Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.357
Filter
1.
Biochem Biophys Res Commun ; 727: 150336, 2024 Jun 30.
Article in English | MEDLINE | ID: mdl-38959731

ABSTRACT

Myocardial fibrosis involves the loss of cardiomyocytes, myocardial fibroblast proliferation, and a reduction in angiogenesis, ultimately leading to heart failure, Given its significant implications, it is crucial to explore novel therapies for myocardial fibrosis. Recently one emerging avenue has been the use of small extracellular vesicles (sEV)-carried miRNA. In this review, we summarize the regulatory role of sEV-carried miRNA in myocardial fibrosis. We explored not only the potential diagnostic value of circulating miRNA as biomarkers for heart disease but also the therapeutic implications of sEV-carried miRNA derived from various cellular sources and applications of modified sEV. This exploration is paramount for researchers striving to develop innovative, cell-free therapies as potential drug candidates for the management of myocardial fibrosis.

2.
Rheumatol Immunol Res ; 5(2): 72-82, 2024 Jun.
Article in English | MEDLINE | ID: mdl-39015843

ABSTRACT

Primary heart involvement (pHI) is frequent in systemic sclerosis (SSc), even though often underdiagnosed. SSc-pHI has been recently defined as cardiac abnormalities that are predominantly attributable to SSc rather than other causes and/or complications. SSc-pHI represents a major determinant of mortality in SSc, accounting alone for about 12% of disease-related deaths; its early recognition and promptly therapeutic interventions are therefore crucial. Both perfusion defects and myocardial inflammation contribute to the occurrence of myocardial fibrosis that precipitates myocardial remodeling, potentially leading to heart failure and arrhythmic complications. To date, clear evidence and guidelines for effectively managing SSc pHI are not established yet, resulting in a lack of a defined therapeutic algorithm. In this review we summarize the most recent scientific literature on the prevailing therapeutic strategies and interventions to manage SSc-pHI, with particular focus on therapeutic strategies to counteract the 3 major pathogenic events of the disease, i.e. microvascular damage, myocardial inflammation and myocardial fibrosis.

3.
Article in English | MEDLINE | ID: mdl-38995412

ABSTRACT

99mTc-HFAPI can visualize fibroblast activation in hypertensive hearts. Myocardial work (MW) reflects the cardiac mechanical properties after accounting for the afterload in hypertensive patients. We investigated whether MW was associated with increased uptake of 99mTc-HFAPI. A total of 97 hypertensive patients and 41 healthy volunteers were prospectively recruited. Global work index (GWI), global constructive work (GCW), global wasted work (GWW) and global work efficiency (GWE) were analyzed. According to whether myocardial uptake of FAPI was higher than the adjacent blood pool, hypertensive patients were divided into two groups, namely: FAPI + and FAPI- group, respectively. GWI, GCW and GWE of the FAPI + group were lower than the FAPI- group. The value of GWW in the FAPI + group was higher than in the FAPI- group. Multiple regression analyses revealed GWI, GWW and GWE were independently associated with early myocardial fibrosis. According to receiver operating characteristics (ROC) analysis, the best cutoff points for FAPI + of GWI, GWW and GWE were 1968.50 mmHg% (AUC: 0.687, 95% CI: 0.581-0.793, P = 0.002), 133.00 mmHg% (AUC: 0.778, 95% CI: 0.688-0.869, P < 0.001) and 95.07% (AUC: 0.813, 95% CI: 0.730-0.896, P < 0.001), respectively. GWI, GWW and GWE were impaired in hypertensive patients with cardiac 99mTc-HFAPI uptake and were associated with fibroblast activation in hypertensive hearts.

4.
J Clin Med ; 13(13)2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38999443

ABSTRACT

Background: Left ventricular remodeling in chronic mitral regurgitation (MR) encompasses two types of myocardial fibrosis: replacement fibrosis, identified by late gadolinium enhancement (LGE), and diffuse interstitial fibrosis, assessed by pre- and postcontrast T1 mapping techniques. These may explain irreversible LV dysfunction after MR correction. We aimed to assess the presence of myocardial fibrosis in patients with moderate and severe MR with no criteria for surgery versus mild MR controls. Methods: We enrolled 137 patients with chronic primary MR and 130 controls; all underwent cardiac magnetic resonance, and were followed up in a median of 2.9 years to assess mortality and the need for mitral valve replacement. Results: Patients in the study group displayed significantly higher degrees of LGE (28.4% vs 7.69%, p < 0.05), higher native T1 values (1167 ± 58.5 versus 971 ± 51.4 (p < 0.05)), and higher extracellular volumes compared to controls (32.3% ± 3.5 versus 23.9 ± 2.2, (p < 0.05)). The composite outcome occurred in 28 patients in the study group (20.4%), and significantly higher with LGE+ (78.5%). Replacement fibrosis (HR = 1.83, 95% CI, p < 0.01) and interstitial fibrosis (HR = 1.61, 95% CI, p < 0.01) were independent predictors for the composite outcome. Conclusions: Patients with moderate and severe MR with no criteria for surgery still exhibit a significant degree of both replacement and interstitial fibrosis, with prognostic implications.

5.
Am J Hypertens ; 2024 Jun 08.
Article in English | MEDLINE | ID: mdl-38850192

ABSTRACT

BACKGROUND: Salt-sensitive hypertension is often more prone to induce damage to target organs such as the heart and kidneys. Abundant recent studies have demonstrated a close association between ferroptosis and cardiovascular diseases.Therefore, we hypothesize that ferroptosis may be closely associated with organ damage in salt-sensitive hypertension. This study aimed to investigate whether ferroptosis is involved in the occurrence and development of myocardial fibrosis and renal fibrosis in salt-sensitive hypertensive rats. METHODS: Ten 7-week-old male Dahl salt-sensitive (Dahl-SS) rats were adaptively fed for 1 week, then randomly divided into two groups and fed either a normal diet (0.3% NaCl, NDS group) or a high-salt diet (8% NaCl, HDS group) for 8 weeks. Blood pressure of the rats was observed, and analysis of the hearts and kidneys of Dahl-SS rats was conducted via HE-staining, Masson-staining, Prussian-blue-staining, TEM, tissue iron content detection, MDA content detection, immunofluorescence, and Western blot. RESULTS: Compared to the NDS group, rats in the HDS group increases in systolic blood pressure(SBP) and diastolic blood pressure(DBP)(P<0.05);collagen fiber accumulation was observed in the heart and kidney tissues (P<0.01), accompanied by alterations in mitochondrial ultrastructure,reduced mitochondrial volume, and increased density of the mitochondrial double membrane. Additionally,there were significant increases in both iron content and MDA levels(P<0.05). Immunofluorescence and Western blot results both indicated significant downregulation (P<0.05) of xCT and GPX4 proteins associated with ferroptosis in the HDS group. CONCLUSION: Ferroptosis is involved in the damage and fibrosis of the heart and kidney tissues in salt-sensitive hypertensive rats.

6.
Article in English | MEDLINE | ID: mdl-38848015

ABSTRACT

Myocardial fibrosis is a common finding in victims of sudden cardiac death (SCD). Whole exome sequencing was performed in 127 victims of SCD with primary myocardial fibrosis as the only pathological finding. These cases are derived from the Fingesture study which has collected data from autopsy-verified SCD victims in Northern Finland. A computational approach was used to identify protein interactions in cardiomyocytes. Associations of the identified variants with cardiac disease endpoints were investigated in the Finnish national genetic study (FinnGen) dataset. We identified 21 missense and one nonsense variant. Four variants were estimated to affect protein function, significantly associated with SCD/primary myocardial fibrosis (Fingesture) and associated with cardiac diseases in Finnish population (FinnGen). These variants locate in cartilage acidic protein 1 (CRATC1), calpain 1 (CAPN1), unc-45 myosin chaperone A (UNC45A) and unc-45 myosin chaperone B (UNC45B). The variants identified contribute to function of extracellular matrix and cardiomyocytes.

7.
Biomedicines ; 12(6)2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38927520

ABSTRACT

Myocardial infarction (MI) often leads to heart failure (HF) through acute or chronic maladaptive remodeling processes. This establishes coronary artery disease (CAD) and HF as significant contributors to cardiovascular illness and death. Therefore, treatment strategies for patients with CAD primarily focus on preventing MI and lessening the impact of HF after an MI event. Myocardial fibrosis, characterized by abnormal extracellular matrix (ECM) deposition, is central to cardiac remodeling. Understanding these processes is key to identifying new treatment targets. Recent studies highlight SGLT2 inhibitors (SGLT2i) and GLP-1 receptor agonists (GLP1-RAs) as favorable options in managing type 2 diabetes due to their low hypoglycemic risk and cardiovascular benefits. This review explores inflammation's role in cardiac fibrosis and evaluates emerging anti-diabetic medications' effectiveness, such as SGLT2i, GLP1-RAs, and dipeptidyl peptidase-4 inhibitors (DPP4i), in preventing fibrosis in patients with diabetes post-acute MI. Recent studies were analyzed to identify effective medications in reducing fibrosis risk in these patients. By addressing these areas, we can advance our understanding of the potential benefits of anti-diabetic medications in reducing cardiac fibrosis post-MI and improve patient outcomes in individuals with diabetes at risk of HF.

8.
Int J Mol Sci ; 25(12)2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38928407

ABSTRACT

Radiotherapy (RT) may have a cardiotoxic effect on the heart and cardiovascular system. Postulated mechanisms mediating these complications include vascular endothelium damage and myocardial fibrosis. The aim of our study was to assess endothelial damage and myocardial fibrosis in the early period after RT on the basis of cardiac biomarkers and in relation to the radiation dose applied to individual heart structures in patients treated for non-small-cell lung cancer. This single-center prospective study included consecutive patients with lung cancer (LC) who were referred for treatment with radiochemotherapy (study group) or chemotherapy (control group). The study protocol included performing an echocardiographic examination, a standard ECG examination, and collecting blood samples for laboratory tests before starting treatment for lung cancer in the first week after completing RT (after four cycles of chemotherapy in the control group) and after 12 weeks from the end of treatment. The study included 23 patients in the study group and 20 patients in the control group. Compared to the baseline values, there was a significant increase in total cholesterol concentration in the study group immediately after the end of RT, which persisted for three months after the end of therapy. After taking into account the use of statins in the analysis, it was found that an increase in total cholesterol concentration after oncological treatment was observed only among patients who did not use statins. Taking into account the assessment of myocardial fibrosis markers, there were no significant changes in the concentration of matrix metallopeptidase 9 (MMP-9) and tissue inhibitors of metalloproteinases 1 (TIMP-1) in the study group. In patients treated with radiochemotherapy, there was a significant increase in the concentration of intercellular adhesion molecule 1 (ICAM-1) immediately after RT, when compared to the baseline. After taking into account the use of statins, an increase in ICAM-1 concentration immediately after RT was observed only in patients who did not use statins. There was also a significant correlation between the radiation dose received by the left anterior descending coronary artery (LAD) and left circumferential coronary artery, and vascular cell adhesion protein 1 (VCAM-1) concentration measured at three months after the end of RT. Immediately after completion of radiotherapy, a significant increase in the level of ICAM-1 is observed indicating endothelial damage. The radiation dose to coronary arteries should be minimized, as it correlates with the concentration of VCAM-1. The use of statins may prevent the increase in total cholesterol and ICAM-1 concentration after irradiation for lung cancer; however, further studies designed for this specific purpose are necessary to confirm the effectiveness of statins in this area.


Subject(s)
Fibrosis , Lung Neoplasms , Humans , Male , Female , Lung Neoplasms/radiotherapy , Lung Neoplasms/pathology , Middle Aged , Aged , Prospective Studies , Carcinoma, Non-Small-Cell Lung/radiotherapy , Carcinoma, Non-Small-Cell Lung/pathology , Endothelium, Vascular/radiation effects , Endothelium, Vascular/pathology , Endothelium, Vascular/metabolism , Endothelium, Vascular/drug effects , Matrix Metalloproteinase 9/metabolism , Matrix Metalloproteinase 9/blood , Myocardium/pathology , Myocardium/metabolism , Radiotherapy/adverse effects , Tissue Inhibitor of Metalloproteinase-1/blood , Tissue Inhibitor of Metalloproteinase-1/metabolism , Cardiomyopathies/etiology , Cardiomyopathies/pathology , Cholesterol/blood , Biomarkers/blood
9.
Environ Sci Technol ; 58(26): 11268-11279, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38875123

ABSTRACT

Numerous studies indicate that fine particulate matters (PM2.5) and its organic components are urgent risk factors for cardiovascular diseases (CVDs). Combining toxicological experiments, effect-directed analyses, and nontarget identification, this study aims to explore whether PM2.5 exposure in coal-combustion areas induces myocardial fibrosis and how to identify the effective organic components and their toxic structures to support regional risk control. First, we constructed an animal model of real-world PM2.5 exposure during the heating season and found that the exposure impaired cardiac systolic function and caused myocardial fibrosis, with chemokine Ccl2-mediated inflammatory response being the key cause of collagen deposition. Then, using the molecular event as target coupled with two-stage chromatographic isolation and mass spectrometry analyses, we identified a total of 171 suspect organic compounds in the PM2.5 samples. Finally, using hierarchical characteristic fragment analysis, we predicted that 40 of them belonged to active compounds with 6 alert structures, including neopentane, butyldimethylamine, 4-ethylphenol, hexanal, decane, and dimethylaniline. These findings provide evidence for risk management and prevention of CVDs in polluted areas.


Subject(s)
Particulate Matter , Animals , Mice , Male , Air Pollutants , Fibrosis
11.
J Clin Med ; 13(11)2024 May 31.
Article in English | MEDLINE | ID: mdl-38892986

ABSTRACT

Myocardial fibrosis is an important factor in the progression of cardiovascular diseases. However, there is still no universal lifetime method of myocardial fibrosis assessment that has a high prognostic significance. The aim of the study was to determine the significance of ventricular endomyocardial biopsies for the assessment of myocardial fibrosis and to identify the severity of myocardial fibrosis in different cardiovascular diseases. Material and Methods: Endomyocardial biopsies (EMBs) of 20 patients with chronic lymphocytic myocarditis (CM), endomyocardial fragments obtained during septal reduction of 21 patients with hypertrophic cardiomyopathy (HCM), and 36 patients with a long history of hypertensive and ischemic heart disease (HHD + IHD) were included in the study. The control group was formed from EMBs taken on 12-14 days after heart transplantation (n = 28). Also, for one patient without clinical and morphological data for cardiovascular pathology, postmortem myocardial fragments were taken from typical EMB and septal reduction sites. The relative area of fibrosis was calculated as the ratio of the total area of collagen fibers to the area of the whole biopsy. Endocardium and subendocardial fibrosis were not included in the total biopsy area. Results: The relative fibrosis area in the EMBs in the CM patient group was 5.6 [3.3; 12.6]%, 11.1 [6.6; 15.9]% in the HHD + IHD patient group, 13.4 [8.8; 16.7]% in the HCM patient group, and 2.7 [1.5; 4.6]% in the control group. When comparing the fibrosis area of the CM patients in repeat EMBs, it was found that the fibrosis area in the first EMBs was 7.6 [4.8; 12.0]%, and in repeat EMBs, it was 5.3 [3.2; 7.6]%. No statistically significant differences were found between the primary and repeat EMBs (p = 0.15). In ROC analysis, the area of fibrosis in the myocardium of 1.1% (or lower than one) was found to be highly specific for the control group of patients compared to the study patients. Conclusions: EMB in the assessment of myocardial fibrosis has a questionable role because of the heterogeneity of fibrotic changes in the myocardium.

12.
Zhen Ci Yan Jiu ; 49(6): 551-557, 2024 Jun 25.
Article in English, Chinese | MEDLINE | ID: mdl-38897798

ABSTRACT

OBJECTIVES: To observe the effect of moxibustion at "Xinshu" (BL15) and "Feishu" (BL13) on transient receptor potential vanilloid type 1(TRPV1), calcitonin gene-related peptide (CGRP), and serum interleukin-10 (IL-10) in the myocardial tissue of rats with chronic heart failure (CHF), so as to explore its underlying mechanisms in improvement of CHF. METHODS: Male SD rats were randomly divided into the normal, model, moxibustion, capsaicin, moxibustion + capsaicin, and moxibustion + solvent groups, with 10 rats in each group. The CHF model was established by permanent ligation of the anterior descending branch of the left coronary artery. Mild moxibustion was applied to bilateral BL13 and BL15 for 30 min once daily for 4 weeks. Rats in the capsaicin group were smeared with capsaicin in the acupoint area once a day for 4 weeks. For rats of the moxibustion + capsaicin and moxibustion + solvent groups, capsaicin and solvent were applied to the acupoint area before moxibustion for 4 weeks, respectively. The ejection fraction (EF) and left ventricular fractional shortening rate (FS) were examined by echocardiography. HE staining was used to observe the myecardial morphological structure. The mRNA and protein expression levels of TRPV1, CGRP and galectin-3 (Gal-3) in myocardial tissue were detected by real-time quantitative PCR and Western blot, respectively. The content of IL-10 in serum was detected by ELISA. RESULTS: After modeling, the pathological changes of myocardium (as cardiac muscle fiber disorder, inflammatory cell infiltration, etc.) were obvious, and the EF, FS, serum IL-10, protein and mRNA exspression of TRPV1 and CGRP were significantly decreased (P<0.01) in the model group compared with the normal group, while the protein and mRNA exspression of Gal-3 were significantly up-regulated (P<0.01). Following the interventions, the above-mentioned indexes were all reversed in moxibustion, capsaicin, and moxibustion + capsaicin groups (P<0.01), and the effect of moxibustion + capsaicin was the best (P<0.05, P<0.01). CONCLUSIONS: Moxibustion can reduce myocardial injury and improve cardiac function in CHF rats, which may be related to its effects in up-regulating the expression of TRPV1 and CGRP, and down-regulating the expression of Gal-3 to alleviate myocardial fibrosis.


Subject(s)
Acupuncture Points , Calcitonin Gene-Related Peptide , Heart Failure , Interleukin-10 , Moxibustion , Myocardium , Rats, Sprague-Dawley , TRPV Cation Channels , Animals , TRPV Cation Channels/genetics , TRPV Cation Channels/metabolism , Heart Failure/therapy , Heart Failure/metabolism , Heart Failure/genetics , Male , Rats , Calcitonin Gene-Related Peptide/genetics , Calcitonin Gene-Related Peptide/metabolism , Humans , Myocardium/metabolism , Interleukin-10/genetics , Interleukin-10/metabolism
13.
Sci Rep ; 14(1): 12653, 2024 06 02.
Article in English | MEDLINE | ID: mdl-38825590

ABSTRACT

Nonischaemic myocardial fibrosis is associated with cardiac dysfunction, malignant arrhythmias and sudden cardiac death. In the absence of a specific aetiology, its finding as late gadolinium enhancement (LGE) on cardiac magnetic resonance imaging is often attributed to preceding viral myocarditis. Athletes presenting with ventricular arrhythmias often have nonischaemic LGE. Previous studies have demonstrated an adverse effect of exercise on the course of acute viral myocarditis. In this study, we have investigated, for the first time, the impact of endurance training on longer-term outcomes such as myocardial fibrosis and arrhythmogenicity in a murine coxsackievirus B3 (CVB)-induced myocarditis model. Male C57BL/6J mice (n = 72) were randomly assigned to 8 weeks of forced treadmill running (EEX) or no exercise (SED). Myocarditis was induced 2 weeks later by a single intraperitoneal injection with CVB, versus vehicle in the controls (PBS). In a separate study, mice (n = 30) were subjected to pretraining for 13 weeks (preEEX), without continuation of exercise during myocarditis. Overall, continuation of exercise resulted in a milder clinical course of viral disease, with less weight loss and better preserved running capacity. CVB-EEX and preEEX-CVB mice tended to have a lower mortality rate. At sacrifice (i.e. 6 weeks after inoculation), the majority of virus was cleared from the heart. Histological assessment demonstrated prominent myocardial inflammatory infiltration and cardiomyocyte loss in both CVB groups. Inflammatory lesions in the CVB-EEX group contained higher numbers of pro-inflammatory cells (iNOS-reactive macrophages and CD8+ T lymphocytes) compared to these in CVB-SED. Treadmill running during myocarditis increased interstitial fibrosis [82.4% (CVB-EEX) vs. 56.3% (CVB-SED); P = 0.049]. Additionally, perivascular and/or interstitial fibrosis with extensive distribution was more likely to occur with exercise [64.7% and 64.7% (CVB-EEX) vs. 50% and 31.3% (CVB-SED); P = 0.048]. There was a numerical, but not significant, increase in the number of scars per cross-section (1.9 vs. 1.2; P = 0.195), with similar scar distribution and histological appearance in CVB-EEX and CVB-SED. In vivo electrophysiology studies did not induce sustained monomorphic ventricular tachycardia, only nonsustained (usually polymorphic) runs. Their cumulative beat count and duration paralleled the increased fibrosis between CVB-EEX and CVB-SED, but the difference was not significant (P = 0.084 for each). Interestingly, in mice that were subjected to pretraining only without continuation of exercise during myocarditis, no differences between pretrained and sedentary mice were observed at sacrifice (i.e. 6 weeks after inoculation and training cessation) with regard to myocardial inflammation, fibrosis, and ventricular arrhythmogenicity. In conclusion, endurance exercise during viral myocarditis modulates the inflammatory process with more pro-inflammatory cells and enhances perivascular and interstitial fibrosis development. The impact on ventricular arrhythmogenesis requires further exploration.


Subject(s)
Arrhythmias, Cardiac , Coxsackievirus Infections , Disease Models, Animal , Enterovirus B, Human , Fibrosis , Mice, Inbred C57BL , Myocarditis , Physical Conditioning, Animal , Animals , Myocarditis/virology , Myocarditis/pathology , Male , Mice , Arrhythmias, Cardiac/etiology , Coxsackievirus Infections/pathology , Coxsackievirus Infections/complications , Myocardium/pathology , Endurance Training
14.
Int J Gen Med ; 17: 1651-1664, 2024.
Article in English | MEDLINE | ID: mdl-38706743

ABSTRACT

Background: Heart failure (HF) is a chronic disease with a poor prognosis, making it extremely important to assess the prognosis of patients with HF for accurate treatment. Secreted modular calcium-binding protein 2 (SMOC2) is a cysteine-rich acidic secreted protein that plays a pathophysiological role in many diseases, including regulation of vascular growth factor activity. It has previously been found that SMOC2 plays an essential role in cardiac fibrosis in our previous preclinical study, but whether it can be used as a clinical marker in heart failure patients remains unclear. The purpose of this research was to evaluate the correlation between plasma levels of SMOC2 and the prognosis for individuals with HF. Methods: HF patients diagnosed with ischemic cardiomyopathy were enrolled from January to December 2021. Baseline plasma levels of SMOC2 were measured after demographic and clinical features were collected. Linear and nonlinear multivariate Cox regression models were used to determine the association between plasma SMOC2 and patient outcomes during follow-up. All analysis was performed using SPSS, EmpowerStats, and R software. Results: The study included 188 patients, and the average follow-up time was 489.5±88.3 days. The plasma SMOC2 concentrations were positively correlated with N-terminal pro-B-type Natriuretic Peptide (NT-proBNP), left ventricular end-diastolic diameter (LVEDd), and length of hospital stay and were negatively correlated with left ventricular ejection fraction (LVEF) at baseline. A total of 53 patients (28.2%) were rehospitalized due to cardiac deterioration, 14 (7.4%) died, and 37 (19.7%) developed malignant arrhythmias. A fully adjusted multivariate COX regression model showed that SMOC2 is associated with readmission (HR = 1.02, 95% CI:1.012-1.655). A significant increase in rehospitalization risk was observed in group Q2 (HR =1.064, 95% CI: 1.037, 3.662, p=0.005) and group Q3 (HR =1.085, 95% CI:1.086, 3.792, p=0.009) in comparison with group Q1. The p for trend also shows a linear correlation across the three models (P < 0.001). SMOC2 was associated with the severity of HF in patients, but not with all-cause deaths and arrhythmias during follow-up. Conclusion: Plasma SMOC2 is associated with the severity of HF and readmission rate, and is a good predictor of the risk of readmission in patients.

15.
ESC Heart Fail ; 2024 May 07.
Article in English | MEDLINE | ID: mdl-38714309

ABSTRACT

AIMS: Zinc-finger protein 418 (ZNF418) has been confirmed to be expressed in myocardial tissue. However, the role and mechanism of ZNF418 in pathological myocardial remodelling after myocardial infarction (MI) have not been reported. This study was to elucidate the effect and mechanism of ZNF418 on ventricular remodelling after MI in mice. METHODS AND RESULTS: MI mice and H9c2 cardiomyocytes were used to conduct in vivo and in vitro experiments, respectively. ZNF418 expression was regulated by adeno-associated virus 9 and adenovirus vectors. Pathological analysis, echocardiography, and molecular analysis were performed. ZNF418 was down-regulated in the left ventricular tissues of post-MI mice. In contrast, ZNF418 overexpression decreased mortality and improved cardiac function in MI mice. The MI mice exhibited a significantly increased cross-sectional area of myocardial cells and elevated protein expression levels of myocardial hypertrophy markers ANP, BNP, and ß-MHC (all P < 0.05). Moreover, a significantly increased area of myocardial fibrosis and protein expression levels of myocardial fibrosis markers collagen I, collagen III, and CTGF were observed in MI mice (all P < 0.05) in MI mice. All of the above negative effects in MI mice were ameliorated in ZNF418 overexpressed mice (all P < 0.05). Mechanistically, ZNF418 overexpression inhibited the activation of the MAPK signalling pathway, as evidenced by the in vivo and in vitro experiments. CONCLUSIONS: Overexpression of ZNF418 could improve cardiac function and inhibit pathological cardiac remodelling by inhibiting the MAPK signalling pathway in post-MI mice.

16.
Korean J Radiol ; 25(6): 540-549, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38807335

ABSTRACT

OBJECTIVE: This study investigated the feasibility and prognostic relevance of threshold-based quantification of myocardial delayed enhancement (MDE) on CT in patients with nonischemic dilated cardiomyopathy (NIDCM). MATERIALS AND METHODS: Forty-three patients with NIDCM (59.3 ± 17.1 years; 21 male) were included in the study and underwent cardiac CT and MRI. MDE was quantified manually and with a threshold-based quantification method using cutoffs of 2, 3, and 4 standard deviations (SDs) on three sets of CT images (100 kVp, 120 kVp, and 70 keV). Interobserver agreement in MDE quantification was assessed using the intraclass correlation coefficient (ICC). Agreement between CT and MRI was evaluated using the Bland-Altman method and the concordance correlation coefficient (CCC). Patients were followed up for the subsequent occurrence of the primary composite outcome, including cardiac death, heart transplantation, heart failure hospitalization, or appropriate use of an implantable cardioverter-defibrillator. The Kaplan-Meier method was used to estimate event-free survival according to MDE levels. RESULTS: Late gadolinium enhancement (LGE) was observed in 29 patients (67%, 29/43), and the mean LGE found with the 5-SD threshold was 4.1% ± 3.6%. The 4-SD threshold on 70-keV CT showed excellent interobserver agreement (ICC = 0.810) and the highest concordance with MRI (CCC = 0.803). This method also yielded the smallest bias with the narrowest range of 95% limits of agreement compared to MRI (bias, -0.119%; 95% limits of agreement, -4.216% to 3.978%). During a median follow-up of 1625 days (interquartile range, 712-1430 days), 10 patients (23%, 10/43) experienced the primary composite outcome. Event-free survival significantly differed between risk subgroups divided by the optimal MDE cutoff of 4.3% (log-rank P = 0.005). CONCLUSION: The 4-SD threshold on 70-keV monochromatic CT yielded results comparable to those of MRI for quantifying MDE as a marker of myocardial fibrosis, which showed prognostic value in patients with NIDCM.


Subject(s)
Cardiomyopathy, Dilated , Contrast Media , Feasibility Studies , Fibrosis , Magnetic Resonance Imaging , Tomography, X-Ray Computed , Humans , Male , Cardiomyopathy, Dilated/diagnostic imaging , Female , Middle Aged , Prognosis , Tomography, X-Ray Computed/methods , Fibrosis/diagnostic imaging , Magnetic Resonance Imaging/methods , Myocardium/pathology , Adult , Aged
17.
Biochim Biophys Acta Mol Basis Dis ; 1870(6): 167267, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38810917

ABSTRACT

Small non-coding ribonucleic acids (sncRNAs) play an important role in cell regulation and are closely related to the pathogenesis of heart diseases. However, the role and molecular mechanism of transfer RNA-derived small RNAs (tsRNAs) in myocardial fibrosis after myocardial infarction (MI) remain unknown. In this study, we identified and validated sncRNAs (mainly miRNA and tsRNA) associated with myocardial fibrosis after MI through PANDORA sequencing of rat myocardial tissue. As a key enzyme of N4-acetylcytidine (ac4C) acetylation modification, N-acetyltransferase 10 (NAT10) plays an important role in regulating messenger RNA (mRNA) stability and translation efficiency. We found that NAT10 is highly expressed in infarcted myocardial tissue, and the results of acetylated RNA immunoprecipitation sequencing (acRIP-seq) analysis suggest that early growth response 3 (EGR3) may be an important molecule in the pathogenesis of NAT10-mediated myocardial fibrosis. Both in vivo and in vitro experiments have shown that inhibition of NAT10 can reduce the expression of EGR3 and alleviate myocardial fibrosis after MI. tsRNA can participate in gene regulation by inhibiting target genes. The expression of tsr007330 was decreased in myocardial infarction tissue. We found that overexpression of tsr007330 in rat myocardial tissue could antagonize NAT10, improve myocardial function in MI and alleviate myocardial fibrosis. In conclusion, tsRNAs (rno-tsr007330) may regulate the occurrence of myocardial fibrosis by regulating NAT10-mediated EGR3 mRNA acetylation. This study provides new insights into the improvement of myocardial fibrosis after MI by targeting tsRNA therapy.


Subject(s)
Myocardial Infarction , Animals , Myocardial Infarction/metabolism , Myocardial Infarction/genetics , Myocardial Infarction/pathology , Acetylation , Rats , Male , RNA, Messenger/genetics , RNA, Messenger/metabolism , Fibrosis/metabolism , RNA, Transfer/genetics , RNA, Transfer/metabolism , Cytidine/analogs & derivatives , Cytidine/metabolism , Myocardium/metabolism , Myocardium/pathology , Rats, Sprague-Dawley , Humans , RNA, Small Untranslated/genetics , RNA, Small Untranslated/metabolism , N-Terminal Acetyltransferases
18.
J Transl Med ; 22(1): 494, 2024 May 24.
Article in English | MEDLINE | ID: mdl-38790051

ABSTRACT

BACKGROUND: Diabetic cardiomyopathy (DCM), a serious complication of diabetes, leads to structural and functional abnormalities of the heart and ultimately evolves to heart failure. IL-37 exerts a substantial influence on the regulation of inflammation and metabolism. Whether IL-37 is involved in DCM is unknown. METHODS: The plasma samples were collected from healthy controls, diabetic patients and DCM patients, and the level of IL-37 and its relationship with heart function were observed. The changes in cardiac function, myocardial fibrosis and mitochondrial injury in DCM mice with or without IL-37 intervention were investigated in vivo. By an in vitro co-culture approach involving HG challenge of cardiomyocytes and fibroblasts, the interaction carried out by cardiomyocytes on fibroblast profibrotic activation was studied. Finally, the possible interactive mediator between cardiomyocytes and fibroblasts was explored, and the intervention role of IL-37 and its relevant molecular mechanisms. RESULTS: We showed that the level of plasma IL-37 in DCM patients was upregulated compared to that in healthy controls and diabetic patients. Both recombinant IL-37 administration or inducing IL-37 expression alleviated cardiac dysfunction and myocardial fibrosis in DCM mice. Mechanically, hyperglycemia impaired mitochondria through SIRT1/AMPK/PGC1α signaling, resulting in significant cardiomyocyte apoptosis and the release of extracellular vesicles containing mtDNA. Fibroblasts then engulfed these mtDNA-enriched vesicles, thereby activating TLR9 signaling and the cGAS-STING pathway to initiate pro-fibrotic process and adverse remodeling. However, the presence of IL-37 ameliorated mitochondrial injury by preserving the activity of SIRT1-AMPK-PGC1α axis, resulting in a reduction in release of mtDNA-enriched vesicle and ultimately attenuating the progression of DCM. CONCLUSIONS: Collectively, our study demonstrates a protective role of IL-37 in DCM, offering a promising therapeutic agent for this disease.


Subject(s)
DNA, Mitochondrial , Diabetic Cardiomyopathies , Fibrosis , Interleukin-1 , Myocytes, Cardiac , Animals , Female , Humans , Male , Mice , Middle Aged , Apoptosis/drug effects , Diabetic Cardiomyopathies/pathology , Diabetic Cardiomyopathies/metabolism , Diabetic Cardiomyopathies/drug therapy , DNA, Mitochondrial/metabolism , Fibroblasts/metabolism , Fibroblasts/drug effects , Interleukin-1/metabolism , Mice, Inbred C57BL , Myocardium/pathology , Myocardium/metabolism , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/drug effects , Myocytes, Cardiac/pathology , Signal Transduction/drug effects , Sirtuin 1/metabolism
19.
Cardiovasc Pathol ; 72: 107652, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38750778

ABSTRACT

BACKGROUND AND AIMS: Viral infections are the leading cause of myocarditis. Besides acute cardiac complications, late-stage sequelae such as myocardial fibrosis may develop, importantly impacting the prognosis. Coxsackievirus B3 (CVB)-induced myocarditis in mice is the most commonly used translational model to study viral myocarditis and has provided the majority of our current understanding of the disease pathophysiology. Nevertheless, the late stages of disease, encompassing fibrogenesis and arrhythmogenesis, have been underappreciated in viral myocarditis research to date. The present study investigated the natural history of CVB-induced myocarditis in C57BL/6J mice, expanding the focus beyond the acute phase of disease. In addition, we studied the impact of sex and inoculation dose on the disease course. METHODS AND RESULTS: C57BL/6J mice (12 weeks old; n=154) received a single intraperitoneal injection with CVB to induce viral myocarditis, or vehicle (PBS) as control. Male mice (n=92) were injected with 5 × 105 (regular dose) (RD) or 5 × 106 (high dose) (HD) plaque-forming units of CVB, whereas female mice received the RD only. Animals were sacrificed 1, 2, 4, 8, and 11 weeks after CVB or PBS injection. Virally inoculated mice developed viral disease with a temporary decline in general condition and weight loss, which was less pronounced in female animals (P<.001). In male CVB mice, premature mortality occurred between days 8 and 23 after inoculation (RD: 21%, HD: 20%), whereas all female animals survived. Over the course of disease, cardiac inflammation progressively subsided, with faster resolution in female mice. There were no substantial group differences in the composition of the inflammatory cell infiltrates: predominance of cytotoxic T cells at day 7 and 14, and a switch from arginase1-reactive macrophages to iNOS-reactive macrophages from day 7 to 14 were the main findings. There was concomitant development and maturation of different patterns of myocardial fibrosis, with enhanced fibrogenesis in male mice. Virus was almost completely cleared from the heart by day 14. Serum biomarkers of cardiac damage and cardiac expression of remodeling genes were temporarily elevated during the acute phase of disease. Cardiac CTGF gene upregulation was less prolonged in female CVB animals. In vivo electrophysiology studies at weeks 8 and 11 demonstrated that under baseline conditions (i.e. in the absence of proarrhythmogenic drugs), ventricular arrhythmias could only be induced in CVB animals. The cumulative arrhythmia burden throughout the entire stimulation protocol was not significantly different between CVB and control groups. CONCLUSION: CVB inoculation in C57BL/6J mice represents a model of acute self-limiting viral myocarditis, with progression to different patterns of myocardial fibrosis. Sex, but not inoculation dose, seems to modulate the course of disease.

20.
Eur J Pharm Sci ; 199: 106794, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38788908

ABSTRACT

Myocardial fibrosis can induce cardiac dysfunction and remodeling. Great attention has been paid to traditional chinese medicine (TCM) 's effectiveness in treating MF. Radix Angelica sinensis (Oliv.) Diels and Radix Astragalus mongholicus Bunge ultrafiltration extract (RAS-RA), which is a key TCM compound preparation, have high efficacy in regulating inflammation. However, studies on its therapeutic effect on radiation-induced myocardial fibrosis (RIMF) are rare. In this study, RAS-RA had therapeutic efficacy in RIMF and elucidated its mechanism of action. First, we formulated the prediction network that described the relation of RAS-RA with RIMF according to data obtained in different databases. Then, we conducted functional enrichment to investigate the functions and pathways associated with potential RIMF targets for RAS-RA. In vivo experiments were also performed to verify these functions and pathways. Second, small animal ultrasound examinations, H&E staining, Masson staining, transmission electron microscopy, Enzyme-linked immunosorbent assay (ELISA), Western-blotting, Immunohistochemical method and biochemical assays were conducted to investigate the possible key anti-RIMF pathway in RAS-RA. In total, 440 targets were detected in those 21 effective components of RAS-RA; meanwhile, 1,646 RIMF-related disease targets were also discovered. After that, PPI network analysis was conducted to identify 20 key targets based on 215 overlap gene targets. As indicated by the gene ontology (GO) and kyoto encyclopedia of genes and genomes (KEGG) analysis results, inflammation and PI3K/AKT/mTOR pathways might have important effects on the therapeutic effects on RIMF. Molecular docking analysis revealed high binding of effective components to targets (affinity < -6 kcal/mol). Based on experimental verification results, RAS-RA greatly mitigated myocardial fibrosis while recovering the cardiac activity of rats caused by X-rays. According to relevant protein expression profiles, the PI3K/AKT/mTOR pathway was important for anti-fibrosis effect of RAS-RA. Experimental studies showed that RAS-RA improved cardiac function, decreased pathological damage and collagen fiber deposition in cardiac tissues, and improved the mitochondrial structure of the heart of rats. RAS-RA also downregulated TNF-α, IL-6, and IL-1ß levels. Additionally, RAS-RA improved the liver and kidney functions and pathological injury of rat kidney and liver tissues, enhanced liver and kidney functions, and protected the liver and kidneys. RAS-RA also increased PI3K, AKT and mTOR protein levels within cardiac tissues and downregulated α-SMA, Collagen I, and Collagen III. The findings of this study suggested that RAS-RA decreased RIMF by suppressing collagen deposition and inflammatory response by inhibiting the PI3K/AKT/mTOR pathway. Thus, RAS-RA was the potential therapeutic agent used to alleviate RIMF.


Subject(s)
Angelica sinensis , Drugs, Chinese Herbal , Fibrosis , Network Pharmacology , Rats, Sprague-Dawley , Animals , Angelica sinensis/chemistry , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/chemistry , Male , Rats , Astragalus Plant/chemistry , Myocardium/pathology , Myocardium/metabolism , Ultrafiltration/methods , Signal Transduction/drug effects , Cardiomyopathies/drug therapy , Cardiomyopathies/etiology , Cardiomyopathies/metabolism , TOR Serine-Threonine Kinases/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...