Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 638
Filter
1.
Front Pediatr ; 12: 1396408, 2024.
Article in English | MEDLINE | ID: mdl-38957777

ABSTRACT

The human urinary bladder hosts a complex microbial community of low biomass referred to as the urobiome. While the composition of the urobiome has been investigated in adults for over a decade now, only a few studies have considered the presence and composition of the urobiome in children. It is critical to explore how the urobiome develops throughout the life span and how it changes in the presence of various health conditions. Therefore, we set to review the available data on pediatric urobiome composition and its development with age and disease. In addition, we focused on identifying and reporting specific gaps in our knowledge of the pediatric urobiome that we hope will be addressed by future studies in this swiftly developing field with fast-improving methods and consensus.

2.
BMC Microbiol ; 24(1): 243, 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38965478

ABSTRACT

BACKGROUND: Lichens, traditionally considered as a simple partnership primarily between mycobiont and photobiont, are, in reality, complex holobionts comprised of a multitude of microorganisms. Lichen mycobiome represents fungal community residing within lichen thalli. While it is acknowledged that factors like the host lichen species and environmental conditions influence the structure of the lichen mycobiome, the existing research remains insufficient. To investigate which factor, host genus or location, has a greater impact on the lichen mycobiome, we conducted a comparative analysis of mycobiomes within Parmelia and Peltigera collected from both Turkey and South Korea, using high-throughput sequencing based on internal transcribed spacer region amplification. RESULTS: Overall, the lichen mycobiome was dominated by Capnodiales (Dothideomycetes), regardless of host or location. At the order level, the taxonomic composition was not significantly different according to lichen genus host or geographical distance. Hierarchical clustering of the top 100 abundant ASVs did not clearly indicate whether the lichen mycobiome was more influenced by host genus or location. Analyses of community similarity and partitioning variables revealed that the structure of the lichen mycobiome is more significantly influenced by location than by host genus. When analyzing the core mycobiome by host genus, the Peltigera mycobiome contained more ASV members than the Parmelia mycobiome. These two core mycobiomes also share common fungal strains, including basidiomycete yeast. Additionally, we used chi-squared tests to identify host genus-specialists and location-specialists. CONCLUSIONS: By comparing lichen mycobiomes of the same genera across different countries, our study advances our comprehension of these microbial communities. Our study elucidates that, although host species play a contributory role, geographic distance exerts a more pronounced impact on the structure of lichen mycobiome. We have made foundational contributions to understanding the lichen mycobiome occupying ecologically crucial niches. We anticipate that broader global-scale investigations into the fungal community structures will provide more detailed insights into fungal residents within lichens.


Subject(s)
DNA, Fungal , Lichens , Mycobiome , Republic of Korea , Turkey , Lichens/microbiology , Lichens/classification , DNA, Fungal/genetics , Ascomycota/classification , Ascomycota/isolation & purification , Ascomycota/genetics , High-Throughput Nucleotide Sequencing , Phylogeny , Fungi/classification , Fungi/isolation & purification , Fungi/genetics , Parmeliaceae/genetics
3.
Forensic Sci Int ; 361: 112129, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38986228

ABSTRACT

Forensic microbiology is a relatively new area of forensic sciences. It considers the potential of microorganisms to be used in criminal investigations. As most studies involve the role of bacteria in fields like post-mortem interval estimation, personal identification or geolocation, the data on the role of fungi is comparatively scarce. Forensic mycology involves the application of fungi and their structures in forensic cases. The aim of this review is the evaluation of the current state of knowledge on fungi associated with human cadavers and their possible role in estimating the time since death. In accordance with the available reports, we focused on the relation between microscopic fungi isolated from human corpses and the cadaver condition e.g., the stage of decomposition. We also emphasised the contrast between the reported methodologies and attempted to standardise research methods in forensic mycology from sample collection to its storage, mycological analysis and identification of the obtained fungal cultures. Moreover, the potential usage of microscopic fungi in criminal cases was discussed based on various case reports.

4.
Skin Res Technol ; 30(7): e13822, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38970783

ABSTRACT

PURPOSE: In present, the diagnosis of psoriasis is mainly based on the patient's typical clinical manifestations, dermoscopy and skin biopsy, and unlike other immune diseases, psoriasis lacks specific indicators in the blood. Therefore, we are required to search novel biomarkers for the diagnosis of psoriasis. METHODS: In this study, we analyzed the composition and the differences of intestinal fungal communities composition between psoriasis patients and healthy individuals in order to find the intestinal fungal communities associated with the diagnosis of psoriasis. We built a machine learning model and identified potential microbial markers for the diagnosis of psoriasis. RESULTS: The results of AUROC (area under ROC) showed that Aspergillus puulaauensis (AUROC = 0.779), Kazachstania africana (AUROC = 0.750) and Torulaspora delbrueckii (AUROC = 0.745) had high predictive ability (AUROC > 0.7) for predicting psoriasis, While Fusarium keratoplasticum (AUROC = 0.670) was relatively lower (AUROC < 0.7). CONCLUSION: The strategy based on the prediction of intestinal fungal communities provides a new idea for the diagnosis of psoriasis and is expected to become an auxiliary diagnostic method for psoriasis.


Subject(s)
Biomarkers , Gastrointestinal Microbiome , Metagenomics , Mycobiome , Psoriasis , Humans , Psoriasis/microbiology , Psoriasis/blood , Female , Adult , Male , Biomarkers/blood , Metagenomics/methods , Middle Aged , Machine Learning , Feces/microbiology , Young Adult , Aspergillus
5.
Imeta ; 3(2): e170, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38882486

ABSTRACT

The human microbiome exhibits a profound connection with the cancer development, progression, and therapeutic response, with particular emphasis on its components of the mycobiome, which are still in the early stages of research. In this review, we comprehensively summarize cancer-related symbiotic and pathogenic fungal genera. The intricate mechanisms through which fungi impact cancer as an integral member of both gut and tissue-resident microbiomes are further discussed. In addition, we shed light on the pivotal physiological roles of various nutrients, including cholesterol, carbohydrates, proteins and minerals, in facilitating the growth, reproduction, and invasive pathogenesis of the fungi. While our exploration of the interplay between nutrients and cancer, mediated by the mycobiome, is ongoing, the current findings have yet to yield conclusive results. Thus, delving into the relationship between nutrients and fungal pathogenesis in cancer development and progression would provide valuable insights into anticancer therapy and foster precision nutrition and individualized treatments that target fungi from bench to bedside.

6.
Gut Microbes ; 16(1): 2367297, 2024.
Article in English | MEDLINE | ID: mdl-38899956

ABSTRACT

The gut fungi play important roles in human health and are involved in energy metabolism. This study aimed to examine gut mycobiome composition in obese subjects in two geographically different regions in China and to identify specific gut fungi associated with obesity. A total of 217 subjects from two regions with different urbanization levels [Hong Kong (HK): obese, n = 59; lean, n = 59; Kunming (KM): obese, n = 50; lean, n = 49. Mean body mass index (BMI) for obesity = 33.7] were recruited. We performed deep shotgun metagenomic sequencing on fecal samples to compare gut mycobiome composition and trophic functions in lean and obese subjects across these two regions. The gut mycobiome of obese subjects in both HK and KM were altered compared to those of lean subjects, characterized by a decrease in the relative abundance of Nakaseomyces, Schizosaccharomyces pombe, Candida dubliniensis and an increase in the abundance of Lanchanceathermotolerans, Saccharomyces paradox, Parastagonospora nodorum and Myceliophthorathermophila. Reduced fungal - bacterial and fungal - fungal correlations as well as increased negative fungal-bacterial correlations were observed in the gut of obese subjects. Furthermore, the anti-obesity effect of fungus S. pombe was further validated using a mouse model. Supplementing high-fat diet-induced obese mice with the fungus for 12 weeks led to a significant reduction in body weight gain (p < 0.001), and an improvement in lipid and glucose metabolism compared to mice without intervention. In conclusion, the gut mycobiome composition and functionalities of obese subjects were altered. These data shed light on the potential of utilizing fungus-based therapeutics for the treatment of obesity. S. pombe may serve as a potential fungal probiotic in the prevention of diet-induced obesity and future human trials are needed.


Subject(s)
Feces , Fungi , Gastrointestinal Microbiome , Mycobiome , Obesity , Obesity/microbiology , Humans , Animals , Fungi/classification , Fungi/isolation & purification , Fungi/genetics , Male , Mice , China , Female , Feces/microbiology , Adult , Bacteria/classification , Bacteria/isolation & purification , Bacteria/genetics , Middle Aged , Mice, Inbred C57BL , Body Mass Index
7.
Biomed J ; 47(3): 100755, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38901797

ABSTRACT

This issue of the Biomedical Journal features a special section exploring mycobiota. Three articles examine the role of fungi in common metabolic disorders in, Clostridium difficile infection, and in immunocompromised patients. Additionally, the potential and challenges of the metaverse in healthcare are reviewed, alongside a holistic approach to improve patient outcomes in pancreatic cancer. In this issue also possible mechanism contributing to long COVID are discussed, as well as biomarkers that effectively predict sepsis outcomes, and key targets in osteosarcoma progression. Moreover, factors leading to peri-intubation cardiac arrest are analyzed, healthcare strategies from various regions are employed to predict cardiovascular events in Asian populations, two approaches to cavernous sinus dural arteriovenous fistula are compared, and a combination therapy against soft tissue sarcoma is presented.

8.
Mol Neurobiol ; 2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38871941

ABSTRACT

The human mycobiome encompasses diverse communities of fungal organisms residing within the body and has emerged as a critical player in shaping health and disease. While extensive research has focused on the skin and gut mycobiome, recent investigations have pointed toward the potential role of fungal organisms in neurological disorders. Among those fungal organisms, the presence of the commensal fungus Malassezia in the brain has created curiosity because of its commensal nature and primary association with the human skin and gut. This budding yeast is responsible for several diseases, such as Seborrheic dermatitis, Atopic dermatitis, Pityriasis versicolor, Malassezia folliculitis, dandruff, and others. However recent findings surprisingly show the presence of Malassezia DNA in the brain and have been linked to diseases like Alzheimer's disease, Parkinson's disease, Multiple sclerosis, and Amyotrophic lateral sclerosis. The exact role of Malassezia in these disorders is unknown, but its ability to infect human cells, travel through the bloodstream, cross the blood-brain barrier, and reside along with the lipid-rich neuronal cells are potential mechanisms responsible for pathogenesis. This also includes the induction of pro-inflammatory cytokines, disruption of the blood-brain barrier, gut-microbe interaction, and accumulation of metabolic changes in the brain environment. In this review, we discuss these key findings from studies linking Malassezia to neurological disorders, emphasizing the complex and multifaceted nature of these cases. Furthermore, we discuss potential mechanisms through which Malassezia might contribute to the development of neurological conditions. Future investigations will open up new avenues for our understanding of the fungal gut-brain axis and how it influences human behavior. Collaborative research efforts among microbiologists, neuroscientists, immunologists, and clinicians hold promise for unraveling the enigmatic connections between human commensal Malassezia and neurological disorders.

9.
One Health ; 18: 100720, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38699438

ABSTRACT

Today, over 300 million individuals worldwide are afflicted by severe fungal infections, many of whom will perish. Fungi, as a result of their plastic genomes have the ability to adapt to new environments and extreme conditions as a consequence of globalization, including urbanization, agricultural intensification, and, notably, climate change. Soils and the impact of these anthropogenic environmental factors can be the source of pathogenic and non-pathogenic fungi and subsequent fungal threats to public health. This underscores the growing understanding that not only is fungal diversity in the soil mycobiome a critical component of a functioning ecosystem, but also that soil microbial communities can significantly contribute to plant, animal, and human health, as underscored by the One Health concept. Collectively, this stresses the importance of investigating the soil microbiome in order to gain a deeper understanding of soil fungal ecology and its interplay with the rhizosphere microbiome, which carries significant implications for human health, animal health and environmental health.

10.
Microb Ecol ; 87(1): 66, 2024 May 03.
Article in English | MEDLINE | ID: mdl-38700528

ABSTRACT

Despite the importance of wood-inhabiting fungi on nutrient cycling and ecosystem functions, their ecology, especially related to their community assembly, is still highly unexplored. In this study, we analyzed the wood-inhabiting fungal richness, community composition, and phylogenetics using PacBio sequencing. Opposite to what has been expected that deterministic processes especially environmental filtering through wood-physicochemical properties controls the community assembly of wood-inhabiting fungal communities, here we showed that both deterministic and stochastic processes can highly contribute to the community assembly processes of wood-inhabiting fungi in this tropical forest. We demonstrated that the dynamics of stochastic and deterministic processes varied with wood decomposition stages. The initial stage was mainly governed by a deterministic process (homogenous selection), whereas the early and later decomposition stages were governed by the stochastic processes (ecological drift). Deterministic processes were highly contributed by wood physicochemical properties (especially macronutrients and hemicellulose) rather than soil physicochemical factors. We elucidated that fine-scale fungal-fungal interactions, especially the network topology, modularity, and keystone taxa of wood-inhabiting fungal communities, strongly differed in an initial and decomposing deadwood. This current study contributes to a better understanding of the ecological processes of wood-inhabiting fungi in tropical regions where the knowledge of wood-inhabiting fungi is highly limited.


Subject(s)
Forests , Fungi , Mycobiome , Wood , Wood/microbiology , Fungi/genetics , Fungi/classification , Fungi/isolation & purification , Tropical Climate , Phylogeny , High-Throughput Nucleotide Sequencing , Biodiversity
11.
Int Microbiol ; 2024 May 08.
Article in English | MEDLINE | ID: mdl-38717563

ABSTRACT

Abies pindrow, commonly known as the West-Himalayan Fir, holds great ecological importance as a native tree species in the Himalayas. Beyond its value as a fuel and timber source, it serves as a keystone species within the ecosystem. However, over recent years, extensive degradation and deforestation have afflicted A. pindrow forests. Utilizing ectomycorrhizal fungal symbionts of A. pindrow could prove pivotal in restoring these deteriorated forests. This study aimed to evaluate the diversity and composition of the ectomycorrhizal fungal community associated with A. pindrow. We employed ectomycorrhizal root tip morphotyping, sporocarp sampling, and Illumina MiSeq metabarcoding of the ITS region of fungal nrDNA. The ectomycorrhizal root tips were categorized into 10 morphotypes based on their morphological characteristics, exhibiting an average colonization rate of 74%. Sporocarp sampling revealed 22 species across 10 genera, with Russula being the most prevalent. The metabarcoding yielded 285,148 raw sequences, identifying 326 operational taxonomic units (OTUs) belonging to 193 genera, 114 families, 45 orders, 22 classes, and 6 divisions. Of these, 36 OTUs across 20 genera were ectomycorrhizal, constituting 63.1% of the fungal community. Notably, Tuber was the most abundant, representing 37.42% of the fungal population, followed by Russula at 21.06%. This study provides a comprehensive understanding of mycorrhizal symbionts of A. pindrow. The findings hold significant implications for utilizing dominant ectomycorrhizal fungi in reforestation endeavors aimed at restoring this important Himalayan conifer.

12.
Gut Pathog ; 16(1): 27, 2024 May 12.
Article in English | MEDLINE | ID: mdl-38735967

ABSTRACT

BACKGROUND: Enhancing our understanding of the underlying influences of medical interventions on the microbiome, resistome and mycobiome of preterm born infants holds significant potential for advancing infection prevention and treatment strategies. We conducted a prospective quasi-intervention study to better understand how antibiotics, and probiotics, and other medical factors influence the gut development of preterm infants. A controlled neonatal mice model was conducted in parallel, designed to closely reflect and predict exposures. Preterm infants and neonatal mice were stratified into four groups: antibiotics only, probiotics only, antibiotics followed by probiotics, and none of these interventions. Stool samples from both preterm infants and neonatal mice were collected at varying time points and analyzed by 16 S rRNA amplicon sequencing, ITS amplicon sequencing and whole genome shotgun sequencing. RESULTS: The human infant microbiomes showed an unexpectedly high degree of heterogeneity. Little impact from medical exposure (antibiotics/probiotics) was observed on the strain patterns, however, Bifidobacterium bifidum was found more abundant after exposure to probiotics, regardless of prior antibiotic administration. Twenty-seven antibiotic resistant genes were identified in the resistome. High intra-variability was evident within the different treatment groups. Lastly, we found significant effects of antibiotics and probiotics on the mycobiome but not on the microbiome and resistome of preterm infants. CONCLUSIONS: Although our analyses showed transient effects, these results provide positive motivation to continue the research on the effects of medical interventions on the microbiome, resistome and mycobiome of preterm infants.

13.
J Fungi (Basel) ; 10(5)2024 May 04.
Article in English | MEDLINE | ID: mdl-38786688

ABSTRACT

Gut bacterial alterations have been previously linked to several non-communicable diseases in adults, while the association of mycobiome is not well understood in these diseases, especially in infants and children. Few studies have been conducted on the association between gut mycobiome and non-communicable diseases in children. We investigated gut mycobiome composition using 194 faecal samples collected at birth, 6 months after birth, and 18 months after birth in relation to atopic dermatitis (AD) and overweight diagnoses at the age of 18 or 36 months. The mycobiome exhibited distinct patterns, with Truncatella prevalent in the meconium samples of both overweight and non-overweight groups. Saccharomyces took precedence in overweight cases at 6 and 18 months, while Malassezia dominated non-overweight samples at 6 months. Saccharomyces emerged as a consistent high-abundance taxon across groups that had dermatitis and were overweight. We found a weak association between gut mycobiome and AD at birth and overweight at 18 months when using machine learning (ML) analyses. In ML, unidentified fungi, Alternaria, Rhodotorula, and Saccharomyces, were important for classifying AD, while Saccharomyces, Thelebolus, and Dothideomycetes were important for classifying overweight. Gut mycobiome might be associated with the development of AD and overweight in children.

14.
Microorganisms ; 12(5)2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38792701

ABSTRACT

Multiple sclerosis (MS) arises from a complex interplay between host genetic factors and environmental components, with the gut microbiota emerging as a key area of investigation. In the current study, we used ion torrent sequencing to delve into the bacteriome (bacterial microbiota) and mycobiome (fungal microbiota) of people with MS (pwMS), and compared them to healthy controls (HC). Through principal coordinate, diversity, and abundance analyses, as well as clustering and cross-kingdom microbial correlation assessments, we uncovered significant differences in the microbial profiles between pwMS and HC. Elevated levels of the fungus Torulaspora and the bacterial family Enterobacteriaceae were observed in pwMS, whereas beneficial bacterial taxa, such as Prevotelladaceae and Dialister, were reduced. Notably, clustering analysis revealed overlapping patterns in the bacteriome and mycobiome data for 74% of the participants, with weakened cross-kingdom interactions evident in the altered microbiota of pwMS. Our findings highlight the dysbiosis of both bacterial and fungal microbiota in MS, characterized by shifts in biodiversity and composition. Furthermore, the distinct disease-associated pattern of fungi-bacteria interactions suggests that fungi, in addition to bacteria, contribute to the pathogenesis of MS. Overall, our study sheds light on the intricate microbial dynamics underlying MS, paving the way for further investigation into the potential therapeutic targeting of the gut microbiota in MS management.

15.
Microorganisms ; 12(5)2024 May 01.
Article in English | MEDLINE | ID: mdl-38792756

ABSTRACT

Because data on the fungal gut community structure of African children are scarce, we aimed to describe it by reanalysing rRNA ITS1 and ITS2 metabarcoding data from a study designed to assess the influence of microbiota in malaria susceptibility in Malian children from the Dogon country. More specifically, we aimed to establish the core gut mycobiome and compare the gut fungal community structure of breastfed children, aged 0-2 years, with other age groups. Briefly, DNA was extracted from 296 children's stool samples. Both rRNA ITS1 and ITS2 genomic barcodes were amplified and subjected to Illumina MiSeq sequencing. The ITS2 barcode generated 1,975,320 reads and 532 operational taxonomic units (OTUs), while the ITS1 barcode generated 647,816 reads and 532 OTUs. The alpha diversity was significantly higher by using the ITS1 compared to the ITS2 barcode (p < 0.05); but, regardless of the ITS barcode, we found no significant difference between breastfed children, aged 0-2 years, compared to the other age groups. The core gut mycobiome of the Malian children included Saccharomyces cerevisiae, Candida albicans, Pichia kudriavzevii, Malassezia restricta, Candida tropicalis and Aspergillus section Aspergillus, which were present in at least 50% of the 296 children. Further studies in other African countries are warranted to reach a global view of African children's core gut mycobiome.

16.
Int Microbiol ; 2024 May 17.
Article in English | MEDLINE | ID: mdl-38758414

ABSTRACT

BACKGROUND: The contribution of gut microbiota to human high-altitude adaptation remains inadequately understood. METHODS: Here a comparative analysis of gut microbiota was conducted between healthy individuals living at sea level and high altitude using deep whole-metagenome shotgun sequencing, to investigate the adaptive mechanisms of gut microbiota in plateau inhabitants. RESULTS: The results showed the gut bacteriomes in high-altitude individuals exhibited greater within-sample diversity and significant alterations in both bacterial compositional and functional profiles when compared to those of sea-level individuals, indicating the potential selection of unique bacteria associated with high-altitude environments. The strain-level investigation revealed enrichment of Collinsella aerofaciens and Akkermansia muciniphila in high-altitude populations. The characteristics of gut virome and gut mycobiome were also investigated. Compared to sea-level subjects, high-altitude subjects exhibited a greater diversity in their gut virome, with an increased number of viral operational taxonomic units (vOTUs) and unique annotated genes. Finally, correlation analyses revealed 819 significant correlations between 42 bacterial species and 375 vOTUs, while no significant correlations were observed between bacteria and fungi or between fungi and viruses. CONCLUSION: The findings have significantly contributed to an enhanced comprehension of the mechanisms underlying the high-altitude geographic adaptation of the human gut microbiota.

17.
Trends Microbiol ; 2024 May 09.
Article in English | MEDLINE | ID: mdl-38729839

ABSTRACT

The human gastrointestinal microbiome encompasses bacteria, fungi, and viruses forming complex bionetworks which, for organismal health, must be in a state of homeostasis. An important homeostatic mechanism derives from microbial competition, which maintains the relative abundance of microbial species in a healthy balance. Microbes compete for nutrients and secrete metabolites that inhibit other microbes. Short-chain fatty acids (SCFAs) are one such class of metabolites made by gut bacteria to very high levels. SCFAs are metabolised by microbes and host cells and have multiple roles in regulating cell physiology. Here, we review the mechanisms by which SCFAs regulate the fungal gut commensal Candida albicans. We discuss SCFA's ability to inhibit fungal growth, limit invasive behaviours and modulate cell surface antigens recognised by immune cells. We review the mechanisms underlying these roles: regulation of gene expression, metabolism, signalling and SCFA-driven post-translational protein modifications by acylation, which contribute to changes in acylome dynamics of C. albicans with potentially large consequences for cell physiology. Given that the gut mycobiome is a reservoir for systemic disease and has also been implicated in inflammatory bowel disease, understanding the mechanisms by which bacterial metabolites, such as SCFAs, control the mycobiome might provide therapeutic avenues.

18.
Front Cell Infect Microbiol ; 14: 1295841, 2024.
Article in English | MEDLINE | ID: mdl-38707510

ABSTRACT

Introduction: Although the existence of Candida species in the respiratory tract is often considered commensal, it is crucial to recognize the significance of Candida colonization in immunocompromised or COVID-19 patients. The emergence of Candida auris as an emerging pathogen further emphasizes the importance of monitoring yeast infection/colonization, particularly in COVID-19 patients. Methods: In this study, respiratory samples mainly from COVID-19 patients, primarily those suspected of having a fungal infection, were cultured on Sabouraud dextrose agar plates and the yeast colonies were identified using a two-step multiplex PCR method. The samples suspected of C. auris underwent specific nested PCR followed by sequence analysis. Results: A total of 199 respiratory samples were collected from 73 women and 126 men, ranging in age from 1.6 to 88 years. Among the patients, 141 had COVID-19, 32 had cancer, 5 were hospitalized in ICU, 2 had chronic obstructive pulmonary disease)COPD(, and others were patients with combination diseases. From these samples, a total of 334 yeast strains were identified. C. albicans (n=132, 39.52%) was the most common species, followed by C. tropicalis (n=67, 20%), C. glabrata (n=56, 16.76%), C. krusei (n=18, 5.4%), C. parapsilosis (n=17, 5.08%), Saccharomyces cerevisiae (n=10, 3%), C. kefyr (n=9, 2.6%), C. dubliniensis (n=7, 2.1%), C. lusitaniae (n=5, 1.5%), C. auris (n=3, 0.9%), C. guilliermondii (n=2, 0.6%), C. rugosa (n=1, 0.3%), C. intermedia (n=1, 0.3%), and Trichosporon spp. (n=1, 0.3%). C. auris was detected in a patient in ICU and two COVID-19 patients. While its presence was confirmed through sequence analysis, our extensive efforts to isolate C. auris were unsuccessful. Conclusion: While C. albicans colonization remains prevalent, our study found no evidence of Candida lung infection. Since the role of Candida colonization in airway secretions remains ambiguous due to limited research, further studies are imperative to shed light on this matter.


Subject(s)
COVID-19 , Candida auris , Candidiasis , SARS-CoV-2 , Humans , COVID-19/microbiology , Aged , Middle Aged , Female , Male , Aged, 80 and over , Adult , Child, Preschool , Candidiasis/microbiology , Child , Adolescent , Young Adult , SARS-CoV-2/genetics , SARS-CoV-2/isolation & purification , Infant , Candida auris/genetics , Candida auris/isolation & purification , Candida/isolation & purification , Candida/classification , Candida/genetics , Respiratory System/microbiology , Respiratory System/virology , Multiplex Polymerase Chain Reaction
19.
Braz J Microbiol ; 2024 May 28.
Article in English | MEDLINE | ID: mdl-38802686

ABSTRACT

Plant-fungus symbioses have functional relevance during plant growth and development. However, it is still unknown whether the endosphere fungi in mature plants originated from soils or seeds. To elucidate the origination of endosphere fungi in mature rice roots, the fungal communities in surface sterilized roots and shoots of mature rice plants germinated in soils, rhizosphere soils and seedlings germinated under sterile conditions were analyzed by Illumina-based sequencing and compared. Total 62 fungal OTUs shared in the seedlings, shoots and roots, 126 OTUs shared in the rhizosphere soils, shoots and roots. Fungal OTUs coexisted in the four types of samples belonged to genera of Rhizophagus, Trichoderma, Fusarium, Atractiella, Myrmecridium, Sporothrix, Microdochium, Massariosphaeria, and Phialemonium. The principle component analysis (PCA) and NMDS plot suggested that the fungal community structure in rhizosphere soils was different from that in seedlings significantly. Rhizosphere soil, shoot and root contained more similar fungal community. The fungal community in seedling was similar to that in shoot and root of mature plants. The results suggested that endophytic fungal communities in mature rice plants originated from both seedlings and rhizosphere soils, and more fungal taxa originated from rhizosphere soils. Mature rice plants contain mycobiome transmitted vertically from seeds, which suggests that inoculation of endophytic fungi isolated from seedlings might be an effective way to introduce beneficial fungal inoculants into rice plants successfully.

20.
Cell ; 187(12): 2969-2989.e24, 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38776919

ABSTRACT

The gut fungal community represents an essential element of human health, yet its functional and metabolic potential remains insufficiently elucidated, largely due to the limited availability of reference genomes. To address this gap, we presented the cultivated gut fungi (CGF) catalog, encompassing 760 fungal genomes derived from the feces of healthy individuals. This catalog comprises 206 species spanning 48 families, including 69 species previously unidentified. We explored the functional and metabolic attributes of the CGF species and utilized this catalog to construct a phylogenetic representation of the gut mycobiome by analyzing over 11,000 fecal metagenomes from Chinese and non-Chinese populations. Moreover, we identified significant common disease-related variations in gut mycobiome composition and corroborated the associations between fungal signatures and inflammatory bowel disease (IBD) through animal experimentation. These resources and findings substantially enrich our understanding of the biological diversity and disease relevance of the human gut mycobiome.


Subject(s)
Fungi , Gastrointestinal Microbiome , Mycobiome , Animals , Humans , Male , Mice , Feces/microbiology , Fungi/genetics , Fungi/classification , Fungi/isolation & purification , Genome, Fungal/genetics , Genomics , Inflammatory Bowel Diseases/microbiology , Inflammatory Bowel Diseases/genetics , Metagenome , Phylogeny , Female , Adult , Middle Aged
SELECTION OF CITATIONS
SEARCH DETAIL
...