Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 931
Filter
1.
Open Forum Infect Dis ; 11(7): ofae345, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38966854

ABSTRACT

Background: Adjunctive lung resection is recommended for select patients with nontuberculous mycobacteria (NTM) pulmonary disease (PD). However, data are limited on long-term recurrence rates in patients infected with major pathogens, including Mycobacterium avium complex (MAC) and Mycobacterium abscessus (MABC). Methods: In this prospective observational study, we retrospectively analyzed data from 125 patients with MAC-PD (n = 90) or MABC-PD (n = 35) who underwent adjunctive lung resection. We evaluated microbiological response, postoperative complications, recurrence, and all-cause mortality over a median 80-month follow-up. Results: Persistent culture positivity (64%) was the most common indication for surgery, followed by hemoptysis, recurrent pneumonia, or radiologic deterioration. Postoperative complications occurred in 18 (14%) patients, with no surgery-related deaths. Treatment outcomes did not significantly differ between the MAC- and MABC-PD groups. Cure with culture conversion was achieved in 112 (90%) patients. Recurrence occurred in 37 (33%) of 112 patients, of which 18 (49%) cases were attributed to reinfection by different NTM species or subspecies. The MAC group had higher recurrence rates than the MABC group (Kaplan-Meier curve, log-rank test, P = .043) and was significantly associated with recurrence in the multivariable analysis (adjusted hazard ratio, 2.71; 95% CI, 1.23-5.99). However, mortality was higher in the MABC-PD group than the MAC-PD group (7/35 vs 4/90, P = .006). Conclusions: Adjunctive lung resection with antibiotics helps to reduce bacterial burden and manage symptoms in patients with NTM-PD. However, it does not prevent recurrence, which is mostly caused by reinfection.

2.
Antibiotics (Basel) ; 13(6)2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38927195

ABSTRACT

Mycobacterium abscessus (M. abscessus) is a multidrug-resistant nontuberculous mycobacterium (NTM) that is responsible for a wide spectrum of infections in humans. The lack of effective bactericidal drugs and the formation of biofilm make its clinical treatment very difficult. The FDA-approved drug library containing 3048 marketed and pharmacopeial drugs or compounds was screened at 20 µM against M. abscessus type strain 19977 in 7H9 medium, and 62 hits with potential antimicrobial activity against M. abscessus were identified. Among them, bithionol, a clinically approved antiparasitic agent, showed excellent antibacterial activity and inhibited the growth of three different subtypes of M. abscessus from 0.625 µM to 2.5 µM. We confirmed the bactericidal activity of bithionol by the MBC/MIC ratio being ≤4 and the time-kill curve study and also electron microscopy study. Interestingly, it was found that at 128 µg/mL, bithionol could completely eliminate biofilms after 48h, demonstrating an outstanding antibiofilm capability compared to commonly used antibiotics. Additionally, bithionol could eliminate 99.9% of biofilm bacteria at 64 µg/mL, 99% at 32 µg/mL, and 90% at 16 µg/mL. Therefore, bithionol may be a potential candidate for the treatment of M. abscessus infections due to its significant antimicrobial and antibiofilm activities.

3.
Front Cell Infect Microbiol ; 14: 1411333, 2024.
Article in English | MEDLINE | ID: mdl-38854658

ABSTRACT

Mycobacterium abscessus (Mab) is an opportunistic pathogen afflicting individuals with underlying lung disease such as Cystic Fibrosis (CF) or immunodeficiencies. Current treatment strategies for Mab infections are limited by its inherent antibiotic resistance and limited drug access to Mab in its in vivo niches resulting in poor cure rates of 30-50%. Mab's ability to survive within macrophages, granulomas and the mucus laden airways of the CF lung requires adaptation via transcriptional remodeling to counteract stresses like hypoxia, increased levels of nitrate, nitrite, and reactive nitrogen intermediates. Mycobacterium tuberculosis (Mtb) is known to coordinate hypoxic adaptation via induction of respiratory nitrate assimilation through the nitrate reductase narGHJI. Mab, on the other hand, does not encode a respiratory nitrate reductase. In addition, our recent study of the transcriptional responses of Mab to hypoxia revealed marked down-regulation of a locus containing putative nitrate assimilation genes, including the orphan response regulator nnaR (nitrate/nitrite assimilation regulator). These putative nitrate assimilation genes, narK3 (nitrate/nitrite transporter), nirBD (nitrite reductase), nnaR, and sirB (ferrochelatase) are arranged contiguously while nasN (assimilatory nitrate reductase identified in this work) is encoded in a different locus. Absence of a respiratory nitrate reductase in Mab and down-regulation of nitrogen metabolism genes in hypoxia suggest interplay between hypoxia adaptation and nitrate assimilation are distinct from what was previously documented in Mtb. The mechanisms used by Mab to fine-tune the transcriptional regulation of nitrogen metabolism in the context of stresses e.g. hypoxia, particularly the role of NnaR, remain poorly understood. To evaluate the role of NnaR in nitrate metabolism we constructed a Mab nnaR knockout strain (MabΔnnaR ) and complement (MabΔnnaR+C ) to investigate transcriptional regulation and phenotypes. qRT-PCR revealed NnaR is necessary for regulating nitrate and nitrite reductases along with a putative nitrate transporter. Loss of NnaR compromised the ability of Mab to assimilate nitrate or nitrite as sole nitrogen sources highlighting its necessity. This work provides the first insights into the role of Mab NnaR setting a foundation for future work investigating NnaR's contribution to pathogenesis.


Subject(s)
Gene Expression Regulation, Bacterial , Mycobacterium abscessus , Nitrates , Nitrites , Mycobacterium abscessus/metabolism , Mycobacterium abscessus/genetics , Nitrates/metabolism , Nitrites/metabolism , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , Humans , Mycobacterium Infections, Nontuberculous/microbiology , Mycobacterium Infections, Nontuberculous/metabolism , Nitrite Reductases/metabolism , Nitrite Reductases/genetics , Nitrate Reductase/metabolism , Nitrate Reductase/genetics
4.
Microbiol Spectr ; : e0019924, 2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38934606

ABSTRACT

Some naturally occurring compounds, known for their antimicrobial activities, have been employed as food additives. However, their efficacy in treating infections caused by antibiotic-resistant bacteria is yet to be fully explored. Rapidly growing mycobacteria (RGM), a category within nontuberculous mycobacteria (NTM), are prevalent in various environments and can lead to infections in humans. The rise of antimicrobial resistance within RGM is a documented concern. In this study, we reported that four specific natural compounds effectively inhibited the growth and biofilm formation of three key RGM pathogens M. abscessus, M. fortuitum, and M. chelonae. We screened 12 natural compounds for their effectiveness against antibiotic-resistant clinical strains of RGM. Four compounds showed significant inhibitory effects from the most effective to least: trans-cinnamaldehyde, carvacrol, gentisaldehyde, and phloroglucinaldehyde. In the analysis of time-killing kinetics, gentisaldehyde and phloroglucinaldehyde displayed bactericidal activity while trans-cinnamaldehyde and carvacrol exhibited bacteriostatic effects. At 1× minimal inhibition concentrations, these compounds significantly reduced biofilm formation in all three RGM species to levels between 2.9% and 20.5% relative to controls. Checkerboard assays indicated synergistic interactions between these four compounds and antibiotics such as amikacin, clarithromycin, and linezolid. Of these 12 compound-antibiotic combinations, the pairs of carvacrol-linezolid, carvacrol-amikacin, and gentisaldehyde-clarithromycin demonstrated the most synergy against multiple RGM strains. Moreover, two other compounds citral and geraniol showed synergism with all three test antibiotics. Time-killing assays further confirmed most of synergistic combinations identified in the checkerboard tests. Our research suggests the potential of these essential oils and phenolic aldehydes, both individually and in combination with antibiotics, in treating RGM infections. In addition, this work illuminates applications of these natural compounds in environmental remediation to mitigate bacterial persistence for the control of infectious diseases. IMPORTANCE: The emergence of antimicrobial resistance within rapidly growing mycobacteria (RGM) poses a significant threat to public health. This study investigates the potential of naturally occurring compounds to combat infections caused by antibiotic-resistant RGM including M. abscessus, M. fortuitum, and M. chelonae. We identified four specific natural compounds showing impressive inhibitory effects against antibiotic-resistant clinical strains. These compounds not only inhibited the growth and biofilm formation but also exhibited synergistic interactions with antibiotics against key RGM pathogens. Our findings highlight the alternative treatment strategies for RGM infections and potential environmental applications of these natural compounds in mitigating microbial persistence and controlling infectious diseases.

5.
Front Microbiol ; 15: 1394220, 2024.
Article in English | MEDLINE | ID: mdl-38887711

ABSTRACT

Non-Tuberculous mycobacteria (NTM) are opportunistic environmental bacteria. Globally, NTM incidence is increasing and modeling suggests that, without new interventions, numbers will continue to rise. Effective treatments for NTM infections remain suboptimal. Standard therapy for Mycobacterium avium complex, the most commonly isolated NTM, requires a 3-drug regime taken for approximately 18 months, with rates of culture conversion reported between 45 and 70%, and high rates of relapse or reinfection at up to 60%. New therapeutic options for NTM treatment are urgently required. A survey of ongoing clinical trials for new NTM therapy listed on ClinicalTrials.Gov using the terms 'Mycobacterium avium', 'Mycobacterium abscessus', 'Mycobacterium intracellulare', 'Non tuberculous Mycobacteria' and 'Nontuberculous Mycobacteria' and a selection criterion of interventional studies using antibiotics demonstrates that most trials involve dose and combination therapy of the guideline based therapy or including one or more of; Amikacin, Clofazimine, Azithromycin and the anti-TB drugs Bedaquiline and Linezolid. The propensity of NTMs to form biofilms, their unique cell wall and expression of both acquired and intrinsic resistance, are all hampering the development of new anti-NTM therapy. Increased investment in developing targeted treatments, specifically for NTM infections is urgently required.

6.
J Infect Chemother ; 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38871252

ABSTRACT

Although clofazimine is currently one of the standard regimens for Mycobacterium abscessus, it frequently causes skin discoloration, posing esthetic concerns for patients. We studied thirteen Asian patients with pulmonary nontuberculous mycobacterial disease treated with clofazimine at the NHO Kinki Chuo Chest Medical Center. In three patients (two women and one man) whose dosing regimens were altered owing to skin discoloration, we continuously measured luminance (L*), red-green (a*), and yellow-blue (b*) values (using a colorimeter) in both sun-exposed and sun-unexposed skin areas at each visit. Compared to baseline L* and a* values, the ΔL* values were negative (decreased brightness) and Δa* values were positive (increased redness) while patients received daily clofazimine. After switching to intermittent or reduced dosing, these changes gradually diminished. If such a dose reduction does not affect the therapeutic outcome, an even lower clofazimine dose may be attempted to minimize skin adverse effects.

7.
Cureus ; 16(5): e59626, 2024 May.
Article in English | MEDLINE | ID: mdl-38832176

ABSTRACT

A 47-year-old male, a known case of alcoholic chronic liver disease with portal hypertension, presented with complaints of abdominal distension and shortness of breath. A provisional diagnosis of ethanol-related compensated chronic liver disease (CLD) with portal hypertension and splenomegaly, gross ascites with bilateral hepatic hydrothorax was made. The left-sided pleural effusion subsided after three pleural taps, but the right-sided effusion kept refilling even after four to five days of repeated therapeutic taps, so a pigtail catheter was left in situ. The pleural fluid was sent for culture which did not grow any pathogenic organisms. Cartridge-based nucleic acid amplification tests where Mycobacterium tuberculosis complex (MTBC) was not detected, Ziehl-Neelsen staining was done in which acid-fast bacilli were not seen, and cytology was done where no malignant cells were seen. The patient was discharged with the pigtail in situ on the right side and, after 20 days, the patient again presented with shortness of breath, and imaging revealed moderate right-side pleural effusion. Draining of pleural fluid was done and sent for investigation which again revealed no infective etiology. The patient was admitted to the hospital for one month as the right-sided effusion did not resolve. Suddenly, the patient developed shortness of breath, and a chest X-ray was done, which showed pigtail blockage; pigtail flushing was done, and the bag was drained. The patient was empirically started on IV meropenem 500 mg TID, IV teicoplanin 400 mg BD, and inj polymyxin B 500,000 IU IV BD. The pleural fluid was sent continuously for investigation for the first two months which again did not reveal any infective etiology. After two months of pigtail in situ, the pleural fluid was sent for CBNAAT where MTBC was not detected, and ZN stain showed smooth acid-fast bacilli. The sample was cultured, and it grew acid-fast bacilli in 72 hours on blood agar, MacConkey agar, and Lowenstein-Jensen media. A line probe assay done from the isolate revealed it to be Mycobacterium abscessus subsp. abscessus which was resistant to macrolides and sensitive to aminoglycosides. Mycobacterium abscessus subsp. abscessus was isolated from repeated cultures of pleural fluid, and the patient was advised on a combination treatment of amikacin, tigecycline, and imipenem. The patient was discharged with the indwelling pigtail with the advised treatment; unfortunately, we lost patient follow-up as the patient never returned to us.

8.
Microbiol Spectr ; 12(7): e0008424, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38842354

ABSTRACT

Non-tuberculosis mycobacteria (NTM), particularly Mycobacterium abscessus subsp. abscessus (M. abscessus), are increasingly being recognized as etiological agents of NTM pulmonary disease. However, treatment options for M. abscessus are limited owing to their natural resistance to most antibiotics, including ß-lactams. M. abscessus produces a class A ß-lactamase, whose activity is inhibited by cyclic boronic acid ß-lactamase inhibitors. We aimed to evaluate the in vitro effects of xeruborbactam, a cyclic boronic acid ß-lactamase inhibitor, against M. abscessus when combined with five ß-lactams (amoxicillin, tebipenem, cefdinir, cefuroxime, and cefoxitin). The drug susceptibilities of 43 M. abscessus clinical isolates obtained from 43 patients between August 2005 and May 2014 were tested. The MIC results for each ß-lactam with or without 4 µg/mL xeruborbactam were examined. Xeruborbactam lowered the MIC90 values of tebipenem, amoxicillin, cefuroxime, and cefdinir by 5, ≥4, 3, and 3 dilutions, respectively. The MIC90 values of cefoxitin without xeruborbactam were 32 µg/mL and did not change upon the addition of xeruborbactam. The lowest MIC90 value was obtained for tebipenem with xeruborbactam. Almost all isolates had an MIC of 4 µg/mL; one isolate had an MIC of 2 µg/mL. With respect to the susceptibility to the same family drug, the number of susceptible isolates increased from 1/43 (2%) to 43/43 (100%) for tebipenem with xeruborbactam. Combining tebipenem and xeruborbactam could be considered an effective all-oral regimen that benefits outpatient treatment of M. abscessus pulmonary disease. IMPORTANCE: Mycobacterium abscessus subsp. abscessus (M. abscessus) disease is treated in two phases; injectable drugs for initial followed by others for continuation. There is a need to develop all-oral treatment methods for M. abscessus infection, especially in the continuation phase. However, treatment options for M. abscessus are limited owing to their natural resistance to most antibiotics. This is the first report to evaluate the in vitro effects of xeruborbactam, a cyclic boronic acid ß-lactamase inhibitor capable of inhibiting the class A ß-lactamase produced by M. abscessus, against 43 M. abscessus clinical isolates when combined with five ß-lactam antibiotics. Xeruborbactam lowered the MIC90 values of tebipenem by five dilutions, and the number of susceptible isolates increased from 1/43 (2%) to 43/43 (100%). We showed that the tebipenem-xeruborbactam combination might be of interest to explore further as a potentially effective oral regimen for outpatient treatment of M. abscessus pulmonary disease.


Subject(s)
Anti-Bacterial Agents , Microbial Sensitivity Tests , Mycobacterium Infections, Nontuberculous , Mycobacterium abscessus , beta-Lactamase Inhibitors , beta-Lactams , Humans , Mycobacterium abscessus/drug effects , Mycobacterium abscessus/isolation & purification , beta-Lactamase Inhibitors/pharmacology , Mycobacterium Infections, Nontuberculous/microbiology , Mycobacterium Infections, Nontuberculous/drug therapy , Anti-Bacterial Agents/pharmacology , beta-Lactams/pharmacology , Boronic Acids/pharmacology
11.
Antimicrob Agents Chemother ; : e0058524, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38837394

ABSTRACT

Individuals with compromised lung function and immunity are susceptible to developing chronic Mycobacterium abscessus infection. Current treatment recommendations typically involve using one ß-lactam antibiotic in combination with non-ß-lactam antibiotics. However, a recent case study (B. Becken, K. M. Dousa, J. L. Johnson, S. M. Holland, and R. A. Bonomo, Antimicrob Agents Chemother 68:e00319-24, 2024, https://doi.org/10.1128/aac.00319-24) demonstrated successful treatment of chronic M. abscessus lung disease in a child using two ß-lactam antibiotics simultaneously. This commentary reviews the emerging evidence and outstanding questions regarding dual ß-lactam therapy for M. abscessus infections.

12.
Microbes Infect ; : 105351, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38724000

ABSTRACT

Mycobacterium abscessus (MAB), a non-tuberculous mycobacterium (NTM), causes chronic pulmonary inflammation in humans. The NLRP3 inflammasome is a multi-protein complex that triggers IL-1ß maturation and pyroptosis through the cleavage of caspase-1. In this study, we investigated the roles of NLRP3 and IL-1ß in the host's defense against MAB. The IL-1ß production by MAB was completely abolished in NLRP3, but not NLRC4, deficient macrophages. The NLRP3 inflammasome components, which are ASC and caspase-1 were also found to be essential for IL-1ß production in response to MAB. NLRP3 and IL-1ß deficiency did not affect the intracellular growth of MAB in macrophages, and the bacterial burden in lungs of NLRP3- and IL-1ß-deficient mice was also comparable to the burden observed in WT mice. In contrast, IL-1ß deficiency ameliorated lung pathology in MAB-infected mice. Notably, the lung homogenates of IL-1ß-deficient mice had reduced levels of IL-17, but not IFN-γ and IL-4 when compared with WT counterparts. Furthermore, in vitro co-culture analysis showed that IL-1ß signaling was essential for IL-17 production in response to MAB. Finally, we observed that the anti-IL-17 antibody administration moderately mitigated MAB-induced lung pathology. These findings indicated that IL-1ß production contribute to MAB-induced lung pathology via the elevation of IL-17 production.

13.
Tuberculosis (Edinb) ; 147: 102503, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38729070

ABSTRACT

Mycobacterium abscessus, a rapidly growing nontuberculous mycobacterium, is increasingly recognized as an important pathogen of the human lung, disproportionally affecting people with cystic fibrosis (CF) and other susceptible individuals with non-CF bronchiectasis and compromised immune functions. M. abscessus infections are extremely difficult to treat due to intrinsic resistance to many antibiotics, including most anti-tuberculous drugs. Current standard-of-care chemotherapy is long, includes multiple oral and parenteral repurposed drugs, and is associated with significant toxicity. The development of more effective oral antibiotics to treat M. abscessus infections has thus emerged as a high priority. While murine models have proven instrumental in predicting the efficacy of therapeutic treatments for M. tuberculosis infections, the preclinical evaluation of drugs against M. abscessus infections has proven more challenging due to the difficulty of establishing a progressive, sustained, pulmonary infection with this pathogen in mice. To address this issue, a series of three workshops were hosted in 2023 by the Cystic Fibrosis Foundation (CFF) and the National Institute of Allergy and Infectious Diseases (NIAID) to review the current murine models of M. abscessus infections, discuss current challenges and identify priorities toward establishing validated and globally harmonized preclinical models. This paper summarizes the key points from these workshops. The hope is that the recommendations that emerged from this exercise will facilitate the implementation of informative murine models of therapeutic efficacy testing across laboratories, improve reproducibility from lab-to-lab and accelerate preclinical-to-clinical translation.


Subject(s)
Disease Models, Animal , Mycobacterium Infections, Nontuberculous , Mycobacterium abscessus , Animals , Mycobacterium abscessus/drug effects , Mycobacterium Infections, Nontuberculous/drug therapy , Mycobacterium Infections, Nontuberculous/microbiology , Mice , Anti-Bacterial Agents/therapeutic use , Anti-Bacterial Agents/pharmacology , Humans , Drug Evaluation, Preclinical/methods , Lung/microbiology , Lung/drug effects , Lung/immunology
14.
mBio ; 15(6): e0060924, 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38742824

ABSTRACT

Mycobacterium abscessus (Mab) affects patients with immunosuppression or underlying structural lung diseases such as cystic fibrosis (CF). Additionally, Mab poses clinical challenges due to its resistance to multiple antibiotics. Herein, we investigated the synergistic effect of dual ß-lactams [sulopenem and cefuroxime (CXM)] or the combination of sulopenem and CXM with ß-lactamase inhibitors [BLIs-avibactam (AVI) or durlobactam (DUR)]. The sulopenem-CXM combination yielded low minimum inhibitory concentration (MIC) values for 54 clinical Mab isolates and ATCC19977 (MIC50 and MIC90 ≤0.25 µg/mL). Similar synergistic effects were observed in time-kill studies conducted at concentrations achievable in clinical settings. Sulopenem-CXM outperformed monotherapy, yielding ~1.5 Log10 CFU/mL reduction during 10 days. Addition of BLIs enhanced this antibacterial effect, resulting in an additional reduction of CFUs (~3 Log10 for sulopenem-CXM and AVI and ~4 Log10 for sulopenem-DUR). Exploration of the potential mechanisms of the synergy focused on their interactions with L,D-transpeptidases (Ldts; LdtMab1-LdtMab4), penicillin-binding-protein B (PBP B), and D,D-carboxypeptidase (DDC). Acyl complexes, identified via mass spectrometry analysis, demonstrated the binding of sulopenem with LdtMab2-LdtMab4, DDC, and PBP B and CXM with LdtMab2 and PBP B. Molecular docking and mass spectrometry data suggest the formation of a covalent adduct between sulopenem and LdtMab2 after the nucleophilic attack of the cysteine residue at the ß-lactam carbonyl carbon, leading to the cleavage of the ß-lactam ring and the establishment of a thioester bond linking the LdtMab2 with sulopenem. In conclusion, we demonstrated the biochemical basis of the synergy of sulopenem-CXM with or without BLIs. These findings potentially broaden the selection of oral therapeutic agents to combat Mab. IMPORTANCE: Treating infections from Mycobacterium abscessus (Mab), particularly those resistant to common antibiotics like macrolides, is notoriously difficult, akin to a never-ending struggle for healthcare providers. The rate of treatment failure is even higher than that seen with multidrug-resistant tuberculosis. The role of combination ß-lactams in inhibiting L,D-transpeptidation, the major peptidoglycan crosslink reaction in Mab, is an area of intense investigation, and clinicians have utilized this approach in the treatment of macrolide-resistant Mab, with reports showing clinical success. In our study, we found that cefuroxime and sulopenem, when used together, display a significant synergistic effect. If this promising result seen in lab settings, translates well into real-world clinical effectiveness, it could revolutionize current treatment methods. This combination could either replace the need for more complex intravenous medications or serve as a "step down" to an oral medication regimen. Such a shift would be much easier for patients to manage, enhancing their comfort and likelihood of sticking to the treatment plan, which could lead to better outcomes in tackling these tough infections. Our research delved into how these drugs inhibit cell wall synthesis, examined time-kill data and binding studies, and provided a scientific basis for the observed synergy in cell-based assays.


Subject(s)
Anti-Bacterial Agents , Cefuroxime , Drug Synergism , Microbial Sensitivity Tests , Mycobacterium abscessus , Mycobacterium abscessus/drug effects , Anti-Bacterial Agents/pharmacology , Humans , Cefuroxime/pharmacology , Mycobacterium Infections, Nontuberculous/microbiology , Mycobacterium Infections, Nontuberculous/drug therapy , beta-Lactamase Inhibitors/pharmacology , Molecular Docking Simulation , Prohibitins
15.
Microbes Infect ; : 105367, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38782181

ABSTRACT

Mycobacterium abscessus (Mab) infection can be deadly in patients with chronic lung diseases like cystic fibrosis (CF). In vitro and in vivo, Mab may adopt a smooth (S) or rough (R) morphotype, the latter linked to more severe disease conditions. In vitro studies revealed differences in pathogenicity and immune response to S and R morphotypes. We propose that in vivo both morphotypes exist and may transiently switch depending on the environment, having important pathogenic and immunologic consequences. This can be modeled by morphotypic S and R variants of Mab selected based on in vitro growth conditions. Here, we report the first analysis of early transcriptional events in mouse bone marrow derived macrophages (BMDMs) upon infection with media-selected interchangeable Mab-S and Mab-R morphotypes. The early transcriptional events after infection with both morphotypes showed considerable overlap of the pro-inflammatory genes that were differentially regulated compared to the uninfected macrophages. We also observed signature genes significantly differentially regulated in macrophages during infection of media-selected morphotypic Mab-S and Mab-R variants. In conclusion, media-selected Mab-S and Mab-R behave in a similar fashion to stable S and R types with respect to pathogenesis and immune response, serving as a useful model for environmentally influenced morphotype selection.

16.
Tuberculosis (Edinb) ; 147: 102519, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38754247

ABSTRACT

BACKGROUND: Drug susceptibility testing (DST) protocol of omadacycline against non-tuberculous mycobacteria has not yet been established. We developed a method to accurately determine MIC omadacycline MIC against Mycobacterium abscessus (Mab), Mycobacterium avium-complex (MAC), and Mycobacterium kansasii (Mkn). METHODS: First, we identified the oxyrase concentration not affecting Mab, MAC, and Mkn growth followed by omadacycline MIC experiments with and without oxyrase using reference and clinical strains. RESULTS: Oxyrase 0.5 % (v/v) stabilized omadacycline in the culture medium. The median omadacycline MIC was 1 mg/L for Mab and 8 mg/L for Mkn. For MAC, the median omadacycline MIC was 2 mg/L for M. avium, 256 mg/L for M. intracellulare, and 4 mg/L for M. chimaera (p < 0.0001). Wilcoxon matched-pairs signed rank test revealed statistically lower MICs with oxyrase for all MAC subspecies (p < 0.0001), all Mab subspecies (p < 0.0001), and Mkn (p = 0.0002). The decrease in MICs with oxyrase was 17/18 of Mab, 14/19 of Mkn, 8/8 of M. avium, 4/5 M. chimera, but only 11/18 of M. intracellulare (p < 0.013). CONCLUSION: Use of 0.5 % oxyrase could be a potential solution to reliable and reproducible omadacycline MIC of Mab. However, oxyrase demonstrated a variable effect in reducing MICs against MAC and Mkn.


Subject(s)
Antitubercular Agents , Microbial Sensitivity Tests , Mycobacterium abscessus , Tetracyclines , Microbial Sensitivity Tests/methods , Humans , Antitubercular Agents/pharmacology , Tetracyclines/pharmacology , Mycobacterium abscessus/drug effects , Mycobacterium abscessus/enzymology , Mycobacterium kansasii/drug effects , Mycobacterium kansasii/enzymology , Mycobacterium avium Complex/drug effects , Mycobacterium avium Complex/enzymology , Nontuberculous Mycobacteria/drug effects , Nontuberculous Mycobacteria/enzymology , Mycobacterium Infections, Nontuberculous/microbiology , Mycobacterium Infections, Nontuberculous/drug therapy
17.
Jpn J Radiol ; 2024 May 06.
Article in English | MEDLINE | ID: mdl-38705936

ABSTRACT

PURPOSE: Mycobacterium abscessus complex (MABC) commonly causes lung disease (LD) and has a high treatment failure rate of around 50%. In this study, our objective is to investigate specific CT patterns for predicting treatment prognosis and monitoring treatment response, thus providing valuable insights for clinical physicians in the management of MABC-LD treatment. METHODS: We retrospectively assessed 34 patients with MABC-LD treated between January 2015 and December 2020. CT scores for bronchiectasis, cellular bronchiolitis, consolidation, cavities, and nodules were measured at initiation and after treatment. The ability of the CT scores to predict treatment outcomes was analyzed in logistic regression analyses. RESULTS: The CT scoring system had excellent inter-reader agreement (all intraclass correlation coefficients, > 0.82). The treatment failure (TF) group (17/34; 50%) had higher cavitation diameter (p = 0.049) and extension (p = 0.041) at initial CT and higher cavitation diameter (p = 0.049) and extension (p =0 .045), consolidation (p = 0.022), and total (p = 0.013) scores at follow-up CT than the treatment success (TS) group. The changes of total score and consolidation score (p = 0.049 and 0.024, respectively) increased in the TF group more than the TS group between the initial and follow-up CT. Multivariable logistic regression analysis showed initial cavitation extension, follow-up consolidation extension, and change in consolidation extension (adjusted odds ratio: 2.512, 2.495, and 9.094, respectively, per 1-point increase; all p < 0.05) were significant predictors of treatment failure. CONCLUSIONS: A high pre-treatment cavitation extension score and an increase in the consolidation extension score during treatment on CT could be alarm signs of treatment failure requiring tailor the treatment of MABC-LD carefully.

18.
Front Microbiol ; 15: 1392606, 2024.
Article in English | MEDLINE | ID: mdl-38690364

ABSTRACT

Mycobacterium abscessus is an emerging opportunistic pathogen causing severe pulmonary infections in patients with underlying lung disease and cystic fibrosis in particular. The rising prevalence of M. abscessus infections poses an alarming threat, as the success rates of available treatment options are limited. Central to this challenge is the absence of preclinical in vitro models that accurately mimic in vivo conditions and that can reliably predict treatment outcomes in patients. M. abscessus is notorious for its association with biofilm formation within the lung. Bacteria in biofilms are more recalcitrant to antibiotic treatment compared to planktonic bacteria, which likely contributes to the lack of correlation between preclinical drug activity testing (typically performed on planktonic bacteria) and treatment outcome. In recent years, there has been a growing interest in M. abscessus biofilm research. However, the absence of standardized methods for biofilm culture, biofilm characterization and drug activity testing has led to a wide spectrum of, sometimes inconsistent, findings across various studies. Factors such as strain selection, culture medium, and incubation time hugely impact biofilm development, phenotypical characteristics and antibiotic susceptibility. Additionally, a broad range of techniques are used to study M. abscessus biofilms, including quantification of colony-forming units, crystal violet staining and fluorescence microscopy. Yet, limitations of these techniques and the selected readouts for analysis affect study outcomes. Currently, research on the activity of conventional antibiotics, such as clarithromycin and amikacin, against M. abscessus biofilms yield ambiguous results, underscoring the substantial impact of experimental conditions on drug activity assessment. Beyond traditional drug activity testing, the exploration of novel anti-biofilm compounds and the improvement of in vitro biofilm models are ongoing. In this review, we outline the laboratory models, experimental variables and techniques that are used to study M. abscessus biofilms. We elaborate on the current insights of M. abscessus biofilm characteristics and describe the present understanding of the activity of traditional antibiotics, as well as potential novel compounds, against M. abscessus biofilms. Ultimately, this work contributes to the advancement of fundamental knowledge and practical applications of accurate preclinical M. abscessus models, thereby facilitating progress towards improved therapies for M. abscessus infections.

19.
J Korean Med Sci ; 39(20): e167, 2024 May 27.
Article in English | MEDLINE | ID: mdl-38804011

ABSTRACT

BACKGROUND: Coinfections with multiple nontuberculous mycobacterial (NTM) species have not been widely studied. We aimed to evaluate the clinical characteristics and treatment outcomes in patients with NTM-pulmonary disease (PD) caused by coinfection with multiple NTM species. METHODS: We retrospectively reviewed patients with NTM-PD at a tertiary referral hospital in Korea between March 2012 and December 2018. Coinfection was defined as two or more species of NTM pathogens isolated from the same respiratory specimen or different specimens within three months. RESULTS: Among 1,009 patients with NTM-PD, 147 (14.6%) NTM coinfections were observed (average age 64.7 years, 69.4% women). NTM species were identified more frequently (median 6 vs. 3 times, P < 0.001) in the coinfection group than in the single species group, and follow-up duration was also longer in the coinfection group (median 44.9 vs. 27.1 months, P < 0.001). Mycobacterium avium complex (MAC) and M. abscessus and M. massiliense (MAB) were the dominant combinations (n = 71, 48.3%). For patients treated for over six months in the MAC plus MAB group (n = 31), sputum culture conversion and microbiological cure were achieved in 67.7% and 41.9% of patients, respectively. We divided the MAC plus MAB coinfection group into three subgroups according to the target mycobacteria; however, no statistical differences were found in the treatment outcomes. CONCLUSION: In NTM-PD cases, a significant number of multiple NTM species coinfections occurred. Proper identification of all cultured NTM species through follow-up is necessary to detect multispecies coinfections. Further research is needed to understand the nature of NTM-PD in such cases.


Subject(s)
Coinfection , Lung Diseases , Mycobacterium Infections, Nontuberculous , Nontuberculous Mycobacteria , Humans , Female , Male , Middle Aged , Retrospective Studies , Mycobacterium Infections, Nontuberculous/drug therapy , Mycobacterium Infections, Nontuberculous/complications , Mycobacterium Infections, Nontuberculous/diagnosis , Mycobacterium Infections, Nontuberculous/microbiology , Aged , Coinfection/microbiology , Nontuberculous Mycobacteria/isolation & purification , Treatment Outcome , Lung Diseases/microbiology , Lung Diseases/complications , Mycobacterium avium Complex/isolation & purification , Anti-Bacterial Agents/therapeutic use , Republic of Korea
20.
Antimicrob Agents Chemother ; : e0031924, 2024 May 17.
Article in English | MEDLINE | ID: mdl-38757973

ABSTRACT

Treatment of Mycobacterium abscessus infection presents significant challenges, exacerbated by the emergence of macrolide-resistant strains that necessitate the use of multiple antimicrobials in combination and carry the potential for significant toxic effects. Select dual beta-lactam combinations, with or without beta-lactamase inhibitors, have been shown to be highly active in vitro. Herein, we describe a 6-year-old child with underlying mild bilateral lower lobe cylindrical bronchiectatic lung disease who developed pulmonary Mycobacterium abscessus infection and was treated with a multi-drug regimen including two ß-lactam antibiotics, achieving both early clinical and microbiological cure. This case highlights the potential benefit of dual ß-lactam therapy for the treatment of drug-resistant Mycobacterium abscessus infection.

SELECTION OF CITATIONS
SEARCH DETAIL
...