Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Language
Publication year range
1.
Int J Food Microbiol ; 411: 110520, 2024 Feb 02.
Article in English | MEDLINE | ID: mdl-38141353

ABSTRACT

Small pelagic fishes represent one of the most important food resources off the Northwest coast of Africa. Despite their economic significance, little is known about the infections with flesh invading myxosporean parasites of genus Kudoa (Cnidaria, Myxozoa). Heavy infections in the flesh may be associated with post-mortem myoliquefaction, commonly known as 'soft flesh'. This condition may reduce the quality and marketability of the fish fillet, resulting in both economic losses to the fishing industry and loss of consumer confidence. In this study, we investigated Kudoa-induced 'soft flesh' occurrence in European anchovy Engraulis encrasicolus, European pilchard Sardina pilchardus, and Atlantic chub mackerel Scomber colias caught in 2019 off the Moroccan Atlantic coast. Five hundred specimens of each fish species were examined for 'soft flesh' by texture testing and visual inspection 48 h post-catch. 'Soft flesh' occurred in 0.2 % of the European anchovies, 1.4 % of the European pilchard, and in 4.4 % of the Atlantic chub mackerel. Microscopic examination of muscle samples revealed that 'soft flesh'-affected fish were infected with myxospores of K. thyrsites-like morphotype. Analysis of the kudoid SSU rDNA sequence obtained from European pilchard and the Atlantic chub mackerel identified these as K. thyrsites (100 % identity), whereas analysis of the sequence from European anchovy identified the presence of K. encrasicoli (100 % identity). Even if there are no known human health consequences associated with the ingestion of these Kudoa species, the unsightly appearance of some infected fillets is a food quality issue, that can eventually lead to reduced marketability and value.


Subject(s)
Fish Diseases , Myxozoa , Parasites , Perciformes , Animals , Humans , Myxozoa/genetics , Parasites/genetics , Morocco , Muscles/parasitology , DNA, Ribosomal/genetics , Perciformes/parasitology , Fish Diseases/parasitology , Phylogeny
2.
Parasitol Res ; 121(8): 2325-2336, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35716177

ABSTRACT

Kudoa thyrsites is a myxosporean parasite (Cnidaria, Myxozoa) that infects the skeletal and cardiac muscle of Northeast Atlantic (NEA) mackerel (Scomber scombrus). Heavy infections are associated with post-mortem myoliquefaction of the host skeletal muscle which reduces the quality of the fish product. The biological infection characteristics of the parasite in NEA mackerel are poorly known. This study examined the distribution of K. thyrsites in various organs of NEA mackerel from the northern North Sea, and elucidates the relationship between density of infection, developmental stage and parasite distribution in the musculature, and the extent of visible flesh myoliquefaction. Quantitative polymerase chain reaction (qPCR) data showed that K. thyrsites is unevenly distributed in the somatic musculature of the fish host, with highest density in the anterior ventral muscle sections-the belly flaps. A weak positive correlation was observed between the level of myoliquefaction and the parasite density in the fish host muscle. This relationship was also reflected by the amount and distribution of parasite developmental stages seen during histological examinations. Histological findings indicate an association between the dispersion of free myxospores and the level of myoliquefaction of the fish host muscle. Visceral organs were also found infected using qPCR, although at lower densities compared to the musculature.


Subject(s)
Cnidaria , Fish Diseases , Myxozoa , Perciformes , Animals , Fish Diseases/parasitology , Fishes , Muscle, Skeletal/parasitology , Myxozoa/genetics , Phylogeny
3.
Parasitol Res ; 120(7): 2493-2503, 2021 Jul.
Article in English | MEDLINE | ID: mdl-34115215

ABSTRACT

Recent anecdotal reports from seafood processors in eastern Australia have described an increased occurrence of post-mortem myoliquefaction ('jellymeat') in broadbill swordfish Xiphias gladius, and macroscopic cysts throughout the musculature of yellowfin tuna Thunnus albacares. A genus of parasitic cnidarians, Kudoa (Myxosporea, Multivalvulida), species of which are known to occur in economically important wild-caught fish species globally, can cause similar quality-deterioration issues. However, Kudoa sp. epizootiology within commercially harvested, high-value fish caught within Australia is poorly understood, despite the parasite's economic importance. To determine the causative agent responsible for the observed quality deterioration in swordfish and yellowfin tuna, muscle-tissue samples from seafood processors in Mooloolaba, Australia, collected from October 2019-February 2020, were examined for parasitic infection. Kudoid myxospores were identified from both hosts and were subquadrate in shape, with four equal-sized polar capsules. The SSU rDNA sequences from both fish shared > 99% identity to Kudoa species. Kudoa musculoliquefaciens was isolated from 87.1% of swordfish sampled, suggesting that it is a widespread parasite in swordfish from the southwest Pacific Ocean. This study provides the first molecular and morphological characterisation of Kudoa thunni in yellowfin tuna and K. musculoliquefaciens in swordfish harvested from the waters of eastern Australia, expanding the geographical distribution of K. thunni and K. musculoliquefaciens to include the Coral and Tasman Seas. We demonstrate that not all infected swordfish progress to jellymeat, show the usefulness of molecular tools for reliably identifying infection by Kudoa spp., and add to the overall knowledge of kudoid epizootiology in wild-caught fish.


Subject(s)
Fishes/parasitology , Myxozoa/classification , Tuna/parasitology , Animals , Australia , DNA, Ribosomal/genetics , Fish Diseases/epidemiology , Fish Diseases/parasitology , Muscles/parasitology , Myxozoa/anatomy & histology , Myxozoa/genetics , Pacific Ocean , Parasitic Diseases, Animal/epidemiology , Parasitic Diseases, Animal/parasitology , Phylogeny , RNA, Ribosomal, 18S/genetics , RNA, Ribosomal, 28S/genetics , Seafood/parasitology , Species Specificity
4.
Microorganisms ; 8(9)2020 Sep 04.
Article in English | MEDLINE | ID: mdl-32899760

ABSTRACT

Myxosporean parasites of the genus Kudoa are fish parasites of great economic importance, as some species can affect the fish fillet quality by producing macroscopic cysts or generating post mortem myoliquefaction, commonly referred to as 'soft flesh'. Kudoa mirabilis is a 'soft flesh'-inducing species originally described based on morphology in the musculature of Trichiurus lepturus from the Indian Ocean. An integrative morphological and genetic characterization of K. mirabilis from the type host caught off the coast of Tanzania is here provided. The spores were stellate with four unequal polar capsules, showing similarities to Kudoa thyrsites. For comparative and validation purpose, K. mirabilis was compared morphologically and genetically with K. thyrsites reference isolates, including new obtained samples from the type host Thyrsites atun caught in the SE Atlantic Ocean. Morphological analyses of spores revealed key diagnostic characters clearly distinguishing the two Kudoa species. Phylogenetic analyses based on SSU and LSU rRNA genes demonstrated that K. mirabilis is a distinct and valid species, representing a sister group to a K. thyrsites subclade that comprises several isolates from Japan and one single isolate from South Africa. This finding raises questions about the true diversity likely hidden in the K. thyrsites complex.

5.
Dis Aquat Organ ; 132(2): 125-134, 2019 Jan 10.
Article in English | MEDLINE | ID: mdl-30628578

ABSTRACT

Myxozoans of the genus Kudoa (Myxosporea, Multivalvulida) infect marine and estuarine fish species worldwide. Some Kudoa species are of concern to the seafood industry since they may generate macroscopic cysts in the fish host's musculature, or cause post mortem myoliquefaction, commonly known as 'soft flesh'. One of the economically most important species is K. thyrsites, a myoliquefactive myxosporean parasite that occurs in many wild and cultured marine fish species worldwide. Here we identified a K. thyrsites isolate as the causative agent of myoliquefaction in silver scabbardfish Lepidopus caudatus from the Alboran Sea (western Mediterranean Sea). For comparative and validation purposes, the morphological and molecular characteristics of the isolate were compared with fresh spores of a K. thyrsites isolate infecting Atlantic mackerel Scomber scombrus from the Norwegian Sea. Myxospores of both isolates shared a stellate appearance and contained 4 unequal pyriform polar capsules (1 large, 1 small and 2 intermediate). These morphological traits were consistent with all other previously described K. thyrsites isolates. Moreover, the small subunit rDNA sequences of the Mediterranean and Norwegian Sea isolates revealed 100% similarity, and matched 100% with K. thyrsites isolates previously recorded in myoliquefactive Atlantic mackerel from the North Sea and off southern England. The findings suggest that K. thyrsites is the primary cause of myoliquefaction in silver scabbardfish from the Alboran Sea. This report represents the first morphological and molecular characterization of K. thyrsites in the Mediterranean Sea. A set of new allometric characters is proposed as additional descriptors for more accurate and specific description of kudoid myxospores.


Subject(s)
Fish Diseases , Myxozoa , Perciformes , Animals , DNA, Ribosomal , England , Mediterranean Sea , North Sea , Phylogeny , Silver
6.
Infect Immun ; 86(1)2018 01.
Article in English | MEDLINE | ID: mdl-28993459

ABSTRACT

The histozoic myxozoan parasite Kudoa thyrsites causes postmortem myoliquefaction and is responsible for economic losses to salmon aquaculture in the Pacific Northwest. Despite its importance, little is known about the host-parasite relationship, including the host response to infection. The present work sought to characterize the immune response in Atlantic salmon during infection, recovery, and reexposure to K. thyrsites After exposure to infective seawater, infected and uninfected smolts were sampled three times over 4,275 degree-days. Histological analysis revealed infection severity decreased over time in exposed fish, while in controls there was no evidence of infection. Following a secondary exposure of all fish, severity of infection in the controls was similar to that measured in exposed fish at the first sampling time but was significantly reduced in reexposed fish, suggesting the acquisition of protective immunity. Using immunohistochemistry, we detected a population of MHIIß+ cells in infected muscle that followed a pattern of abundance concordant with parasite prevalence. Infiltration of these cells into infected myocytes preceded destruction of the plasmodium and dissemination of myxospores. Dual labeling indicated a majority of these cells were CD83+/MHIIß+ Using reverse transcription-quantitative PCR, we detected significant induction of cellular effectors, including macrophage/dendritic cells (mhii/cd83/mcsf), B cells (igm/igt), and cytotoxic T cells (cd8/nkl), in the musculature of infected fish. These data support a role for cellular effectors such as antigen-presenting cells (monocyte/macrophage and dendritic cells) along with B and T cells in the acquired protective immune response of Atlantic salmon against K. thyrsites.


Subject(s)
Adaptive Immunity/immunology , Antigen-Presenting Cells/immunology , Antigens, CD/immunology , Immunoglobulins/immunology , Membrane Glycoproteins/immunology , Myxozoa/immunology , Salmo salar/immunology , Salmo salar/parasitology , Salmon/immunology , Salmon/parasitology , Animals , Antigen-Presenting Cells/parasitology , Aquaculture/methods , B-Lymphocytes/immunology , B-Lymphocytes/parasitology , Dendritic Cells/immunology , Dendritic Cells/parasitology , Fish Diseases/immunology , Fish Diseases/parasitology , Host-Parasite Interactions/immunology , Macrophages/immunology , Macrophages/parasitology , Muscle Cells/immunology , Muscle Cells/parasitology , Muscle, Skeletal/immunology , Muscle, Skeletal/parasitology , Parasitic Diseases, Animal/immunology , Parasitic Diseases, Animal/parasitology , T-Lymphocytes/immunology , T-Lymphocytes/parasitology , CD83 Antigen
7.
Arq. bras. med. vet. zootec. (Online) ; 69(6): 1601-1606, nov.-dez. 2017. ilus, tab
Article in English | LILACS, VETINDEX | ID: biblio-910785

ABSTRACT

This study describes aspects of infections caused by the myxosporidian Kudoa orbicularis in filter-feeding cichlids, Chaetobranchopsis orbicularis, caught in the Arari River in the municipality of Cachoeira do Arari, on Marajó Island, Pará, Brazil. The parasite forms pseudocysts scattered throughout the striated epaxial and hypaxial muscles. Samples embedded in paraffin were analyzed histologically using hematoxylin-eosin, Gömöri, Ziehl-Neelsen, and Giemsa staining. Necropsy of the C. orbicularis specimens revealed that 100% (50/50) were infected with K. orbicularis. The specimens presented grossly abnormal muscle texture, resulting in extensive inconsistencies and weakness. Progressive softening of the muscles was observed during necropsy, indicating the rapid enzymatic autolysis of the tissue. The parasite found in the muscle tissue of C. orbicularis was identified as K. orbicularis, with clinical signs of disease being observed in the fish. The necropsy revealed extensive damage to the host organism, with well-established fibrocystic infections in the muscle fibers, associated with post mortem myoliquefaction.(AU)


O presente estudo descreve os aspectos histopatológicos de infecção causada por mixosporídio da espécie Kudoa orbicularis, o qual forma pseudocistos dispersos em toda a musculatura estriada esquelética, epi e hipoaxial, de Chaetobranchopsis orbicularis, capturados no Rio Arari, município de Cachoeira do Arari, Ilha do Marajó, Pará. Foram realizadas as técnicas histológicas de impregnação em parafina, utilizando-se as colorações de hematoxilina-eosina, Gomori, Ziehl-Neelsen e Giemsa. As análises necroscópicas dos espécimes de C. orbicularis revelaram 100% (50/50) de infecção por K. orbicularis. Os espécimes apresentavam macroscopicamente musculatura com características anormais de textura, se mostrava inconsistente e frágil. Durante a necropsia, pôde ser observado um progressivo amolecimento da musculatura, o que demonstra um rápido processo enzimático autolítico. Com base nos achados descritos neste trabalho, caracterizou-se uma infecção da musculatura de C. orbicularis por K.orbicularis, com demonstração de sinais clínicos de doença no peixe; os achados necroscópicos mostraram danos ao organismo hospedeiro, com instalação de infecção fibrosística nas fibras musculares, associada com uma mioliquefação post mortem.(AU)


Subject(s)
Animals , Liquefaction , Muscles/injuries , Myxozoa , Perciformes/injuries
8.
J Fish Dis ; 39(8): 929-46, 2016 Aug.
Article in English | MEDLINE | ID: mdl-26661293

ABSTRACT

Kudoa thyrsites (Myxozoa) encysts within myocytes of a variety of fishes. While infected fish appear unharmed, parasite-derived enzymes degrade the flesh post-mortem. In regions of British Columbia (BC), Canada, up to 4-7% of fillets can be affected, thus having economic consequences and impacting the competitiveness of BC's farms. K. thyrsites was monitored in two farms having high (HP) or low (LP) historical infection prevalence. At each farm, 30 fish were sampled monthly for blood and muscle during the first year followed by nine samplings during year two. Prevalence and intensity were measured by PCR and histology of muscle samples. In parallel, fillet tests were used to quantify myoliquefaction. Infections were detected by PCR after 355 and 509 degree days at LP and HP farms, respectively. Prevalence reached 100% at the HP farm by 2265 degree days and declined during the second year, whereas it plateaued near 50% at the LP farm. Infection intensities decreased after 1 year at both farms. Blood was PCR-positive at both farms between 778 and 1113 degree days and again after 2000 degree days. This is the first monitoring project in a production environment and compares data between farms with different prevalence.


Subject(s)
Aquaculture , Fish Diseases/epidemiology , Myxozoa/physiology , Parasitemia/veterinary , Parasitic Diseases, Animal/epidemiology , Salmo salar , Animals , British Columbia/epidemiology , Female , Fish Diseases/parasitology , Geography , Male , Muscles/parasitology , Myxozoa/genetics , Parasitemia/epidemiology , Parasitemia/parasitology , Parasitic Diseases, Animal/parasitology , Polymerase Chain Reaction/veterinary , Prevalence , Seasons
9.
Int J Parasitol Parasites Wildl ; 3(2): 135-46, 2014 Aug.
Article in English | MEDLINE | ID: mdl-25161912

ABSTRACT

In the early 2000s, experimental rearing of spotted wolffish, Anarhichas minor, was started in Iceland. Health surveillance, carried out at regular intervals during the rearing period, revealed persistent and highly prevalent Kudoa infections of fish muscles which caused great financial losses due to post mortem myoliquefaction. In addition, during the traditional process of drying and smoking wild Atlantic lumpfish, Cyclopterus lumpus, the muscles from some fish almost completely disappear and the fish have to be discarded. To describe the etiological agent responsible for these conditions, spotted wolffish, Atlantic wolffish Anarhichas lupus, northern wolffish Anarhichas denticulatus and Atlantic lumpfish were caught off the Icelandic coast and examined for the presence of Kudoa. We describe a novel myxosporean, Kudoa islandica n. sp., using morphological and molecular data, and show with histopathology that it causes extensive myoliquefaction in three different wild fish hosts, which all are commercially valuable species in Iceland. Although some spore dimensions varied significantly between fish species, the molecular analyses showed that the same parasite was responsible for infection in all fish. The northern wolffish was not found to be infected. Although robustly placed in the Kudoa clade in phylogenetic analyses, K. islandica was phylogenetically distinct from other kudoids. A single myxosporean, K. islandica, is responsible for the infections in the somatic muscles of lumpfish and wolffish, causing extensive post mortem myoliquefaction. This myxosporean is likely to infect other fish species and it is important to study its life cycle in order to evaluate any threat to salmonid culture via the use of lumpfish as a biocontrol for sea lice.

SELECTION OF CITATIONS
SEARCH DETAIL
...