Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters











Language
Publication year range
1.
World J Microbiol Biotechnol ; 35(8): 114, 2019 Jul 22.
Article in English | MEDLINE | ID: mdl-31332537

ABSTRACT

N-acetyl-D-glucosamine (GlcNAc) is an important amino-monosaccharide with great potential for biotechnological applications. It has traditionally been produced by the chemical hydrolysis of chitin, despite certain industrial and environmental drawbacks, including acidic wastes, low yields and high costs. Therefore, enzymatic production has gained attention as a promising environmentally-friendly alternative to the chemical processes. In this study we demonstrate the GlcNAc bioproduction from colloidal α-chitin using an enzyme cocktail containing endochitinases and exochitinases (chitobiosidases and N-acetyl-glucosaminidases). The enzyme cocktail was extracted after fermentation in a bioreactor by Aeromonas caviae CHZ306, a chitinolytic marine bacterium with great potential for chitinase production. Hydrolysis parameters were studied in terms of temperature, pH, enzyme and substrate concentration, and reaction time, achieving over 90% GlcNAc yield within 6 h. The use of colloidal α-chitin as substrate showed a substantial improvement of GlcNAc yields, when compared with ß-chitin and α-chitin polymorphs. Such result is directly related to a significant decrease in crystallinity and viscosity from natural α-chitin, providing the chitinase with greater accessibility to the depolymerized chains. This study provides valuable information on the GlcNAc bioproduction from chitin using an enzymatic approach, addressing the key points for its production, including the enzyme cocktail composition and the substrate structures.


Subject(s)
Acetylglucosamine/biosynthesis , Aeromonas caviae/enzymology , Chitin/metabolism , Chitinases/metabolism , Culture Media/chemistry , Hydrogen-Ion Concentration , Hydrolysis , Magnetic Resonance Spectroscopy , Molecular Weight , Temperature , Viscosity , X-Ray Diffraction
2.
Electron. j. biotechnol ; Electron. j. biotechnol;30: 77-82, nov. 2017. tab, graf
Article in English | LILACS | ID: biblio-1021550

ABSTRACT

Background: Mucor indicus is a dimorphic fungus used in the production of ethanol, oil, protein, and glucosamine. It can ferment different pentoses and hexoses; however, the yields of products highly depend on the nutrients and cultivation conditions. In this study, the effects of different morphologic forms, cultivation time and temperature, presence or absence of oxygen, carbon sources, and concentration of nitrogen source on the products of M. indicus were investigated. Results: The fungus with all morphologies produced high yields of ethanol, in the range of 0.32­0.43 g/g, on glucose. However, the fungus with filamentous morphology produced higher amounts of oil, protein, phosphate, and glucosamine together with ethanol, compared with other morphologies. A higher amount of oil (0.145 g/g biomass) was produced at 28°C, while the best temperature for protein and glucosamine production was 32 and 37°C, respectively. Although ethanol was produced at a higher yield (0.44 g/g) under anaerobic conditions compared with aerobic conditions (yield of 0.41 g/g), aerobic cultivation resulted in higher yields of protein (0.51 g/g biomass), glucosamine (0.16 g/g alkali insoluble material, AIM), and phosphate (0.11 g/g AIM). Conclusions: It is not possible to have the maximum amounts of the products simultaneously. The fermentation conditions and composition of culture media determine the product yields. Carbon source type and the addition of nitrogen source are among the most influencing factors on the product yields. Moreover, all measured products were made with higher yields in cultivation on glucose, except glucosamine, which was produced with higher yields on xylose.


Subject(s)
Ethanol/metabolism , Mucor/metabolism , Temperature , Time Factors , Oils/metabolism , Carbon/metabolism , Biomass , Aerobiosis , Culture Media , Fermentation , Glucosamine/metabolism , Glucose , Anaerobiosis , Nitrogen/metabolism
3.
World J Microbiol Biotechnol ; 33(11): 201, 2017 Oct 27.
Article in English | MEDLINE | ID: mdl-29080074

ABSTRACT

N-Acetyl-D-glucosamine (GlcNAc) is a monosaccharide with great application potential in the food, cosmetic, pharmaceutical, and biomaterial areas. GlcNAc is currently produced by chemical hydrolysis of chitin, but the current processes are environmentally unfriendly, have low yield and high cost. This study demonstrates the potential to produce GlcNAc from α-chitin using chitinases of ten marine-derived Aeromonas isolates as a sustainable alternative to the current chemical process. The isolates were characterized as Aeromonas caviae by multilocus sequence analysis (MLSA) using six housekeeping genes (gltA, groL, gyrB, metG, ppsA, and recA), not presented the virulence genes verified (alt, act, ast, ahh1, aer, aerA, hlyA, ascV and ascFG), but showed hemolytic activity on blood agar. GlcNAc was produced at 37 °C, pH 5.0, 2% (w/v) colloidal chitin and crude chitinase extracts (0.5 U mL-1) by all the isolates with yields from 14 to 85% at 6 h, 17-89% at 12 h and 19-93% after 24 h. The highest yield of GlcNAc was observed by A. caviae CH129 (93%). This study demonstrates one of the most efficient chitin enzymatic hydrolysis procedures and A. caviae isolates with great potential for chitinases expression and GlcNAc production.


Subject(s)
Acetylglucosamine/biosynthesis , Aeromonas caviae/isolation & purification , Chitin/metabolism , Chitinases/metabolism , Aeromonas caviae/enzymology , Aeromonas caviae/metabolism , Animals , Bacterial Proteins/metabolism , Seawater/microbiology , Zooplankton/microbiology
4.
Inflamm Res ; 65(1): 43-52, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26546610

ABSTRACT

OBJECTIVE AND DESIGN: This study had investigated the anti-inflammatory activity of a seed lectin (LAL) isolated from Lonchocarpus araripensis. MATERIAL/METHODS: LAL was purified by affinity chromatography (chitin column) and ion exchange chromatography (DEAE-Sephacel). In vitro LAL was tested for hemagglutinating activity against rabbit erythrocytes. In vivo LAL was assessed for the anti-inflammatory activity via intravenous injection (i.v.) in Swiss mice (25-30 g; n = 6/group) in models of paw edema and peritonitis. STATISTICAL ANALYSIS: ANOVA (p < 0.05). RESULTS: LAL revealed two bands of 30 and 60 kDa (SDS-PAGE) and exhibited hemagglutinating activity. LAL (10 mg/kg) inhibited the paw edema (77%) and vascular permeability (26%) induced by carrageenan, and the paw edema induced by serotonin (80%), bradykinin (49%), sodium nitroprusside (83%), TNF-α (75%) and PGE2 (64%). LAL also inhibited the neutrophil migration induced by fMLP (70%) or carrageenan (69%). The intravital microscopy showed that LAL inhibited rolling (83%) and adhesion (70%) of leukocytes. LAL anti-inflammatory effect was reversed by its association with N-acetyl-glucosamine. The nine-daily treatment with LAL (10 mg/kg; i.v.) showed no toxicity. CONCLUSION: The novel N-acetyl-D-glucosamine-binding lectin isolated from L. araripensis seeds presents anti-inflammatory effect involving the lectin domain and the inhibition of 5-HT, BK, PGE2, NO, TNF-α and leukocyte rolling and adhesion.


Subject(s)
Acetylglucosamine/pharmacology , Anti-Inflammatory Agents/pharmacology , Fabaceae/chemistry , Inflammation/prevention & control , Lectins/pharmacology , Animals , Capillary Permeability/drug effects , Edema/chemically induced , Edema/prevention & control , Erythrocytes/drug effects , Hemagglutination/drug effects , In Vitro Techniques , Inflammation/pathology , Male , Mice , Peritonitis/chemically induced , Peritonitis/prevention & control , Rabbits , Seeds/chemistry
5.
Article in English | MEDLINE | ID: mdl-24291422

ABSTRACT

Snails from the genus Pomacea lay conspicuous masses of brightly colored eggs above the water. Coloration is given by carotenoproteins that also which play important roles in protection against sun radiation, stabilizing and transporting antioxidant molecules and helping to protect embryos from desiccation and predators. They seem a key acquisition, but have been little studied. Here we report the characteristics of the major carotenoprotein from Pomacea maculata and the first comparison among these egg proteins. This particle, hereafter PmPV1, represents ~52% of perivitellin fluid protein. It is a glyco-lipo-carotenoprotein responsible for the bright reddish egg coloration. With VHDL characteristics, PmPV1 apparent molecular mass is 294kDa, composed of five non-covalently bound subunits of pI 4.7-9.8 and masses between 26 and 36kDa whose N-terminal sequences were obtained. It is a glyco-lipo-carotenoprotein scarcely lipidated (<1%) but highly glycosilated (13% by wt). Lipids include phospholipids, free fatty acids and carotenoids; mannose and galactose predominate over other monosaccharides. Main carotenoids are esterified and non-esterified astaxanthin (71 and 25%, respectively). Carotenoid removal does not seem to affect the structural characteristics of the oligomer, while deglycosilation reduces subunit number from five to a single one. The carotenoid-protein association protected the former against oxidation. PmPV1 cross reacts with polyclonal antibodies against the PcOvo, the major carotenoprotein from Pomacea canaliculata. The characterization of PmPV1 allows the first comparisons among snail carotenoproteins and further highlights the importance of these perivitellins in the reproductive strategy of Pomacea.


Subject(s)
Carotenoids/chemistry , Egg Proteins/chemistry , Snails/metabolism , Animals , Carotenoids/metabolism , Egg Proteins/metabolism , Introduced Species
SELECTION OF CITATIONS
SEARCH DETAIL