Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 367
Filter
1.
Cell Biosci ; 14(1): 93, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-39010176

ABSTRACT

BACKGROUND: Numerous studies have shown that somite development is a necessary stage of myogenesis chondrogenesis and osteogenesis. Our previous study has established a stable presomitic mesoderm progenitor cell line (UiPSM) in vitro. Naturally, we wanted to explore whether UiPSM cell can develop bone and myogenic differentiation. RESULTS: Selective culture conditions yielded PAX3 and PAX7 positive skeletal muscle precursors from UiPSM cells. The skeletal muscle precursors undergo in vitro maturation resulting in myotube formation. MYOD effectively promoted the maturity of the skeletal myocytes in a short time. We found that UiPSM and MYOD mediated UiPSM cell-derived skeletal myocytes were viable after transplantation into the tibialis anterior muscle of MITRG mice, as assessed by bioluminescence imaging and scRNA-seq. Lack of teratoma formation and evidence of long-term myocytes engraftment suggests considerable potential for future therapeutic applications. Moreover, UiPSM cells can differentiate into osteoblast and chondroblast cells in vitro. CONCLUSIONS: UiPSM differentiation has potential as a developmental model for musculoskeletal development research and treatment of musculoskeletal disorders.

2.
Stem Cells ; 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38975693

ABSTRACT

Muscle regeneration depends on muscle stem cell (MuSC) activity. Myogenic regulatory factors, including myoblast determination protein 1 (MyoD), regulate the fate transition of MuSCs. However, the direct target of MYOD in the process is not completely clear. Using previously established MyoD knock-in (MyoD-KI) mice, we revealed that MyoD targets dual-specificity phosphatase (Dusp) 13 and Dusp27. In Dusp13:Dusp27 double knock-out (DKO) mice, the ability for muscle regeneration after injury was reduced. Moreover, single-cell RNA sequencing of MyoD-high expressing MuSCs from MyoD-KI mice revealed that Dusp13 and Dusp27 are expressed only in specific populations within MyoD-high MuSCs, which also express Myogenin. Overexpressing Dusp13 in MuSCs causes premature muscle differentiation. Thus, we propose a model where DUSP13 and DUSP27 contribute to the fate transition of MuSCs from proliferation to differentiation during myogenesis.

3.
Adv Exp Med Biol ; 1441: 295-311, 2024.
Article in English | MEDLINE | ID: mdl-38884718

ABSTRACT

Cardiac development is a fine-tuned process governed by complex transcriptional networks, in which transcription factors (TFs) interact with other regulatory layers. In this chapter, we introduce the core cardiac TFs including Gata, Hand, Nkx2, Mef2, Srf, and Tbx. These factors regulate each other's expression and can also act in a combinatorial manner on their downstream targets. Their disruption leads to various cardiac phenotypes in mice, and mutations in humans have been associated with congenital heart defects. In the second part of the chapter, we discuss different levels of regulation including cis-regulatory elements, chromatin structure, and microRNAs, which can interact with transcription factors, modulate their function, or are downstream targets. Finally, examples of disturbances of the cardiac regulatory network leading to congenital heart diseases in human are provided.


Subject(s)
Gene Regulatory Networks , Heart Defects, Congenital , Transcription Factors , Animals , Humans , Transcription Factors/metabolism , Transcription Factors/genetics , Heart Defects, Congenital/genetics , Heart Defects, Congenital/metabolism , Gene Expression Regulation, Developmental , Mice , MicroRNAs/genetics , MicroRNAs/metabolism , Heart/physiology , Myocardium/metabolism
4.
Int J Mol Sci ; 25(11)2024 May 24.
Article in English | MEDLINE | ID: mdl-38891908

ABSTRACT

Chronic inflammation causes muscle wasting. Because most inflammatory cytokine signals are mediated via TGF-ß-activated kinase-1 (TAK1) activation, inflammatory cytokine-induced muscle wasting may be ameliorated by the inhibition of TAK1 activity. The present study was undertaken to clarify whether TAK1 inhibition can ameliorate inflammation-induced muscle wasting. SKG/Jcl mice as an autoimmune arthritis animal model were treated with a small amount of mannan as an adjuvant to enhance the production of TNF-α and IL-1ß. The increase in these inflammatory cytokines caused a reduction in muscle mass and strength along with an induction of arthritis in SKG/Jcl mice. Those changes in muscle fibers were mediated via the phosphorylation of TAK1, which activated the downstream signaling cascade via NF-κB, p38 MAPK, and ERK pathways, resulting in an increase in myostatin expression. Myostatin then reduced the expression of muscle proteins not only via a reduction in MyoD1 expression but also via an enhancement of Atrogin-1 and Murf1 expression. TAK1 inhibitor, LL-Z1640-2, prevented all the cytokine-induced changes in muscle wasting. Thus, TAK1 inhibition can be a new therapeutic target of not only joint destruction but also muscle wasting induced by inflammatory cytokines.


Subject(s)
Cytokines , MAP Kinase Kinase Kinases , Muscular Atrophy , Animals , MAP Kinase Kinase Kinases/metabolism , MAP Kinase Kinase Kinases/antagonists & inhibitors , Muscular Atrophy/metabolism , Muscular Atrophy/pathology , Muscular Atrophy/etiology , Muscular Atrophy/drug therapy , Mice , Cytokines/metabolism , Muscle Weakness/metabolism , Muscle Weakness/drug therapy , Myostatin/metabolism , Myostatin/antagonists & inhibitors , Muscle Proteins/metabolism , Tumor Necrosis Factor-alpha/metabolism , NF-kappa B/metabolism , Inflammation/metabolism , Inflammation/pathology , Inflammation/drug therapy , Signal Transduction/drug effects , Tripartite Motif Proteins/metabolism , Tripartite Motif Proteins/genetics , Disease Models, Animal , Interleukin-1beta/metabolism , Phosphorylation/drug effects , Muscle, Skeletal/metabolism , Muscle, Skeletal/pathology , Muscle, Skeletal/drug effects , Zearalenone/pharmacology , Zearalenone/analogs & derivatives
5.
Gene ; 921: 148523, 2024 Aug 30.
Article in English | MEDLINE | ID: mdl-38703863

ABSTRACT

The Pacific white shrimp Litopenaeus vannamei is a representative species of decapod crustacean and an economically important marine aquaculture species worldwide. However, research on the genes involved in muscle growth and development in shrimp is still lacking. MyoD is recognized as a crucial regulator of myogenesis and plays an essential role in muscle growth and differentiation in various animals. Nonetheless, little information is available concerning the function of this gene among crustaceans. In this study, we identified a sequence of the MyoD gene (LvMyoD) with a conserved bHLH domain in the L. vannamei genome. Phylogenetic analysis revealed that both the overall protein sequence and specific functional sites of LvMyoD are highly conserved with those of other crustacean species and that they are evolutionarily closely related to vertebrate MyoD and Myf5. LvMyoD expression is initially high during early muscle development in shrimp and gradually decreases after 40 days post-larval development. In adults, the muscle-specific expression of LvMyoD was confirmed through RT-qPCR analysis. Knockdown of LvMyoD inhibited the growth of the shrimp in body length and weight. Histological observation and transcriptome sequencing of muscle samples after RNA interference (RNAi) revealed nuclear agglutination and looseness in muscle fibers. Additionally, we observed significant effects on the expression of genes involved in heat shock proteins, myosins, actins, protein synthesis, and glucose metabolism. These findings suggest that LvMyoD plays a critical role in regulating muscle protein synthesis and muscle cell differentiation. Overall, this study highlights the involvement of LvMyoD in myogenesis and muscle growth, suggesting that it is a potentially important regulatory target for shrimp breeding efforts.


Subject(s)
MyoD Protein , Penaeidae , Phylogeny , Animals , Penaeidae/genetics , Penaeidae/growth & development , Penaeidae/metabolism , MyoD Protein/genetics , MyoD Protein/metabolism , Muscle Development/genetics , Arthropod Proteins/genetics , Arthropod Proteins/metabolism , Gene Expression Regulation, Developmental , Amino Acid Sequence
6.
Front Cell Dev Biol ; 12: 1369091, 2024.
Article in English | MEDLINE | ID: mdl-38601082

ABSTRACT

Cellular therapy holds immense promise to remuscularize the damaged myocardium but is practically hindered by limited allogeneic sources of cardiac-committed cells that engraft stably in the recipient heart after transplantation. Here, we demonstrate that the pericardial tissue harbors myogenic stem cells (pSCs) that are activated in response to inflammatory signaling after myocardial infarction (MI). The pSCs derived from the MI rats (MI-pSCs) show in vivo and in vitro cardiac commitment characterized by cardiac-specific Tnnt2 expression and formation of rhythmic contraction in culture. Bulk RNA-seq analysis reveals significant upregulation of a panel of genes related to cardiac/myogenic differentiation, paracrine factors, and extracellular matrix in the activated pSCs compared to the control pSCs (Sham-pSCs). Notably, we define MyoD as a key factor that governs the process of cardiac commitment, as siRNA-mediated MyoD gene silencing results in a significant reduction of myogenic potential. Injection of the cardiac-committed cells into the infarcted rat heart leads to long-term survival and stable engraftment in the recipient myocardium. Therefore, these findings point to pericardial myogenic progenitors as an attractive candidate for cardiac cell-based therapy to remuscularize the damaged myocardium.

7.
Int J Mol Sci ; 25(8)2024 Apr 13.
Article in English | MEDLINE | ID: mdl-38673893

ABSTRACT

During embryogenesis, basic fibroblast growth factor (bFGF) is released from neural tube and myotome to promote myogenic fate in the somite, and is routinely used for the culture of adult skeletal muscle (SKM) stem cells (MuSC, called satellite cells). However, the mechanism employed by bFGF to promote SKM lineage and MuSC proliferation has not been analyzed in detail. Furthermore, the question of if the post-translational modification (PTM) of bFGF is important to its stemness-promoting effect has not been answered. In this study, GST-bFGF was expressed and purified from E.coli, which lacks the PTM system in eukaryotes. We found that both GST-bFGF and commercially available bFGF activated the Akt-Erk pathway and had strong cell proliferation effect on C2C12 myoblasts and MuSC. GST-bFGF reversibly compromised the myogenesis of C2C12 myoblasts and MuSC, and it increased the expression of Myf5, Pax3/7, and Cyclin D1 but strongly repressed that of MyoD, suggesting the maintenance of myogenic stemness amid repressed MyoD expression. The proliferation effect of GST-bFGF was conserved in C2C12 over-expressed with MyoD (C2C12-tTA-MyoD), implying its independence of the down-regulation of MyoD. In addition, the repressive effect of GST-bFGF on myogenic differentiation was almost totally rescued by the over-expression of MyoD. Together, these evidences suggest that (1) GST-bFGF and bFGF have similar effects on myogenic cell proliferation and differentiation, and (2) GST-bFGF can promote MuSC stemness and proliferation by differentially regulating MRFs and Pax3/7, (3) MyoD repression by GST-bFGF is reversible and independent of the proliferation effect, and (4) GST-bFGF can be a good substitute for bFGF in sustaining MuSC stemness and proliferation.


Subject(s)
Cell Proliferation , Fibroblast Growth Factor 2 , Muscle Development , MyoD Protein , Myoblasts , Muscle Development/genetics , Animals , Mice , MyoD Protein/metabolism , MyoD Protein/genetics , Fibroblast Growth Factor 2/metabolism , Fibroblast Growth Factor 2/pharmacology , Fibroblast Growth Factor 2/genetics , Myoblasts/metabolism , Myoblasts/cytology , Cell Line , PAX7 Transcription Factor/metabolism , PAX7 Transcription Factor/genetics , PAX3 Transcription Factor/metabolism , PAX3 Transcription Factor/genetics , Myogenic Regulatory Factor 5/metabolism , Myogenic Regulatory Factor 5/genetics , Cyclin D1/metabolism , Cyclin D1/genetics , Satellite Cells, Skeletal Muscle/metabolism , Satellite Cells, Skeletal Muscle/cytology , Cell Differentiation , Proto-Oncogene Proteins c-akt/metabolism , Muscle, Skeletal/metabolism , Muscle, Skeletal/cytology
8.
Bull Exp Biol Med ; 176(4): 528-532, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38492102

ABSTRACT

Reparative properties of infrared laser exposure are well known, but the effects of green laser light are little studied. We analyzed the effects of short (60 sec) and longer (180 sec) exposure to infrared (980 nm) and green (520 nm) laser on the number of activated myosatellite cells in the regenerating m. gastrocnemius of Wistar rats after infliction of an incision wound. Histological preparations were used for morphometric evaluation of myosatellite cells with MyoD+ nuclei. Increased numbers of MyoD+ nuclei were observed on days 3 and 7 after 60-sec exposure to infrared and green laser.


Subject(s)
Satellite Cells, Skeletal Muscle , Rats , Animals , Rats, Wistar , Muscle, Skeletal , Cell Nucleus
9.
Cells ; 13(6)2024 Mar 12.
Article in English | MEDLINE | ID: mdl-38534336

ABSTRACT

Amyotrophic lateral sclerosis (ALS) is a mysterious lethal multisystem neurodegenerative disease that gradually leads to the progressive loss of motor neurons. A recent non-contact dying-back injury mechanism theory for ALS proposed that the primary damage is an acquired irreversible intrafusal proprioceptive terminal Piezo2 channelopathy with underlying genetic and environmental risk factors. Underpinning this is the theory that excessively prolonged proprioceptive mechanotransduction under allostasis may induce dysfunctionality in mitochondria, leading to Piezo2 channelopathy. This microinjury is suggested to provide one gateway from physiology to pathophysiology. The chronic, but not irreversible, form of this Piezo2 channelopathy is implicated in many diseases with unknown etiology. Dry eye disease is one of them where replenishing synthetic proteoglycans promote nerve regeneration. Syndecans, especially syndecan-3, are proposed as the first critical link in this hierarchical ordered depletory pathomechanism as proton-collecting/distributing antennas; hence, they may play a role in ALS pathomechanism onset. Even more importantly, the shedding or charge-altering variants of Syndecan-3 may contribute to the Piezo2 channelopathy-induced disruption of the Piezo2-initiated proton-based ultrafast long-range signaling through VGLUT1 and VGLUT2. Thus, these alterations may not only cause disruption to ultrafast signaling to the hippocampus in conscious proprioception, but could disrupt the ultrafast proprioceptive signaling feedback to the motoneurons. Correspondingly, an inert Piezo2-initiated proton-based ultrafast signaled proprioceptive skeletal system is coming to light that is suggested to be progressively lost in ALS. In addition, the lost functional link of the MyoD family of inhibitor proteins, as auxiliary subunits of Piezo2, may not only contribute to the theorized acquired Piezo2 channelopathy, but may explain how these microinjured ion channels evolve to be principal transcription activators.


Subject(s)
Amyotrophic Lateral Sclerosis , Channelopathies , Neurodegenerative Diseases , Humans , Amyotrophic Lateral Sclerosis/metabolism , Syndecan-3 , Mechanotransduction, Cellular , Protons , Proprioception/physiology
10.
Cancer Biol Ther ; 25(1): 2314324, 2024 12 31.
Article in English | MEDLINE | ID: mdl-38375821

ABSTRACT

Colorectal cancer (CRC) is one of the most lethal cancers. Single-cell RNA sequencing (scRNA-seq) and protein-protein interactions (PPIs) have enabled the systematic study of CRC. In our research, the activation of the AKT pathway in CRC was analyzed by KEGG using single-cell sequencing data from the GSE144735 dataset. The correlation and PPIs of MDFI and ITGB4/LAMB3 were examined. The results were verified in the TCGA and CCLE and further tested by coimmunoprecipitation experiments. The effect of MDFI on the AKT pathway via ITGB4/LAMB3 was validated by knockdown and lentiviral overexpression experiments. The effect of MDFI on oxaliplatin/fluorouracil sensitivity was probed by colony formation assay and CCK8 assay. We discovered that MDFI was positively associated with ITGB4/LAMB3. In addition, MDFI was negatively associated with oxaliplatin/fluorouracil sensitivity. MDFI upregulated the AKT pathway by directly interacting with LAMB3 and ITGB4 in CRC cells, and enhanced the proliferation of CRC cells via the AKT pathway. Finally, MDFI reduced the sensitivity of CRC cells to oxaliplatin and fluorouracil. In conclusion, MDFI promotes the proliferation and tolerance to chemotherapy of colorectal cancer cells, partially through the activation of the AKT signaling pathway by the binding to ITGB4/LAMB3. Our findings provide a possible molecular target for CRC therapy.


Subject(s)
Colorectal Neoplasms , Integrin beta4 , Kalinin , Myogenic Regulatory Factors , Proto-Oncogene Proteins c-akt , Humans , Cell Line, Tumor , Cell Proliferation , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/genetics , Colorectal Neoplasms/metabolism , Fluorouracil/pharmacology , Gene Expression Regulation, Neoplastic , Integrin beta4/genetics , Integrin beta4/metabolism , Myogenic Regulatory Factors/genetics , Myogenic Regulatory Factors/metabolism , Oxaliplatin/pharmacology , Proto-Oncogene Proteins c-akt/metabolism , Signal Transduction , Kalinin/genetics , Kalinin/metabolism
11.
J Muscle Res Cell Motil ; 45(1): 21-39, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38206489

ABSTRACT

The transcriptional regulation of skeletal muscle (SKM) development (myogenesis) has been documented for over 3 decades and served as a paradigm for tissue-specific cell type determination and differentiation. Myogenic stem cells (MuSC) in embryos and adult SKM are regulated by the transcription factors Pax3 and Pax7 for their stem cell characteristics, while their lineage determination and terminal differentiation are both dictated by the myogenic regulatory factors (MRF) that comprise Mrf4, Myf5, Myogenin, and MyoD. The myocyte enhancer factor Mef2c is activated by MRF during terminal differentiation and collaborates with them to promote myoblast fusion and differentiation. Recent studies have found critical regulation of these myogenic transcription factors at mRNA level, including subcellular localization, stability, and translational regulation. Therefore, the regulation of Pax3/7, MRFs and Mef2c mRNAs by RNA-binding factors and non-coding RNAs (ncRNA), including microRNAs and long non-coding RNAs (lncRNA), will be the focus of this review and the impact of this regulation on myogenesis will be further addressed. Interestingly, the stem cell characteristics of MuSC has been found to be critically regulated by ncRNAs, implying the involvement of ncRNAs in SKM homeostasis and regeneration. Current studies have further identified that some ncRNAs are implicated in the etiology of some SKM diseases and can serve as valuable tools/indicators for prediction of prognosis. The roles of ncRNAs in the MuSC biology and SKM disease etiology will also be discussed in this review.


Subject(s)
Muscle, Skeletal , MyoD Protein , MyoD Protein/genetics , Muscle, Skeletal/metabolism , Gene Expression Regulation , PAX3 Transcription Factor/genetics , PAX3 Transcription Factor/metabolism , Cell Differentiation/genetics , Muscle Development/genetics
12.
Int J Surg Pathol ; 32(3): 496-506, 2024 May.
Article in English | MEDLINE | ID: mdl-37489265

ABSTRACT

Background. Spindle cell/sclerosing rhabdomyosarcoma is a rare neoplasm and has an aggressive clinical course. Because of its rarity, we performed a multi-institutional collaboration to comprehend the overarching clinical, histopathological, and immunohistochemical characteristics of a cohort of spindle cell/sclerosing rhabdomyosarcoma. Materials and Methods. Forty-five patients with spindle cell/sclerosing rhabdomyosarcoma were identified. Demographics, clinical, histopathological, and immunohistochemistry data were reviewed and recorded. Results. The patients' age ranged from 1 to 85 years with a male to female ratio of 1.2:1. There were 15 children/adolescents and 30 adults. Eighteen (40%) tumors were located in the head and neck region. Twenty-four (53%) tumors displayed a bimorphic cellular arrangement with hypercellular areas having short, long, and sweeping fascicular and herringbone pattern, and hypocellular areas with stromal sclerosis and associated hyalinized and/or chondromyxoid matrix. Histomorphological differentials considered were leiomyosarcoma, malignant peripheral nerve sheath tumor, fibrosarcoma, nodular fasciitis, liposarcoma, synovial sarcoma, sarcomatoid carcinoma, solitary fibrous tumor, dermatofibrosarcoma protuberans, and schwannoma. Six tumors exhibited marked stromal sclerosis. The myogenic nature was confirmed by immunohistochemistry. Positivity for at least one skeletal muscle-associated marker (MyoD1 and/or myogenin) was observed. Conclusion. Spindle cell/sclerosing rhabdomyosarcoma diagnosis can be challenging as a number of malignant spindle cell neoplasm mimic this entity. Thus a correct diagnosis requires immunohistochemical work up with a broad panel of antibodies. In view of rarity of this neoplasm, further studies on a large cohort of patients with clinical follow-up data are needed for a better understanding of this tumor.


Subject(s)
Neurofibrosarcoma , Rhabdomyosarcoma , Adult , Child , Adolescent , Humans , Male , Female , Infant , Child, Preschool , Young Adult , Middle Aged , Aged , Aged, 80 and over , Immunohistochemistry , Sclerosis/pathology , Rhabdomyosarcoma/diagnosis , Rhabdomyosarcoma/pathology , Muscle, Skeletal/pathology , Biomarkers, Tumor
13.
Histopathology ; 84(5): 776-793, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38114270

ABSTRACT

AIMS: Spindle-cell/sclerosing rhabdomyosarcomas (SS-RMS) are clinically and genetically heterogeneous. They include three well-defined molecular subtypes, of which those with EWSR1/FUS::TFCP2 rearrangements were described only recently. This study aimed to evaluate five new cases of SS-RMS and to perform a clinicopathological and statistical analysis of all TFCP2-rearranged SS-RMS described in the English literature to more comprehensively characterize this rare tumour type. METHODS AND RESULTS: Cases were retrospectively selected and studied by immunohistochemistry, fluorescence in situ hybridization with EWSR1/FUS and TFCP2 break-apart probes, next-generation sequencing (Archer FusionPlex Sarcoma kit and TruSight RNA Pan-Cancer Panel). The PubMed database was searched for relevant peer-reviewed English reports. Five cases of SS-RMS were found. Three cases were TFCP2 rearranged SS-RMS, having FUSex6::TFCP2ex2 gene fusion in two cases and triple gene fusion EWSR1ex5::TFCP2ex2, VAX2ex2::ALKex2 and VAX2intron2::ALKex2 in one case. Two cases showed rhabdomyoblastic differentiation and spindle-round cell/sclerosing morphology, but were characterized by novel genetic fusions including EWSR1ex8::ZBTB41ex7 and PLOD2ex8::RBM6ex7, respectively. In the statistical analysis of all published cases, CDKN2A or ALK alterations, the use of standard chemotherapy and age at presentation in the range of 18-24 years were negatively correlated to overall survival. CONCLUSION: EWSR1/FUS::TFCP2-rearranged SS-RMS is a rare rhabdomyosarcoma subtype, affecting predominantly young adults with average age at presentation 34 years (median 29.5 years; age range 7-86 years), with a predilection for craniofacial bones, rapid clinical course with frequent bone and lung metastases, and poor prognosis (3-year overall survival rate 28%).


Subject(s)
Rhabdomyosarcoma , Transcription Factors , Young Adult , Child , Humans , Adult , Adolescent , Middle Aged , Aged , Aged, 80 and over , In Situ Hybridization, Fluorescence , Retrospective Studies , Transcription Factors/genetics , RNA-Binding Protein EWS/genetics , Rhabdomyosarcoma/genetics , Rhabdomyosarcoma/pathology , Gene Fusion , Biomarkers, Tumor/genetics , RNA-Binding Proteins/genetics , Procollagen-Lysine, 2-Oxoglutarate 5-Dioxygenase/genetics , DNA-Binding Proteins/genetics
14.
Cell Rep ; 43(1): 113626, 2024 01 23.
Article in English | MEDLINE | ID: mdl-38157298

ABSTRACT

Exercise training can stimulate the formation of fatty-acid-oxidizing slow-twitch skeletal muscle fibers, which are inversely correlated with obesity, but the molecular mechanism underlying this transformation requires further elucidation. Here, we report that the downregulation of the mitochondrial disulfide relay carrier CHCHD4 by exercise training decreases the import of TP53-regulated inhibitor of apoptosis 1 (TRIAP1) into mitochondria, which can reduce cardiolipin levels and promote VDAC oligomerization in skeletal muscle. VDAC oligomerization, known to facilitate mtDNA release, can activate cGAS-STING/NFKB innate immune signaling and downregulate MyoD in skeletal muscle, thereby promoting the formation of oxidative slow-twitch fibers. In mice, CHCHD4 haploinsufficiency is sufficient to activate this pathway, leading to increased oxidative muscle fibers and decreased fat accumulation with aging. The identification of a specific mediator regulating muscle fiber transformation provides an opportunity to understand further the molecular underpinnings of complex metabolic conditions such as obesity and could have therapeutic implications.


Subject(s)
Muscle Fibers, Skeletal , Muscle, Skeletal , Animals , Mice , Apoptosis , Immunity, Innate , Muscle, Skeletal/metabolism , Obesity/metabolism
15.
Fish Physiol Biochem ; 49(5): 1043-1061, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37782384

ABSTRACT

Skeletal muscle myoblastic cell lines can provide a valuable new in vitro model for the exploration of the mechanisms that control skeletal muscle development and its associated molecular regulation. In this study, the skeletal muscle tissues of grass carp were digested with trypsin and collagenase I to obtain the primary myoblast cell culture. Myoblast cells were obtained by differential adherence purification and further analyzed by cryopreservation and resuscitation, chromosome analysis, immunohistochemistry, and immunofluorescence. A continuous grass carp myoblast cell line (named CIM) was established from grass carp (Ctenopharyngodon idellus) muscle and has been subcultured > 100 passages in a year and more. The CIM cells revived at 79.78-95.06% viability after 1-6 months of cryopreservation, and shared a population doubling time of 27.24 h. The number of modal chromosomes of CIM cells was 48, and the mitochondrial 12S rRNA sequence of the CIM cell line shared 99% identity with those of grass carp registered in GenBank. No microorganisms (bacteria, fungi, or mycoplasma) were detected during the whole study. The cell type of CIM cells was proven to be myoblast by immunohistochemistry of specific myogenic protein markers, including CD34, desmin, MyoD, and MyHC, as well as relative expression of key genes. And the myogenic rate and fusion index of this cell line after 10 days of induced differentiation were 8.96 ~ 9.42% and 3-24%, respectively. The telomerase activity and transfection efficiency of CIM cell line were 0.027 IU/mgprot and 23 ~ 24%, respectively. These results suggest that a myoblast cell line named CIM with normal biological function has been successfully established, which may provide a valuable tool for related in vitro studies.


Subject(s)
Carps , Myoblasts, Skeletal , Animals , Amino Acid Sequence , Cell Differentiation , Cell Line
16.
Cell Rep ; 42(10): 113259, 2023 10 31.
Article in English | MEDLINE | ID: mdl-37851578

ABSTRACT

CCCTC-binding factor (CTCF), a ubiquitously expressed architectural protein, has emerged as a key regulator of cell identity gene transcription. However, the precise molecular mechanism underlying specialized functions of CTCF remains elusive. Here, we investigate the mechanism through integrative analyses of primary hepatocytes, myocytes, and B cells from mouse and human. We demonstrate that CTCF cooperates with lineage-specific pioneer transcription factors (TFs), including MyoD, FOXA, and PU.1, to control cell identity at 1D and 3D levels. At the 1D level, pioneer TFs facilitate lineage-specific CTCF occupancy via opening chromatin. At the 3D level, CTCF and pioneer TFs form regulatory hubs to govern the expression of cell identity genes. This mechanism is validated using MyoD-null mice, CTCF knockout mice, and CRISPR editing during myogenic differentiation. Collectively, these findings uncover a general mechanism whereby CTCF acts as a cell identity cofactor to control cell identity genes via orchestrating regulatory hubs with pioneer TFs.


Subject(s)
B-Lymphocytes , CCCTC-Binding Factor , Transcription Factors , Animals , Humans , Mice , B-Lymphocytes/metabolism , CCCTC-Binding Factor/genetics , CCCTC-Binding Factor/metabolism , Cell Differentiation , Chromatin , Transcription Factors/genetics , Transcription Factors/metabolism
17.
Biochem Biophys Res Commun ; 682: 223-243, 2023 11 19.
Article in English | MEDLINE | ID: mdl-37826946

ABSTRACT

Skeletal muscle myogenesis represents one of the most intensively and extensively examined systems of cell differentiation, tissue formation, and regeneration. Muscle regeneration provides an in vivo model system of postnatal myogenesis. It comprises multiple steps including muscle stem cell (or satellite cell) quiescence, activation, migration, myogenic determination, myoblast proliferation, myocyte differentiation, myofiber maturation, and hypertrophy. A variety of extracellular signaling and subsequent intracellular signal transduction pathways or networks govern the individual steps of postnatal myogenesis. Among them, MAPK pathways (the ERK, JNK, p38 MAPK, and ERK5 pathways) and PI3K-Akt signaling regulate multiple steps of myogenesis. Ca2+, cytokine, and Wnt signaling also participate in several myogenesis steps. These signaling pathways often control cell cycle regulatory proteins or the muscle-specific MyoD family and the MEF2 family of transcription factors. This article comprehensively reviews molecular mechanisms of the individual steps of postnatal skeletal muscle myogenesis by focusing on signal transduction pathways or networks. Nevertheless, no or only a partial signaling molecules or pathways have been identified in some responses during myogenesis. The elucidation of these unidentified signaling molecules and pathways leads to an extensive understanding of the molecular mechanisms of myogenesis.


Subject(s)
Phosphatidylinositol 3-Kinases , Proto-Oncogene Proteins c-akt , Cell Differentiation/physiology , Mitogen-Activated Protein Kinases/metabolism , Muscle Development/physiology , Muscle Fibers, Skeletal/metabolism , Muscle, Skeletal/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Signal Transduction/physiology
18.
Int J Biol Macromol ; 253(Pt 7): 127341, 2023 Dec 31.
Article in English | MEDLINE | ID: mdl-37852400

ABSTRACT

The elaborate interplay of coding and noncoding factors governs muscle growth and development. Here, we reported a mutual activation between long noncoding RNA (lncRNA) H19 and MyoD (myogenic determination gene number 1) in the muscle process. We successfully cloned the two isoforms of goat H19, which were significantly enriched and positively correlated with MyoD transcripts in skeletal muscles or differentiating muscle satellite cells (MuSCs). To systematically screen genes altered by H19, we performed RNA-seq using cDNA libraries of differentiating H19-deficiency MuSCs and consequently anchored MyoD as the critical genes in mediating H19 function. Intriguingly, some transcripts of MyoD and H19 overlapped in the cytoplasm, which was dramatically damaged when the core complementary nucleotides were mutated. Meanwhile, MyoD RNA successfully pulled down H19 in MS2-RIP experiments. Furthermore, HuR could bind both H19 and MyoD transcripts, while H19 or its truncated mutants successfully stabilized MyoD mRNA, with or without HuR deficiency. In turn, novel functional MyoD protein-binding sites were identified in the promoter and exons of the H19 gene. Our results suggest that MyoD activates H19 transcriptionally, and RNA-RNA hybridization is critical for H19-promoted MyoD expression, which extends our knowledge of the hierarchy of regulatory networks in muscle growth.


Subject(s)
RNA, Long Noncoding , Satellite Cells, Skeletal Muscle , Animals , Satellite Cells, Skeletal Muscle/metabolism , Goats/genetics , Goats/metabolism , Cell Differentiation/genetics , Muscle, Skeletal/metabolism , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism
19.
Cells ; 12(17)2023 08 29.
Article in English | MEDLINE | ID: mdl-37681900

ABSTRACT

Sarcopenia has a high prevalence among the aging population. Sarcopenia is of tremendous socioeconomic importance because it can lead to falls and hospitalization, subsequently increasing healthcare costs while limiting quality of life. In sarcopenic muscle fibers, the E3 ubiquitin ligase F-Box Protein 32 (Fbxo32) is expressed at substantially higher levels, driving ubiquitin-proteasomal muscle protein degradation. As one of the key regulators of muscular equilibrium, the transcription factor Forkhead Box O3 (FOXO3) can increase the expression of Fbxo32, making it a possible target for the regulation of this detrimental pathway. To test this hypothesis, murine C2C12 myoblasts were transduced with AAVs carrying a plasmid for four specific siRNAs against Foxo3. Successfully transduced myoblasts were selected via FACS cell sorting to establish single clone cell lines. Sorted myoblasts were further differentiated into myotubes and stained for myosin heavy chain (MHC) by immunofluorescence. The resulting area was calculated. Myotube contractions were induced by electrical stimulation and quantified. We found an increased Foxo3 expression in satellite cells in human skeletal muscle and an age-related increase in Foxo3 expression in older mice in silico. We established an in vitro AAV-mediated FOXO3 knockdown on protein level. Surprisingly, the myotubes with FOXO3 knockdown displayed a smaller myotube size and a lower number of nuclei per myotube compared to the control myotubes (AAV-transduced with a functionless control plasmid). During differentiation, a lower level of FOXO3 reduced the expression Fbxo32 within the first three days. Moreover, the expression of Myod1 and Myog via ATM and Tp53 was reduced. Functionally, the Foxo3 knockdown myotubes showed a higher contraction duration and time to peak. Early Foxo3 knockdown seems to terminate the initiation of differentiation due to lack of Myod1 expression, and mediates the inhibition of Myog. Subsequently, the myotube size is reduced and the excitability to electrical stimulation is altered.


Subject(s)
Forkhead Box Protein O3 , MyoD Protein , Myogenin , Quality of Life , Sarcopenia , Aged , Animals , Humans , Mice , Forkhead Box Protein O3/genetics , Muscle Fibers, Skeletal , Muscle, Skeletal , Myoblasts , Myogenin/metabolism , MyoD Protein/metabolism
20.
J Cell Physiol ; 238(11): 2638-2650, 2023 11.
Article in English | MEDLINE | ID: mdl-37683043

ABSTRACT

Skeletal muscle regeneration is a crucial physiological process that occurs in response to injury or disease. As an important transcriptome surveillance system that regulates tissue development, the role of nonsense-mediated mRNA decay (NMD) in muscle regeneration remains unclear. Here, we found that NMD inhibits myoblast differentiation by targeting the phosphoinositide-3-kinase regulatory subunit 5 gene, which leads to the suppression of the transcriptional activity of myogenic differentiation (MyoD), a key regulator of myoblast differentiation. This disruption of MyoD transcriptional activity subsequently affects the expression levels of myogenin and myosin heavy chain, crucial markers of myoblast differentiation. Additionally, through up-frameshift protein 1 knockdown experiments, we observed that inhibiting NMD can accelerate muscle regeneration in vivo. These findings highlight the potential of NMD as a novel therapeutic target for the treatment of muscle-related injuries and diseases.


Subject(s)
Myoblasts , Nonsense Mediated mRNA Decay , Animals , Male , Mice , Cell Differentiation/genetics , Cell Line , Mice, Inbred C57BL , Muscle Development/genetics , Muscle, Skeletal/metabolism , Muscles , Myoblasts/metabolism , MyoD Protein/genetics , MyoD Protein/metabolism , Myogenin/genetics , Myogenin/metabolism , Nonsense Mediated mRNA Decay/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...