Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 267
Filter
1.
Front Vet Sci ; 11: 1408861, 2024.
Article in English | MEDLINE | ID: mdl-38988984

ABSTRACT

Mycoplasma bovis (M. bovis) is the etiologic agent of high mortality epizootics of chronic respiratory disease in American bison (Bison bison). Despite the severity of the disease, no efficacious commercial vaccines have been licensed for the prevention of M. bovis infection in bison. Elongation factor thermal unstable (EFTu) and Heat Shock Protein 70 (Hsp70, DnaK) are highly conserved, constitutively expressed proteins that have previously been shown to provide protection against M. bovis infection in cattle. To assess the suitability of EFTu and Hsp70 as vaccine antigens in bison, the immune response to and protection conferred by an injectable, adjuvanted subunit vaccine comprised of recombinantly expressed EFTu and Hsp70 was evaluated. Vaccinates developed robust antibody and cellular immune responses against both EFTu and Hsp70 antigens. To assess vaccine efficacy, unvaccinated control and vaccinated bison were experimentally challenged with bovine herpes virus-1 (BHV-1) 4 days prior to intranasal infection with M. bovis. Vaccinated bison displayed reductions in joint infection, lung bacterial loads, and lung lesions compared to unvaccinated controls. Together, these results showed that this subunit vaccine reduced clinical disease and bacterial dissemination from the lungs in M. bovis challenged bison and support the further development of protein subunit vaccines against M. bovis for use in bison.

2.
Biol Methods Protoc ; 9(1): bpae034, 2024.
Article in English | MEDLINE | ID: mdl-38835856

ABSTRACT

Point-of-care (POC) field screening for tools for Mycoplasma bovis (M. bovis) is still lacking due to the requirement for a simple, robust field-applicable test that does not entail specialized laboratory equipment. In accordance with the Preferred Reporting Items for Systematic Reviews and Meta-analysis (PRISMA) guidelines, this review identifies the methodologies that were retrieved based on our search strategy that have been reported for the diagnosis of m. bovis infection between 2014 and diagnostics. A search criterion was generated to curate 103 articles, which were reduced in number (to 46), following the screening guidelines of PRISMA. The 43 articles included in the study present 25 different assay methods. The assay methods were grouped as microbiological culture, serological assay, PCR-based assay, LAMP-based assay, NGS-based assay, or lateral flow assay. We, however, focus our discussion on the three lateral flow-based assays relative to others, highlighting the advantages they present above the other techniques and their potential applicability as a POC diagnostic test for M. bovis infections. We therefore call for further research on developing a lateral flow-based screening tool that could revolutionize the diagnosis of M. bovis infection.

3.
Appl Environ Microbiol ; : e0068724, 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38864628

ABSTRACT

Mycoplasma bovis is an important emerging pathogen of cattle and bison, but our understanding of the genetic basis of its interactions with its host is limited. The aim of this study was to identify genes of M. bovis required for interaction and survival in association with host cells. One hundred transposon-induced mutants of the type strain PG45 were assessed for their capacity to survive and proliferate in Madin-Darby bovine kidney cell cultures. The growth of 19 mutants was completely abrogated, and 47 mutants had a prolonged doubling time compared to the parent strain. All these mutants had a similar growth pattern to the parent strain PG45 in the axenic media. Thirteen genes previously classified as dispensable for the axenic growth of M. bovis were found to be essential for the growth of M. bovis in association with host cells. In most of the mutants with a growth-deficient phenotype, the transposon was inserted into a gene involved in transportation or metabolism. This included genes coding for ABC transporters, proteins related to carbohydrate, nucleotide and protein metabolism, and membrane proteins essential for attachment. It is likely that these genes are essential not only in vitro but also for the survival of M. bovis in infected animals. IMPORTANCE: Mycoplasma bovis causes chronic bronchopneumonia, mastitis, arthritis, keratoconjunctivitis, and reproductive tract disease in cattle around the globe and is an emerging pathogen in bison. Control of mycoplasma infections is difficult in the absence of appropriate antimicrobial treatment or effective vaccines. A comprehensive understanding of host-pathogen interactions and virulence factors is important to implement more effective control methods against M. bovis. Recent studies of other mycoplasmas with in vitro cell culture models have identified essential virulence genes of mycoplasmas. Our study has identified genes of M. bovis required for survival in association with host cells, which will pave the way to a better understanding of host-pathogen interactions and the role of specific genes in the pathogenesis of disease caused by M. bovis.

4.
Front Vet Sci ; 11: 1353551, 2024.
Article in English | MEDLINE | ID: mdl-38933702

ABSTRACT

An increase in chronic, non-responsive bovine respiratory disease (BRD) infections in North American feedlot cattle is observed each fall, a time when cattle are administered multiple antimicrobial treatments for BRD. A number of factors are responsible for BRD antimicrobial treatment failure, with formation of biofilms possibly being one. It is widely accepted that biofilms play a role in chronic infections in humans and it has been hypothesized that they are the default lifestyle of most bacteria. However, research on bacterial biofilms associated with livestock is scarce and significant knowledge gaps exist in our understanding of their role in AMR of the bacterial BRD complex. The four main bacterial species of the BRD complex, Mannheimia haemolytica, Pasteurella multocida, Histophilus somni, and Mycoplasma bovis are able to form biofilms in vitro and there is evidence that at least H. somni retains this ability in vivo. However, there is a need to elucidate whether their biofilm-forming ability contributes to pathogenicity and antimicrobial treatment failure of BRD. Overall, a better understanding of the possible role of BRD bacterial biofilms in clinical disease and AMR could assist in the prevention and management of respiratory infections in feedlot cattle. We review and discuss the current knowledge of BRD bacteria biofilm biology, study methodologies, and their possible relationship to AMR.

5.
Vet Q ; 44(1): 1-11, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38711265

ABSTRACT

Our study aimed to evaluate the effect of different treatments for BRD on health and welfare in fattening bulls. A total of 264 bulls were enrolled. Welfare was assessed on day 2 (T0) and day 15 (T1) after arrival. A decrease in the welfare level was observed from T0 to T1. All bulls were inspected clinically at T0 and T1 revealing an increase of skin lesions and lameness in T1. In both periods, a high incidence of respiratory disease was observed. A prevalence of 79.55% and 95.45% of Mycoplasma bovis using RT-PCR and culture at T0 and T1 respectively was observed. Blood samples were collected for haematology at T0 and T1. At T0, 36 animals were individually treated for BRD with an antimicrobial (IT), 54 received a metaphylactic treatment with tulathromycin (M), 150 received a metaphylactic treatment with tulathromycin plus a second antimicrobial (M + IT) whereas 24 were considered healthy and therefore not treated (NT). Additionally, 128 were treated with a non-steroid anti-inflammatory (NSAID). Neutrophils of M + IT were significantly higher than groups NT and M and the lymphocytes of M + IT were significantly lower than that of IT. White blood cells, neutrophils and N/L ratio of animals treated with an NSAID was significantly higher than that not treated. Lung inspection of 172 bulls at the abattoir indicated that 92.43% presented at least one lung lesion. A statistically significant effect of the NSAID treatment on the lung lesions was observed. Our findings indicate that BRD was a major welfare and health concern and evidence the difficulties of antimicrobial treatment of M. bovis.


Subject(s)
Animal Welfare , Anti-Inflammatory Agents, Non-Steroidal , Heterocyclic Compounds , Macrolides , Animals , Cattle , Male , Cross-Sectional Studies , Anti-Inflammatory Agents, Non-Steroidal/therapeutic use , Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Anti-Bacterial Agents/therapeutic use , Anti-Bacterial Agents/pharmacology , Disaccharides/pharmacology , Disaccharides/therapeutic use , Cattle Diseases/drug therapy , Cattle Diseases/microbiology , Mycoplasma bovis/drug effects , Anti-Infective Agents/therapeutic use , Anti-Infective Agents/pharmacology , Mycoplasma Infections/veterinary , Mycoplasma Infections/drug therapy
6.
J Vet Med Sci ; 86(7): 712-720, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38710622

ABSTRACT

Mycoplasma bovis mastitisis highly contagious and disrupts lactation, posing a significant threat to the dairy industry. While the mammary gland's defence mechanism involves epithelial cells and mononuclear cells (MNC), their interaction with M. bovis remains incompletely understood. In this study, we assessed the immunological reactivity of bovine mammary epithelial cells (bMEC) to M. bovis through co-culture with MNC. Upon co-culture with MNC, the mRNA expression levels of interleukin (IL)-1ß, IL-6, IL-8 and tumor necrosis factor (TNF)-α in bMEC stimulated by M. bovis showed a significant increase compared to monoculture. Additionally, when stimulated with M. bovis, the culture supernatant exhibited significantly higher concentrations of IL-6 and interferon (IFN)-γ, while IL-1ß concentration tended to be higher in co-culture with MNC than in monoculture. Furthermore, the mRNA expression levels of toll-like receptor (TLR) 2 in bMEC stimulated with M. bovis tended to increase, and TLR4 significantly increased when co-cultured with MNC compared to monocultures. However, the surface expression levels in bMEC did not exhibit significant changes between co-culture and monoculture. Overall, our research indicates that the inflammatory response of bMEC is increased during co-culture with MNC, suggesting that the interaction between bMEC and MNC in the mammary gland amplifies the immune response to M. bovis in cows affected by M. bovis mastitis.


Subject(s)
Coculture Techniques , Epithelial Cells , Immunity, Innate , Mammary Glands, Animal , Mastitis, Bovine , Mycoplasma Infections , Mycoplasma bovis , Animals , Cattle , Mycoplasma bovis/immunology , Mastitis, Bovine/immunology , Mastitis, Bovine/microbiology , Female , Epithelial Cells/immunology , Epithelial Cells/microbiology , Mycoplasma Infections/veterinary , Mycoplasma Infections/immunology , Mycoplasma Infections/microbiology , Coculture Techniques/veterinary , Mammary Glands, Animal/immunology , Mammary Glands, Animal/microbiology , Cytokines/metabolism , Cytokines/genetics , Leukocytes, Mononuclear/immunology , Leukocytes, Mononuclear/microbiology , Cells, Cultured
7.
J Wildl Dis ; 60(3): 584-593, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38768955

ABSTRACT

Mycoplasma bovis is a bacterial pathogen endemic to cattle. In the early 2000s, M. bovis emerged as a cause of respiratory disease in American bison (Bison bison), causing significant morbidity and mortality. Bison herds that experience an outbreak of M. bovis are at higher risk for subsequent outbreaks, suggesting that chronic, subclinical infections can be established. Antemortem testing is therefore crucial to disease management; however, the precise sampling method to maximize detection of M. bovis in bison is unknown. We evaluated two sample types-superficial nasal swabs and deep nasopharyngeal swabs-collected from apparently healthy or symptomatic bison from January 2021 through December 2022. We used real-time PCR to detect M. bovis in 76/938 bison (8.1%) from 11 herds. For bison testing positive on at least one swab type, M. bovis was detected in 63/76 (82.8%) deep nasopharyngeal swabs and 29/73 (38.1%) superficial nasal swabs. Agreement between swabs for positive bison was 21% (n=16, kappa coefficient 0.319). We conclude that deep nasopharyngeal swabbing is more sensitive than superficial nasal swabbing for detection of M. bovis in bison and that low agreement between methods may be related to stage of infection. We further tested pooled samples by PCR and found that pooling of up to five samples can be effective to increase throughput and minimize costs. Management of wild bison relies on the ability to relocate animals to maintain gene flow and healthy populations. Sensitive and specific diagnostic tests are needed to inform decisions and minimize risk of transmission, especially from subclinical carriers. This study provides valuable insight that will inform best practices for M. bovis testing, thereby supporting the conservation of bison as healthy wildlife, which in turn promotes ecological restoration, safeguards cultural practices of Tribal Nations, and upholds the bison as a unique American icon.


Subject(s)
Bison , Mycoplasma Infections , Mycoplasma bovis , Animals , Bison/microbiology , Mycoplasma bovis/isolation & purification , Mycoplasma bovis/genetics , Mycoplasma Infections/veterinary , Mycoplasma Infections/diagnosis , Mycoplasma Infections/epidemiology , Mycoplasma Infections/microbiology , Specimen Handling/veterinary , Nasopharynx/microbiology , Female
8.
Pathogens ; 13(4)2024 Apr 06.
Article in English | MEDLINE | ID: mdl-38668257

ABSTRACT

Mycoplasma bovis (M. bovis) is a significant pathogen responsible for highly transmissible mastitis in cattle globally. It primarily spreads through colostrum, milk, and semen. Cows with persistent infections act as carriers, intermittently releasing the pathogen, making their milk a pivotal factor in infection transmission. Given the limited seroprevalence surveys in Serbia, this study aimed to detect M. bovis presence in bulk tank milk (BTM), determine route shedding, and evaluate infection risks. BTM samples were collected from 115 dairy farms across Serbia, with M. bovis DNA detected in 11 out of the 115 samples by real-time PCR. Additionally, M. bovis was detected in 1.30% of nasal swabs sampled from apparently healthy animals. A univariate analysis of the risk factors associated with M. bovis presence in the BTM samples revealed correlations with factors such as the breed, farm seropositivity, pre-milking and post-milking disinfection practices, farm type, cow population, milk yield, number of cows in the BTM samples, and parity. Seropositive farms exhibited the highest likelihood of M. bovis presence in milk. Moreover, pre- and post-milking disinfection practices and highly productive cows yielding over 8000 L of milk were identified as risk factors for PCR-positive BTM. In a multivariable mixed regression analysis, a risk factor for the presence of M. bovis infection in the BTM sample was the Holstein breed. These findings underscore a relatively high prevalence of M. bovis in BTM within Serbian dairy farms, suggesting a potential risk for M. bovis spreading through milk and oral route of calves' infection.

9.
Pathogens ; 13(4)2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38668284

ABSTRACT

Mycoplasma bovis (M. bovis) is one of the worldwide most important infectious agents involved in respiratory complex diseases (RCD). In Spain, the endemic presence of subtypes ST-2 and ST-3 with phenotypic differences linked to their susceptibility to fluoroquinolones opened the way to develop control strategies focused on previous diagnosis of the subtype and the use of directed therapies when M. bovis were involved in RCD. Surprisingly, microbiological studies conducted during 2023 evidenced for the first time the presence of Spanish isolates of a new polC-subtype, previously classified as ST-1, recovered from calves with respiratory symptoms and pneumonia in different areas of the country (n = 16). Curiously, the minimum inhibitory concentration (MIC) to a panel of antimicrobials revealed phenotypic differences between these ST-1 isolates when using fluoroquinolones (FLQ). There is no geographical correlation between MIC profiles even for a set of 8 isolates recovered from different animals in the same flock. Sequencing of 4 genes (gyrA, gyrB, parC and parE) encoding quinolone resistance-determining regions (QRDR) evidenced the presence of accumulate mutations in 2 ST-1 isolates with high FLQ MICs, but not in all them (n = 3), thus suggesting that, as previously recorded for ST-2 isolates, other mechanisms should be involved in the acquisition of resistence to these antimicrobials. Additionally, as previously detected in the Spanish ST-2 and ST-3, subtype ST-1 isolates are also resistant to macrolides or lincosamides.

10.
Microbiol Res ; 284: 127727, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38636241

ABSTRACT

Heme oxygenase HO-1 (HMOX) regulates cellular inflammation and apoptosis, but its role in regulation of autophagy in Mycoplasma bovis infection is unknown. The objective was to determine how the HO-1/CO- Protein kinase RNA-like endoplasmic reticulum kinase (PERK)-Ca2+- transcription factor EB (TFEB) signaling axis induces autophagy and regulates clearance of M. bovis by bovine mammary epithelial cells (bMECs). M. bovis inhibited autophagy and lysosomal biogenesis in bMECs and suppressed HO-1 protein and expression of related proteins, namely nuclear factor erythroid 2-related factor 2 (Nrf2) and Kelch-like ECH-associated protein 1 (keap1). Activation of HO-1 and its production of carbon monoxide (CO) were required for induction of autophagy and clearance of intracellular M. bovis. Furthermore, when HO-1 was deficient, CO sustained cellular autophagy. HO-1 activation increased intracellular calcium (Ca2+) and cytosolic localization activity of TFEB via PERK. Knockdown of PERK or chelation of intracellular Ca2+ inhibited HO-1-induced M. bovis autophagy and clearance. M. bovis infection affected nuclear localization of lysosomal TFEB in the MiT/TFE transcription factor subfamily, whereas activation of HO-1 mediated dephosphorylation and intranuclear localization of TFEB, promoting autophagy, lysosomal biogenesis and autophagic clearance of M. bovis. Nuclear translocation of TFEB in HO-1 was critical to induce M. bovis transport and survival of infected bMECs. Furthermore, the HO-1/CO-PERK-Ca2+-TFEB signaling axis induced autophagy and M. bovis clearance, providing a viable approach to treat persistent M. bovis infections.


Subject(s)
Autophagy , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors , Calcium , Cell Nucleus , Endoplasmic Reticulum , Epithelial Cells , Mammary Glands, Animal , Mycoplasma bovis , Animals , Cattle , Epithelial Cells/microbiology , Epithelial Cells/metabolism , Calcium/metabolism , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/metabolism , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/genetics , Endoplasmic Reticulum/metabolism , Mammary Glands, Animal/microbiology , Mammary Glands, Animal/metabolism , Cell Nucleus/metabolism , Female , eIF-2 Kinase/metabolism , eIF-2 Kinase/genetics , Mycoplasma Infections/microbiology , Mycoplasma Infections/veterinary , Mycoplasma Infections/metabolism , Lysosomes/metabolism , Heme Oxygenase-1/metabolism , Heme Oxygenase-1/genetics , Carbon Monoxide/metabolism , Signal Transduction , NF-E2-Related Factor 2/metabolism , NF-E2-Related Factor 2/genetics
11.
mSystems ; 9(4): e0089123, 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38440990

ABSTRACT

Mycoplasma species are able to produce and release secreted proteins, such as toxins, adhesins, and virulence-related enzymes, involved in bacteria adhesion, invasion, and immune evasion between the pathogen and host. Here, we investigated a novel secreted protein, MbovP0725, from Mycoplasma bovis encoding a putative haloacid dehalogenase (HAD) hydrolase function of a key serine/threonine phosphatase depending on Mg2+ for the dephosphorylation of its substrate pNPP, and it was most active at pH 8 to 9 and temperatures around 40°C. A transposon insertion mutant strain of M. bovis HB0801 that lacked the protein MbovP0725 induced a stronger inflammatory response but with a partial reduction of adhesion ability. Using transcriptome sequencing and quantitative reverse transcription polymerase chain reaction analysis, we found that the mutant was upregulated by the mRNA expression of genes from the glycolysis pathway, while downregulated by the genes enriched in ABC transporters and acetate kinase-phosphate acetyltransferase pathway. Untargeted metabolomics showed that the disruption of the Mbov_0725 gene caused the accumulation of 9-hydroxyoctadecadienoic acids and the consumption of cytidine 5'-monophosphate, uridine monophosphate, and adenosine monophosphate. Both the exogenous and endogenous MbvoP0725 protein created by purification and transfection inhibited lipopolysaccharide (LPS)-induced IL-1ß, IL-6, and TNF-α mRNA production and could also attenuate the activation of MAPK-associated pathways after LPS treatment. A pull-down assay identified MAPK p38 and ERK as potential substrates for MbovP0725. These findings define metabolism- and virulence-related roles for a HAD family phosphatase and reveal its ability to inhibit the host pro-inflammatory response. IMPORTANCE: Mycoplasma bovis (M. bovis) infection is characterized by chronic pneumonia, otitis, arthritis, and mastitis, among others, and tends to involve the suppression of the immune response via multiple strategies to avoid host cell immune clearance. This study found that MbovP0725, a haloacid dehalogenase (HAD) family phosphatase secreted by M. bovis, had the ability to inhibit the host pro-inflammatory response induced by lipopolysaccharide. Transcriptomic and metabolomic analyses were used to identify MbovP0725 as an important phosphatase involved in glycolysis and nucleotide metabolism. The M. bovis transposon mutant strain T8.66 lacking MbovP0725 induced a higher inflammatory response and exhibited weaker adhesion to host cells. Additionally, T8.66 attenuated the phosphorylation of MAPK P38 and ERK and interacted with the two targets. These results suggested that MbovP0725 had the virulence- and metabolism-related role of a HAD family phosphatase, performing an anti-inflammatory response during M. bovis infection.


Subject(s)
Mycoplasma Infections , Mycoplasma bovis , Female , Humans , Mycoplasma bovis/genetics , Lipopolysaccharides , Bacterial Adhesion , Immunity , Phosphoprotein Phosphatases , RNA, Messenger , Serine
12.
Front Vet Sci ; 11: 1322267, 2024.
Article in English | MEDLINE | ID: mdl-38515536

ABSTRACT

Mycoplasma bovis has recently been identified increasingly in dairy cows causing huge economic losses to the dairy industry. M. bovis is a causative agent for mastitis, pneumonia, endometritis, endocarditis, arthritis, otitis media, and many other clinical symptoms in cattle. However, some infected cows are asymptomatic or may not shed the pathogen for weeks to years. This characteristic of M. bovis, along with the lack of adequate testing and identification methods in many parts of the world until recently, has allowed the M. bovis to be largely undetected despite its increased prevalence in dairy farms. Due to growing levels of antimicrobial resistance among wild-type M. bovis isolates and lack of cell walls in mycoplasmas that enable them to be intrinsically resistant to beta-lactam antibiotics that are widely used in dairy farms, there is no effective treatment for M. bovis mastitis. Similarly, there is no commercially available effective vaccine for M. bovis mastitis. The major constraint to developing effective intervention tools is limited knowledge of the virulence factors and mechanisms of the pathogenesis of M. bovis mastitis. There is lack of quick and reliable diagnostic methods with high specificity and sensitivity for M. bovis. This review is a summary of the current state of knowledge of the virulence factors, pathogenesis, clinical manifestations, diagnosis, and control of M. bovis mastitis in dairy cows.

13.
Viruses ; 16(3)2024 02 27.
Article in English | MEDLINE | ID: mdl-38543727

ABSTRACT

The role of Influenza D virus (IDV) in bovine respiratory disease remains unclear. An in vivo experiment resulted in increased clinical signs, lesions, and pathogen replication in calves co-infected with IDV and Mycoplasma bovis (M. bovis), compared to single-infected calves. The present study aimed to elucidate the host-pathogen interactions and profile the kinetics of lipid mediators in the airways of these calves. Bronchoalveolar lavage (BAL) samples collected at 2 days post-infection (dpi) were used for proteomic analyses by liquid chromatography-tandem mass spectrometry (LC-MS/MS). Additionally, lipidomic analyses were performed by LC-MS/MS on BAL samples collected at 2, 7 and 14 dpi. Whereas M. bovis induced the expression of proteins involved in fibrin formation, IDV co-infection counteracted this coagulation mechanism and downregulated other acute-phase response proteins, such as complement component 4 (C4) and plasminogen (PLG). The reduced inflammatory response against M. bovis likely resulted in increased M. bovis replication and delayed M. bovis clearance, which led to a significantly increased abundance of oxylipids in co-infected calves. The identified induced oxylipids mainly derived from arachidonic acid; were likely oxidized by COX-1, COX-2, and LOX-5; and peaked at 7 dpi. This paper presents the first characterization of BAL proteome and lipid mediator kinetics in response to IDV and M. bovis infection in cattle and raises hypotheses regarding how IDV acts as a co-pathogen in bovine respiratory disease.


Subject(s)
Cattle Diseases , Mycoplasma bovis , Respiratory Tract Infections , Animals , Cattle , Deltainfluenzavirus , Chromatography, Liquid , Lipidomics , Proteomics , Tandem Mass Spectrometry , Host-Pathogen Interactions , Lipids
14.
J Vet Diagn Invest ; 36(3): 457-462, 2024 May.
Article in English | MEDLINE | ID: mdl-38362635

ABSTRACT

Mycoplasma bovis is a major cause of bovine mastitis. Intermittent shedding of the organism for many months is a feature of cows with intramammary infection. A dairy farm in Japan experienced a mastitis outbreak caused by M. bovis in 2016, as well as 2 additional outbreaks and 1 case in 2020-2021. The causative strains in the 3 outbreaks shared a common and identical genetic feature, the insertion of a transposase gene at the same site within the phosphate acetyltransferase-2 gene. Additionally, all isolates were genotyped to closely related sequence types (ST21 and ST141) by multilocus sequence typing, and had similar pulsopatterns by pulsed-field gel electrophoresis. Our results indicate that infection with the same causative strain remained in this herd and environment for 4 y. Treatment with fluoroquinolones, guided by antimicrobial susceptibility test results, eliminated M. bovis from 16 of 20 M. bovis-infected cows, as confirmed by culture and somatic cell counts. However, mastitis caused by other bacteria occurred in 9 M. bovis-free cows within 2 mo of the last treatment.


Subject(s)
Disease Outbreaks , Mastitis, Bovine , Mycoplasma Infections , Mycoplasma bovis , Animals , Cattle , Mastitis, Bovine/microbiology , Mastitis, Bovine/epidemiology , Mycoplasma Infections/veterinary , Mycoplasma Infections/microbiology , Mycoplasma Infections/epidemiology , Female , Disease Outbreaks/veterinary , Japan/epidemiology , Anti-Bacterial Agents/pharmacology , Multilocus Sequence Typing/veterinary
16.
J Dairy Sci ; 107(1): 516-529, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37709017

ABSTRACT

Mycoplasma bovis outbreaks in cattle, including pathogen spread between age groups, are not well understood. Our objective was to estimate within-herd transmission across adult dairy cows, youngstock, and calves. Results from 3 tests (PCR, ELISA, and culture) per cow and 2 tests (PCR and ELISA) per youngstock and calf were used in an age-stratified susceptible-infected-removed/recovered (SIR) model to estimate within-herd transmission parameters, pathways, and potential effects of farm management practices. A cohort of adult cows, youngstock, and calves on 20 Dutch dairy farms with a clinical outbreak of M. bovis in adult cows were sampled, with collection of blood, conjunctival fluid, and milk from cows, and blood and conjunctival fluid from calves and youngstock, 5 times over a time span of 12 wk. Any individual with at least one positive laboratory test was considered M. bovis-positive. Transmission dynamics were modeled using an age-stratified SIR model featuring 3 age strata. Associations with farm management practices were explored using Fisher's exact tests and Poisson regression. Estimated transmission parameters were highly variable among herds and cattle age groups. Notably, transmission from cows to cows, youngstock, or to calves was associated with R-values ranging from 1.0 to 80 secondarily infected cows per herd, 1.2 to 38 secondarily infected youngstock per herd, and 0.1 to 91 secondarily infected calves per herd, respectively. In case of transmission from youngstock to youngstock, calves or to cows, R-values were 0.7 to 96 secondarily infected youngstock per herd, 1.1 to 76 secondarily infected calves per herd, and 0.1 to 107 secondarily infected cows per herd. For transmission from calves to calves, youngstock or to cows, R-values were 0.5 to 60 secondarily infected calves per herd, 1.1 to 41 secondarily infected youngstock per herd, and 0.1 to 47 secondarily infected cows per herd. Among on-farm transmission pathways, cow-to-youngstock, cow-to-calf, and cow-to-cow were identified as most significant contributors, with calf-to-calf and calf-to-youngstock also having noteworthy roles. Youngstock-to-youngstock was also implicated, albeit to a lesser extent. Whereas the primary focus was a clinical outbreak of M. bovis among adult dairy cows, it was evident that transmission extended to calves and youngstock, contributing to overall spread. Factors influencing transmission and specific transmission pathways were associated with internal biosecurity (separate caretakers for various age groups, number of people involved), external biosecurity (contractors, external employees), as well as indirect transmission routes (number of feed and water stations).


Subject(s)
Cattle Diseases , Mycoplasma Infections , Mycoplasma bovis , Humans , Female , Cattle , Animals , Milk , Cattle Diseases/epidemiology , Disease Outbreaks/veterinary , Mycoplasma Infections/epidemiology , Mycoplasma Infections/veterinary , Dairying
17.
Front Microbiol ; 14: 1250368, 2023.
Article in English | MEDLINE | ID: mdl-38098652

ABSTRACT

Nucleotide second messengers play an important role in bacterial adaptation to environmental changes. Recent evidence suggests that some of these regulatory molecular pathways were conserved upon the degenerative evolution of the wall-less mycoplasmas. We have recently reported the occurrence of a phosphodiesterase (PDE) in the ruminant pathogen Mycoplasma bovis, which was involved in c-di-AMP metabolism. In the present study, we demonstrate that the genome of this mycoplasma species encodes a PDE of the GdpP family with atypical DHH domains. Characterization of M. bovis GdpP (MbovGdpP) revealed a multifunctional PDE with unusual nanoRNase and single-stranded DNase activities. The alarmone ppGpp was found unable to inhibit c-di-NMP degradation by MbovGdpP but efficiently blocked its nanoRNase activity. Remarkably, MbovGdpP was found critical for the osmotic tolerance of M. bovis under K+ and Na+ conditions. Transcriptomic analyses further revealed the biological importance of MbovGdpP in tRNA biosynthesis, pyruvate metabolism, and several steps in genetic information processing. This study is an important step in understanding the role of PDE and nucleotide second messengers in the biology of a minimal bacterial pathogen.

18.
Vet Sci ; 10(12)2023 Dec 01.
Article in English | MEDLINE | ID: mdl-38133236

ABSTRACT

The most important pathogenic Mycoplasma species in bovines are Mycoplasma bovis (M. bovis) and Mycoplasma mycoides subsp. mycoides (Mmm). Mmm causes contagious bovine pleuropneumonia (CBPP), which is a severe respiratory disease widespread in sub-Saharan Africa but eradicated in several countries, including China. M. bovis is an important cause of the bovine respiratory disease complex (BRD), characterized worldwide by pneumonia, arthritis, and mastitis. Secreted proteins of bacteria are generally considered virulence factors because they can act as toxins, adhesins, and virulent enzymes in infection. Therefore, this study performed a comparative proteomic analysis of the secreted proteins of M. bovis and Mmm in order to find some virulence-related factors as well as discover differential diagnostic biomarkers for these bovine mycoplasmas. The secretome was extracted from both species, and liquid chromatography-tandem mass spectrometry was used, which revealed 55 unique secreted proteins of M. bovis, 44 unique secreted proteins of Mmm, and 4 homologous proteins. In the M. bovis secretome, 19 proteins were predicted to be virulence factors, while 4 putative virulence factors were identified in the Mmm secretome. In addition, five unique secreted proteins of Mmm were expressed and purified, and their antigenicity was confirmed by Western blotting assay and indirect ELISA. Among them, Ts1133 and Ts0085 were verified as potential candidates for distinguishing Mmm infection from M. bovis infection.

19.
Braz J Microbiol ; 54(4): 3275-3281, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37917227

ABSTRACT

Bovine respiratory disease (BRD) is a multifactorial and predominantly multietiological disease that affects dairy cattle herds worldwide, being more frequent in young animals. The occurrence of BRD was investigated in lactating cows from two high-yielding dairy herds in southern Brazil. To determine the etiology of the clinical cases of acute respiratory disease, nasal swab samples were collected from cows with clinical signs of BRD and evaluated using PCR and RT-PCR for nucleic acid detection of the main BRD etiological agents, including Mycoplasma bovis, Mannheimia haemolytica, Pasteurella multocida, Histophilus somni, bovine respiratory syncytial virus, bovine coronavirus, bovine viral diarrhea virus, bovine alphaherpesvirus 1, and bovine parainfluenza virus 3. Only three microorganisms (M. bovis, H. somni, and P. multocida) were identified in both single and mixed infections. We concluded that 40.0% of the cows were infected with M. bovis and 75.0% with H. somni in herd A. Considering both single and mixed infections, the analyses performed in herd B showed that 87.5%, 25.0%, and 50.0% of the cows were infected with M. bovis, H. somni, and P. multocida, respectively. M. bovis and H. somni are considered fastidious bacteria and laboratory diagnosis is neglected. Subsequently, most clinical cases of mycoplasmosis and histophilosis in cattle remain undiagnosed. This study demonstrates the importance of M. bovis and H. somni infections in adult cows with BRD. These results highlight the importance of including these bacteria in the group of etiological agents responsible for the occurrence of BRD in cattle, especially in adult cows with unfavorable immunological conditions, such as recent calving and peak lactation.


Subject(s)
Bacterial Infections , Cattle Diseases , Coinfection , Pasteurella multocida , Animals , Female , Cattle , Coinfection/veterinary , Lactation , Cattle Diseases/microbiology , Bacterial Infections/veterinary , Bacteria , Pasteurella multocida/genetics
20.
Vet Res ; 54(1): 107, 2023 Nov 17.
Article in English | MEDLINE | ID: mdl-37978536

ABSTRACT

Mycoplasma bovis is responsible for various inflammatory diseases in cattle. The prevention and control of M. bovis are complicated by the absence of effective vaccines and the emergence of multidrug-resistant strains, resulting in substantial economic losses worldwide in the cattle industry. Lipoproteins, vital components of the Mycoplasmas cell membrane, are deemed potent antigens for eliciting immune responses in the host upon infection. However, the functions of lipoproteins in M. bovis remain underexplored due to their low sequence similarity with those of other bacteria and the scarcity of genetic manipulation tools for M. bovis. In this study, the lipoprotein LppA was identified in all examined M. bovis strains. Utilizing immunoelectron microscopy and Western blotting, it was observed that LppA localizes to the surface membrane. Recombinant LppA demonstrated dose-dependent adherence to the membrane of embryonic bovine lung (EBL) cells, and this adhesion was inhibited by anti-LppA serum. In vitro binding assays confirmed LppA's ability to associate with fibronectin, collagen IV, laminin, vitronectin, plasminogen, and tPA, thereby facilitating the conversion of plasminogen to plasmin. Moreover, LppA was found to bind and enhance the accumulation of Annexin A2 (ANXA2) on the cell membrane. Disrupting LppA in M. bovis significantly diminished the bacterium's capacity to adhere to EBL cells, underscoring LppA's function as a bacterial adhesin. In conclusion, LppA emerges as a novel adhesion protein that interacts with multiple host extracellular matrix proteins and ANXA2, playing a crucial role in M. bovis's adherence to host cells and dissemination. These insights substantially deepen our comprehension of the molecular pathogenesis of M. bovis.


Subject(s)
Annexin A2 , Cattle Diseases , Mycoplasma Infections , Mycoplasma bovis , Animals , Cattle , Mycoplasma bovis/physiology , Bacterial Adhesion/physiology , Plasminogen/metabolism , Annexin A2/metabolism , Lipoproteins/genetics , Extracellular Matrix , Mycoplasma Infections/veterinary , Mycoplasma Infections/microbiology , Cattle Diseases/microbiology
SELECTION OF CITATIONS
SEARCH DETAIL
...