase/chemistry , Fungal Proteins/genetics , Fungal Proteins/metabolism , Fungal Proteins/chemistry , Flavonoids/chemistry , Flavonoids/metabolism , Flavoring Agents/metabolism , Flavoring Agents/chemistry , Mycelium/enzymology , Mycelium/genetics , Mycelium/chemistry , Mycelium/metabolism , Substrate Specificity
11.
Chem Biodivers ; 21(6): e202400583, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38590217

ABSTRACT

Plant disease control mainly relies on pesticides. In this study, a series of coumarin derivatives containing hydrazone moiety were designed and synthesized. The synthesized compounds were characterized and used to evaluate the antifungal activity against four pathogens, Botrytis cinerea, Alternaria solani, Fusarium oxysporum, and Alternaria alternata. The results showed that the inhibition rate of some compounds at 100 µg/mL in 96 hours reached around 70 % against A. alternata, higher than that of the positive control. The corresponding EC50 values were found at around 30 µg/mL. Finally, the compound 3 b was screened out with the lowest EC50 value (19.49 µg/mL). The analysis of SEM and TEM confirmed that the compound 3 b can obviously damage the morphological structure of hyphae, resulting in the depletion of the cells by the destruction of morphological matrix and leakage of contents. RNA sequencing showed that compounds 3 b mainly affected the pentose phosphate pathway, which caused to destroy the layer of mitochondrial structure. Molecular docking showed that compounds 3 b fitted the binding pocket of yeast transketolase and interacted with lysine at the hydrazone structure. Our results suggested that the introduction of hydrazone was an effective strategy for the design of novel bioactive compounds.


Subject(s)
Alternaria , Antifungal Agents , Botrytis , Coumarins , Fusarium , Hydrazones , Microbial Sensitivity Tests , Molecular Docking Simulation , Hydrazones/chemistry , Hydrazones/pharmacology , Hydrazones/chemical synthesis , Coumarins/chemistry , Coumarins/pharmacology , Coumarins/chemical synthesis , Alternaria/drug effects , Antifungal Agents/pharmacology , Antifungal Agents/chemistry , Antifungal Agents/chemical synthesis , Fusarium/drug effects , Structure-Activity Relationship , Botrytis/drug effects , Molecular Structure , Dose-Response Relationship, Drug
12.
Plant Dis ; 2024 Apr 14.
Article in English | MEDLINE | ID: mdl-38616399

ABSTRACT

Oaks are the most abundant trees in naturally regenerated forests in China, play a crucial role in preventing soil erosion and maintaining ecological stability (Du et al. 2022). Quercus guyavifolia H. Léveillé (Fagaceae family, Subgenus Cerris, section Ilex), is endemic in China, distributed in the southeastern boundary of the Qinghai-Tibet Plateau, with elevations from 2, 000 - 4, 500 m a.s.l. (Denk et al. 2018; Sun et al. 2016). Powdery mildew is a prevalent disease of oaks with up to 60% of foliage infection, which can induce leaf necrosis or deformation and might contribute to oak decline (Marçais and Desprez-Loustau 2014). In September 2023, we found leaves of Q. guyavifolia near Yunnan Baima Snow Mountain covered with white fungal colonies. Diseased Q. guyavifolia plants were transplanted into a greenhouse at Yunnan University for pathogenicity tests. Conidia from diseased plants were blown into twenty healthy Q. guyavifolia seedlings by cold air blower and five non-inoculated healthy seedlings were used as control. The inoculated seedlings developed powdery mildew symptoms within ten days on both sides of the leaves. Trypan blue staining was used to identify the pathogen that infects Q. guyavifolia (Xiao et al. 2017). Microscopic examination revealed abundant conidia and extensive branched hyphae on leaves, similar to the characteristics of powdery mildew fungi. The mean length and width of conidia were 29.06 ± 3.96 × 9.52 ± 1.36 µm (n = 50). We collected fungi (YNBAIMAXS01) and extracted genomic DNA from five diseased plants (from the same location) using the CTAB method. We amplified and sequenced the ITS (Gardes and Bruns, 1993), MS294, and MS447 (two nuclear protein-encoding genes; Feau et al. 2011; GenBank numbers: PP079015, PP083693, PP083694). BLAST analysis revealed 100% identity of above three sequences with the ITS of Erysiphe quercicola isolate DACA010 (GenBank accession MT569439), MS294 of E. quercicola isolate GEM09_11_FRTB1 (GenBank accession KY348509), and MS447 of E. quercicola isolate A1I1.5 (GenBank accession KY466619). Therefore, the isolate YNBAIMAXS01 was identified as E. quercicola based on its morphological and molecular characteristics. Sequences from the above three regions for YNBAIMAXS01 and five Erysiphe species were used to construct a Maximum likelihood (ML) tree. In addition, we constructed a ML tree using only the ITS region of YNBAIMAXS01 and eight Erysiphe species from GenBank to better distinguish E. quercicola from these species. Both trees were constructed using MEGA X with K2 + G as best model. The ML trees confirmed the powdery mildew fungi isolated from Q. guyavifolia is closely related to E. alphitoides. To date, thirty-four powdery mildew species belonging to genus Erysiphe have been found affecting Quercus and nine oak species can be infected by E. quercicola (https://fungi.ars.usda.gov/). To our knowledge, this is the first report of powdery mildew caused by E. quercicola on Q. guyavifolia, thus the development of control strategies and disease management is urgently needed.

13.
Molecules ; 29(7)2024 Apr 08.
Article in English | MEDLINE | ID: mdl-38611946

ABSTRACT

Armillaria sp. are traditional edible medicinal mushrooms with various health functions; however, the relationship between their composition and efficacy has not yet been determined. Here, the ethanol extract of liquid-cultured Armillaria ostoyae mycelia (AOME), a pure wild Armillaria sp. strain, was analyzed using UHPLC-QTOF/MS, network pharmacology, and molecular docking techniques. The obtained extract affects various metabolic pathways, such as JAK/STAT and PI3K/AKT. The extract also contains important compounds such as 4-(dimethylamino)-N-[7-(hydroxyamino)-7-oxoheptyl] benzamide, isoliquiritigenin, and 7-hydroxycoumarin. Moreover, the extract targets key proteins, including EGFR, SCR, and IL6, to suppress the progression of gastric cancer, thereby synergistically inhibiting cancer development. The molecular docking analyses indicated that the main compounds stably bind to the target proteins. The final cell culture experimental data showed that the ethanol extract inhibited MGC-803 gastric cancer cells. In summary, our research revealed the beneficial components of AOME for treating gastric cancer and its associated molecular pathways. However, further research is needed to confirm its effectiveness and safety in gastric cancer patients.


Subject(s)
Armillaria , Stomach Neoplasms , Humans , Stomach Neoplasms/drug therapy , Molecular Docking Simulation , Network Pharmacology , Phosphatidylinositol 3-Kinases , Ethanol
14.
Food Sci Nutr ; 12(4): 2551-2566, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38628173

ABSTRACT

Cocoa pod husks (CPHs), the major side-stream from cocoa production, were valorized through fermentation with Pleurotus salmoneo-stramineus (PSS). Considering ergosterol as a biomarker for the fungal content, the mycelium accounted for 54% of the total biomass after 8 days in submerged cultures. The crude protein content of fermented CPH (CPHF) increased from 7.3 g/100 g DM in CPH to 18.9 g/100 g DM. CPH fermentation resulted in a high biological value of 86 for the protein. The water and oil binding capacities of CPHF were 3.5 mL/g and 2.1 mL/g, respectively. The particle diameter dv,0,90 of CPHF was 373 µm as compared to 526 µm for CPH. The total dietary fiber was 73.4 g/100 g DM in CPHF and 63.6 g/100 g DM in CPH. The amount of soluble fiber was 2.3 g/100 g DM in CPHF and 10.1 g/100 g DM in CPH; the insoluble fraction accounted for 71.1 g/100 g DM and 53.6 g/100 g DM, respectively. Bread doughs with CPH or CPHF were characterized for texture, color, and farinographic properties. The dough hardness, consistency, and browning index increased with the concentration of CPH, whereas for CPHF, springiness and peak viscosities declined. We demonstrate the upcycling of CPH into nutritious and functional ingredients through PSS fermentation.

15.
FEMS Microbiol Ecol ; 100(5)2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38640440

ABSTRACT

Fomes fomentarius is a widespread, wood-rotting fungus of temperate, broadleaved forests. Although the fruiting bodies of F. fomentarius persist for multiple years, little is known about its associated microbiome or how these recalcitrant structures are ultimately decomposed. Here we used metagenomics and metatranscriptomics to analyse the microbial community associated with healthy living and decomposing F. fomentarius fruiting bodies to assess the functional potential of the fruiting body-associated microbiome and to determine the main players involved in fruiting body decomposition. F. fomentarius sequences in the metagenomes were replaced by bacterial sequences as the fruiting body decomposed. Most CAZymes expressed in decomposing fruiting bodies targeted components of the fungal cell wall with almost all chitin-targeting sequences, plus a high proportion of beta-glucan-targeting sequences, belonging to Arthropoda. We suggest that decomposing fruiting bodies of F. fomentarius represent a habitat rich in bacteria, while its decomposition is primarily driven by Arthropoda. Decomposing fruiting bodies thus represent a specific habitat supporting both microorganisms and microfauna.


Subject(s)
Arthropods , Ascomycota , Coriolaceae , Microbiota , Animals , Microbiota/genetics , Fruiting Bodies, Fungal , Bacteria/genetics
16.
J Microsc ; 294(2): 203-214, 2024 May.
Article in English | MEDLINE | ID: mdl-38511469

ABSTRACT

Low-vacuum scanning electron microscopy (low-vacuum SEM) is widely used for different applications, such as the investigation of noncoated specimen or the observation of biological materials, which are not stable to high vacuum. In this study, the combination of mineral building materials (concrete or clay plaster) with a biological composite (fungal mycelium composite) by using low-vacuum SEM was investigated. Fungal biotechnology is increasingly gaining prominence in addressing the challenges of sustainability transformation. The construction industry is one of the biggest contributors to the climate crises and, therefore, can highly profit from applications based on regenerative fungal materials. In this work, a fungal mycelium composite is used as alternative to conventional insulating materials like Styrofoam. However, to adapt bio-based products to the construction industry, investigations, optimisations and adaptations to existing solutions are needed. This paper examines the compatibility between fungal mycelium materials with mineral-based materials to demonstrate basic feasibility. For this purpose, fresh and hardened concrete specimens as well as clay plaster samples are combined with growing mycelium from the tinder fungus Fomes fomentarius. The contact zone between the mycelium composite and the mineral building materials is examined by scanning electron microscopy (SEM). The combination of these materials proves to be feasible in general. The use of hardened concrete or clay with living mycelium composite appears to be the favoured variant, as the hyphae can grow into the surface of the building material and thus a layered structure with a stable connection is formed. In order to work with the combination of low-density organic materials and higher-density inorganic materials simultaneously, low-vacuum SEM offers a suitable method to deliver results with reduced effort in preparation while maintaining high capture and magnification quality. Not only are image recordings possible with SE and BSE, but EDX measurements can also be carried out quickly without the influence of a coating. Depending on the signal used, as well as the magnification, image-recording strategies must be adapted. Especially when using SE, an image-integration method was used to reduce the build-up of point charges from the electron beam, which damages the mycelial hyphae. Additionally using different signals during image capture is recommended to confirm acquired information, avoiding misinterpretations.


Subject(s)
Minerals , Mycelium , Microscopy, Electron, Scanning , Vacuum , Clay , Mycelium/chemistry , Minerals/analysis , Construction Materials
17.
Adv Sci (Weinh) ; 11(24): e2309370, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38477443

ABSTRACT

Organic polymer-based composite materials with favorable mechanical performance and functionalities are keystones to various modern industries; however, the environmental pollution stemming from their processing poses a great challenge. In this study, by finding an autonomous phase separating ability of fungal mycelium, a new material fabrication approach is introduced that leverages such biological metabolism-driven, mycelial growth-induced phase separation to bypass high-energy cost and labor-intensive synthetic methods. The resulting self-regenerative composites, featuring an entangled network structure of mycelium and assembled organic polymers, exhibit remarkable self-healing properties, being capable of reversing complete separation and restoring ≈90% of the original strength. These composites further show exceptional mechanical strength, with a high specific strength of 8.15 MPa g.cm-3, and low water absorption properties (≈33% after 15 days of immersion). This approach spearheads the development of state-of-the-art living composites, which directly utilize bioactive materials to "self-grow" into materials endowed with exceptional mechanical and functional properties.


Subject(s)
Mycelium , Polymers/chemistry , Materials Testing/methods , Biocompatible Materials/chemistry
18.
Antioxidants (Basel) ; 13(3)2024 Mar 19.
Article in English | MEDLINE | ID: mdl-38539904

ABSTRACT

Hericium erinaceus, a consumable mushroom, has shown a potential to enhance the production of neuroprotective bioactive metabolites. Traumatic brain injury (TBI) often leads to cognitive, physical, and psychosocial impairments, resulting in neuroinflammation and the loss of cortical neurons. In this research, the effects of H. erinaceus mycelium, its derivative erinacine C, along with the underlying mechanisms, were examined in terms of oxidative stress modulation and neurological improvement in a rat model of mild traumatic brain injury (mTBI). Male Sprague-Dawley rats were administered diets containing H. erinaceus mycelium and erinacine C following experimental brain injury; these supplements were continued throughout the recovery phase. The binding activity of NF-E2-related factor 2 (Nrf2) near antioxidant genes in mixed glial cells was measured by chromatin immunoprecipitation-quantitative polymerase chain reaction (ChIP-qPCR). The motor beam walking test revealed that dietary supplementation of H. erinaceus mycelium resulted in modest improvements in spatial memory while inhibiting neuron cell death and microglial activation according to brain histological examination. These findings were further corroborated by the upregulation of several antioxidant enzymes (catalase, glutathione reductase, thioredoxin reductase, and superoxide dismutase) and phospho-CAMP-response element-binding (p-CREB) levels in the mTBI model treated with H. erinaceus mycelium. Erinacine C treatment led to significantly reduced brain inflammation and normalization of mTBI-induced deficits through the modulation of the Nrf2 activation pathway and upregulated expression of numerous Nrf2-binding antioxidant genes such as catalase, thioredoxin reductase, superoxide dismutase, and brain-derived neurotrophic factor. This study demonstrates the potential of H. erinaceus mycelium and erinacine C in facilitating recovery following mTBI, including the prevention of neuronal injury and inactivation of microglia through the Nrf2-mediated antioxidant pathway in vivo.

19.
Glob Chall ; 8(3): 2300140, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38486929

ABSTRACT

Fungi adapt to their surroundings, modifying their behaviors and composition under different conditions like nutrient availability and environmental stress. This perspective examines how a basic understanding of fungal genetics and the different ways that fungi can be influenced by their surroundings can be leveraged toward the production of functional mycelium materials. Simply put, within the constraints of a given genetic script, both the quality and quantity of fungal mycelium are shaped by what they eat and where they grow. These two levers, encompassing their global growth environment, can be turned toward different materials outcomes. The final properties of myco-materials are thus intimately shaped by the conditions of their growth, enabling the design of new biobased and biodegradable material constructions for applications that have traditionally relied on petroleum-based chemicals.This perspective highlights aspects of fungal genetics and environmental adaptation that have potential materials science implications, along the way touching on key studies, both to situate the state of the art within the field and to punctuate the viewpoints of the authors. Finally, this work ends with future perspectives, reinforcing key topics deemed important to consider in emerging myco-materials research.

20.
Heliyon ; 10(5): e26539, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38434383

ABSTRACT

Huge volumes of organic matter are produced on earth via photosynthesis and their disposal is a serious threat to the environment and public health all over the world. Nevertheless, these agricultural wastes possess a chemical composition conducive to mushroom cultivation. Lignocellulosic wastes, comprising cellulose, hemicellulose and lignin, offer vital nutrients for mushroom growth. Oyster mushrooms are well known for their unique ability to degrade lignocellulosic materials, making them valuable contributors to the process of organic waste decomposition and nutrient cycling in ecosystems. Employing agricultural by-products as a substrate for mushroom cultivation presents a sustainable approach to waste reduction and the production of nutritionally enriched food. Cultivating oyster mushrooms, presents an economically feasible and environment friendly method of transforming waste materials into highly nutritious food. These edible mushrooms are widely grown worldwide, comprising around 27 percent of the total global production. Oyster cultivation has rapidly increased in Asia due to its low production technology, easy availability of substrates, temperature tolerance and high yield capacity. Oyster mushrooms are sought after as a functional food due to their appealing taste, aroma, flavor, nutritional benefits and medicinal properties. They contain high levels of protein, fiber, vitamins B complex, C and D2, as well as minerals like potassium, phosphorus, selenium, zinc and essential amino acids. These mushrooms are versatile, as they thrive in both tropical and temperate regions without requiring complex controlled environmental conditions for growth. This review article provides insights into the cultivation aspects of important oyster species including a novel species called Hypsizygus ulmarius. Oyster mushroom cultivation is rapidly growing in developing countries, where it can contribute to food security for the world's growing population, which is expected to reach 9.7 billion by 2050.

SELECTION OF CITATIONS
SEARCH DETAIL
...