ABSTRACT
Oocysts of the protozoan Toxoplasma gondii are found in felid feces and can be washed into coastal waters, where they persist for months, attaching to algae and accumulating in invertebrates. We used wild bivalves to assess contamination of coastal waters of the Kerguelen and Galapagos archipelagos by this zoonotic parasite. Additionally, we leveraged the contrasting situations of these archipelagos to identify some potential drivers of contamination. In the Galapagos, with a cat density reaching 142 per km2, 15.38% of the sampled oysters (Saccostrea palmula) tested positive for T. gondii by quantitative real-time PCR (qPCR) (n = 260), and positive samples were found in all eight sampling sites. In Kerguelen, with 1-3 cats per km2, 40.83% of 120 tested mussels (Mytilus edulis platensis) were positive, and positive samples were found in four out of the five sampling sites. These findings provide evidence of T. gondii contamination in the coastal waters of these archipelagos. Furthermore, T. gondii-positive bivalves were found on islands located 20 km away (Galapagos) and 5 km away (Kerguelen) from the nearest cat population, indicating that T. gondii oocysts can disperse through waterborne mechanisms over several kilometers from their initial deposition site. In the Galapagos, where runoff is infrequent and all sites are exposed to currents, the prevalence of qPCR-positive bivalves did not show significant variations between sites (p = 0.107). In Kerguelen where runoff is frequent and site exposure variable, the prevalence varied significantly (p < 0.001). The detection of T. gondii in Kerguelen mussels was significantly correlated with the site exposure to currents (odds ratio (OR) 60.2, p < 0.001) and the on-site density of giant kelp forests (OR 2.624, p < 0.001). This suggests that bivalves can be contaminated not only by oocysts transported by currents but also by consuming marine aggregates containing oocysts that tend to form in kelp forests.
Subject(s)
Kelp , Toxoplasma , Animals , Toxoplasma/genetics , Toxoplasma/isolation & purification , Cats/parasitology , Chile , Bivalvia/parasitology , Toxoplasmosis, Animal/parasitology , Real-Time Polymerase Chain ReactionABSTRACT
The genetic characteristics of invasive species have a significant impact on their ability to establish and spread. The blue mussel (Mytilus galloprovincialis), native to the Mediterranean Sea, is a leading invasive species of intertidal coasts throughout much of the world. Here, we used mitochondrial DNA sequence data to investigate the genetic diversity and phylogeographic structure of invasive (M. galloprovincialis) versus native (Mytilus chilensis) populations of blue mussels in Chile. We evaluated whether genetic diversity in invasive populations could be explained by the genetic characteristics of the native sources from which they might be derived. A phylogenetic analysis confirmed two lineages of the invasive M. galloprovincialis, i.e., the NW Atlantic and the Mediterranean lineages. We found no evidence of genetic structure in the invasive range of M. galloprovincialis in Chile, most probably because of its recent arrival. We did, however, detect a spatial mixture of both M. galloprovincialis lineages at sampling locations along the Chilean coast, giving rise to higher levels of genetic diversity in some areas compared to the population of native M. chilensis. The coastal area of the invasion is still small in extent (~100 km on either side of two large ports), which supports the hypothesis of a recent introduction. Further expansion of the distribution range of M. galloprovincialis may be limited to the north by increasing water temperatures and to the south by a natural biogeographic break that may slow or perhaps stop its spread. The use of internal borders as a tool to minimise or prevent M. galloprovincialis spread is therefore a genuine management option in Chile but needs to be implemented rapidly.
ABSTRACT
Transmissible cancers, in which cancer cells themselves act as an infectious agent, have been identified in Tasmanian devils, dogs, and four bivalves. We investigated a disseminated neoplasia affecting geographically distant populations of two species of mussels (Mytilus chilensis in South America and M. edulis in Europe). Sequencing alleles from four loci (two nuclear and two mitochondrial) provided evidence of transmissible cancer in both species. Phylogenetic analysis of cancer-associated alleles and analysis of diagnostic SNPs showed that cancers in both species likely arose in a third species of mussel (M. trossulus), but these cancer cells are independent from the previously identified transmissible cancer in M. trossulus from Canada. Unexpectedly, cancers from M. chilensis and M. edulis are nearly identical, showing that the same cancer lineage affects both. Thus, a single transmissible cancer lineage has crossed into two new host species and has been transferred across the Atlantic and Pacific Oceans and between the Northern and Southern hemispheres.
Subject(s)
Aquatic Organisms , Mytilus , Neoplasms/veterinary , Alleles , Animals , Europe/epidemiology , Neoplasms/epidemiology , Neoplasms/pathology , Phylogeny , Polymorphism, Single Nucleotide , Sequence Analysis, DNA , South America/epidemiologyABSTRACT
The objective of this study was to evaluate the bone repair of critical size defects treated with mussel powder with or without additional bovine bone. Critical size defects of 5 mm were realized in the calvaria of 70 rats, which were randomly divided in 5 groups - Control (C), Autogenous Bone (AB), Mussel Powder (MP), Mussel Powder and Bovine Bone (MP-BB) and Bovine Bone (BB). Histological and histomorphometric analysis were performed 30 and 90 days after the surgical procedures (ANOVA e Tukey p < 0.05). After 30 days, the measures of remaining particles were: 28.36% (MP-BB), 26.63% (BB) and 8.64% (MP) with a statistically significant difference between BB and MP. The percentage of osseous matrix after 30 days was, AB (55.17%), 23.31% (BB), 11.66% (MP) and 10.71% (MP-BB) with statistically significant differences among all groups. After 90 days the figures were 25.05% (BB), 21.53% (MP-BB) and 1.97% (MP) with statistically significant differences between MP-BB and MP. Percentages of new bone formation after 90 days were 89.47% (AB), 35.70% (BB), 26.48% (MP-BB) and 7.37% (MP) with statistically significant differences between AB and the other groups. Within the limits of this study, we conclude that mussel powder, with or without additional bovine bone, did not induce new bone formation and did not repair critical size defects in rat calvaria.