Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 25
Filter
Add more filters











Publication year range
1.
Structure ; 2024 Aug 23.
Article in English | MEDLINE | ID: mdl-39208793

ABSTRACT

N-myristoyltransferases (NMTs) catalyze essential acylations of N-terminal alpha or epsilon amino groups of glycines or lysines. Here, we reveal that peptides tightly fitting the optimal glycine recognition pattern of human NMTs are potent prodrugs relying on a single-turnover mechanism. Sequence scanning of the inhibitory potency of the series closely reflects NMT glycine substrate specificity rules, with the lead inhibitor blocking myristoylation by NMTs of various species. We further redesigned the series based on the recently recognized lysine-myristoylation mechanism by taking advantage of (1) the optimal peptide chassis and (2) lysine side chain mimicry with unnatural enantiomers. Unlike the lead series, the inhibitory properties of the new compounds rely on the protonated state of the side chain amine, which stabilizes a salt bridge with the catalytic base at the active site. Our study provides the basis for designing first-in-class NMT inhibitors tailored for infectious diseases and alternative active site targeting.

2.
Methods Enzymol ; 686: 67-97, 2023.
Article in English | MEDLINE | ID: mdl-37532409

ABSTRACT

Regulated protein degradation controls protein levels of all short-lived proteins to ensure cellular homeostasis and also protects cells from misfolded or other abnormal proteins. The most important players in the degradation system are E3 ubiquitin ligases which recognize exposed sequence motifs, so-called degrons, of target proteins and mark them through the attachment of ubiquitin for degradation. N-terminal (Nt) sequences are extensively used as degrons (N-degrons) and all 20 amino acids are able to feed proteins in 1 of the 5 known N-degron pathways. Studies have mainly focused on characterizing systematically the role of the starting amino acid on protein stability and less on the identification of the E3 ligases involved. Recent data from our lab and literature suggest that there is an extensive interplay of N-recognins and Nt-modifying enzymes like Nt-acetyltransferases (NATs) or N-myristoyltransferases which only starts to be elucidated. It suggests that improperly modified or unexpectedly unmodified proteins become rapidly removed after synthesis ensuring protein maturation and quality control of specific subsets of proteins. Here, we describe a peptide pull-down and down-stream bioinformatics workflow conducted in the MaxQuant and Perseus computational environment to identify N-recognin candidates in an unbiased way using quantitative mass spectrometry (MS)-based proteomics. Our workflow allows the identification of N-recognin candidates for specific N-degrons, to determine their sequence specificity and it can be applied as well more general to identify binding partners of N-terminal modifications. This method paves the way to identify pathways involved in protein quality control and stability acting at the N-terminus.


Subject(s)
Peptides , Ubiquitin-Protein Ligases , Peptides/chemistry , Proteolysis , Ubiquitin-Protein Ligases/metabolism , Ubiquitin/metabolism , Mass Spectrometry
3.
ACS Synth Biol ; 12(7): 1935-1942, 2023 07 21.
Article in English | MEDLINE | ID: mdl-37328154

ABSTRACT

The N-terminal modification of nascent proteins, such as acetylation and myristoylation, is one of the most abundant post-translational modifications. To analyze the function of the modification, it is important to compare the modified and unmodified proteins under defined conditions. However, it is technically difficult to prepare unmodified proteins because cell-based systems contain endogenous modification systems. In this study, we developed a cell-free method to conduct N-terminal acetylation and myristoylation of nascent proteins in vitro using a reconstituted cell-free protein synthesis system (PURE system). Proteins synthesized using the PURE system were successfully acetylated or myristoylated in a single-cell-free mixture in the presence of modifying enzymes. Furthermore, we performed protein myristoylation in giant vesicles, which resulted in their partial localization to the membrane. Our PURE-system-based strategy is useful for the controlled synthesis of post-translationally modified proteins.


Subject(s)
Protein Biosynthesis , Proteins , Proteins/metabolism , Myristic Acid/metabolism , Protein Processing, Post-Translational
4.
Acta Pharm Sin B ; 13(5): 2281-2290, 2023 May.
Article in English | MEDLINE | ID: mdl-37250160

ABSTRACT

Aggregation represents a significant challenge for the long-term formulation stability of insulin therapeutics. The supramolecular PEGylation of insulin with conjugates of cucurbit[7]uril and polyethylene glycol (CB[7]‒PEG) has been shown to stabilize insulin formulations by reducing aggregation propensity. Yet prolonged in vivo duration of action, arising from sustained complex formation in the subcutaneous depot, limits the application scope for meal-time insulin uses and could increase hypoglycemic risk several hours after a meal. Supramolecular affinity of CB[7] in binding the B1-Phe residue on insulin is central to supramolecular PEGylation using this approach. Accordingly, here we synthesized N-terminal acid-modified insulin analogs to reduce CB[7] interaction affinity at physiological pH and reduce the duration of action by decreasing the subcutaneous depot effect of the formulation. These insulin analogs show weak to no interaction with CB[7]‒PEG at physiological pH but demonstrate high formulation stability at reduced pH. Accordingly, N-terminal modified analogs have in vitro and in vivo bioactivity comparable to native insulin. Furthermore, in a rat model of diabetes, the acid-modified insulin formulated with CB[7]‒PEG offers a reduced duration of action compared to native insulin formulated with CB[7]‒PEG. This work extends the application of supramolecular PEGylation of insulin to achieve enhanced stability while reducing the risks arising from a subcutaneous depot effect prolonging in vivo duration of action.

5.
Curr Opin Chem Biol ; 75: 102306, 2023 08.
Article in English | MEDLINE | ID: mdl-37236135

ABSTRACT

Advances in the site-specific chemical modification of proteins, also referred to as protein bioconjugation, have proved instrumental in revolutionary approaches to designing new protein-based therapeutics. Of the sites available for protein modification, cysteine residues or the termini of proteins have proved especially popular owing to their favorable properties for site-specific modification. Strategies that, therefore, specifically target cysteine at the termini offer a combination of these favorable properties of cysteine and termini bioconjugation. In this review, we discuss these strategies with a particular focus on those reported recently and provide our opinion on the future direction of the field.


Subject(s)
Biochemistry , Cysteine , Proteins , Proteins/chemistry , Biochemistry/methods , Cysteine/chemistry , Staining and Labeling/methods , Thiazoles/chemistry
6.
Methods Mol Biol ; 2620: 51-61, 2023.
Article in English | MEDLINE | ID: mdl-37010748

ABSTRACT

To evaluate the posttranslational arginylation of proteins in vivo, we describe a protocol for studying the 14C-Arg incorporation into proteins of cells in culture. The conditions determined for this particular modification contemplate both the biochemical requirements of the enzyme ATE1 and the adjustments that allowed the discrimination between posttranslational arginylation of proteins and de novo synthesis. These conditions are applicable for different cell lines or primary cultures, representing an optimal procedure for the identification and the validation of putative ATE1 substrates.


Subject(s)
Aminoacyltransferases , Aminoacyltransferases/genetics , Protein Processing, Post-Translational , Proteins/metabolism , Cells, Cultured , Cell Line , Arginine/metabolism
7.
BioTech (Basel) ; 12(1)2023 Feb 07.
Article in English | MEDLINE | ID: mdl-36810444

ABSTRACT

Cytochrome P450 (CYP) enzymes play important roles in metabolising endogenous and xenobiotic substances. Characterisations of human CYP proteins have been advanced with the rapid development of molecular technology that allows heterologous expression of human CYPs. Among several hosts, bacteria systems such as Escherichia coli (E. coli) have been widely used thanks to their ease of use, high level of protein yields, and affordable maintenance costs. However, the levels of expression in E. coli reported in the literature sometimes differ significantly. This paper aims to review several contributing factors, including N-terminal modifications, co-expression with a chaperon, selections of vectors and E. coli strains, bacteria culture and protein expression conditions, bacteria membrane preparations, CYP protein solubilizations, CYP protein purifications, and reconstitution of CYP catalytic systems. The common factors that would most likely lead to high expression of CYPs were identified and summarised. Nevertheless, each factor may still require careful evaluation for individual CYP isoforms to achieve a maximal expression level and catalytic activity. Recombinant E. coli systems have been evidenced as a useful tool in obtaining the ideal level of human CYP proteins, which ultimately allows for subsequent characterisations of structures and functions.

8.
Molecules ; 28(3)2023 Jan 21.
Article in English | MEDLINE | ID: mdl-36770752

ABSTRACT

The demand for creation of protein diversity and regulation of protein function through native protein modification and post-translational modification has ignited the development of selective chemical modification methods for peptides and proteins. Chemical bioconjugation offers selective functionalization providing bioconjugates with desired properties and functions for diverse applications in chemical biology, medicine, and biomaterials. The amino group existing at the lysine residue and N-terminus of peptides and proteins has been extensively studied in bioconjugation because of its good nucleophilicity and high surface exposure. Herein, we review the development of chemical methods for modification of the amino groups on lysine residue and N-terminus featuring excellent selectivity, mild reaction conditions, short reaction time, high conversion, biocompatibility, and preservation of protein integrity. This review is organized based on the chemoselectivity and site-selectivity of the chemical bioconjugation reagents to the amino acid residues aiming to provide guidance for the selection of appropriate bioconjugation methods.


Subject(s)
Lysine , Proteins , Lysine/chemistry , Proteins/chemistry , Peptides/chemistry , Amino Acids , Protein Processing, Post-Translational
9.
Acta Pharmaceutica Sinica B ; (6): 2281-2290, 2023.
Article in English | WPRIM (Western Pacific) | ID: wpr-982837

ABSTRACT

Aggregation represents a significant challenge for the long-term formulation stability of insulin therapeutics. The supramolecular PEGylation of insulin with conjugates of cucurbit[7]uril and polyethylene glycol (CB[7]‒PEG) has been shown to stabilize insulin formulations by reducing aggregation propensity. Yet prolonged in vivo duration of action, arising from sustained complex formation in the subcutaneous depot, limits the application scope for meal-time insulin uses and could increase hypoglycemic risk several hours after a meal. Supramolecular affinity of CB[7] in binding the B1-Phe residue on insulin is central to supramolecular PEGylation using this approach. Accordingly, here we synthesized N-terminal acid-modified insulin analogs to reduce CB[7] interaction affinity at physiological pH and reduce the duration of action by decreasing the subcutaneous depot effect of the formulation. These insulin analogs show weak to no interaction with CB[7]‒PEG at physiological pH but demonstrate high formulation stability at reduced pH. Accordingly, N-terminal modified analogs have in vitro and in vivo bioactivity comparable to native insulin. Furthermore, in a rat model of diabetes, the acid-modified insulin formulated with CB[7]‒PEG offers a reduced duration of action compared to native insulin formulated with CB[7]‒PEG. This work extends the application of supramolecular PEGylation of insulin to achieve enhanced stability while reducing the risks arising from a subcutaneous depot effect prolonging in vivo duration of action.

10.
J Mol Biol ; 434(22): 167843, 2022 11 30.
Article in English | MEDLINE | ID: mdl-36181773

ABSTRACT

N-myristoyltransferases (NMTs) catalyze protein myristoylation, a lipid modification crucial for cell survival and a range of pathophysiological processes. Originally thought to modify only N-terminal glycine α-amino groups (G-myristoylation), NMTs were recently shown to also modify lysine ε-amino groups (K-myristoylation). However, the clues ruling NMT-dependent K-myristoylation and the full range of targets are currently unknown. Here we combine mass spectrometry, kinetic studies, in silico analysis, and crystallography to identify the specific features driving each modification. We show that direct interactions between the substrate's reactive amino group and the NMT catalytic base promote K-myristoylation but with poor efficiency compared to G-myristoylation, which instead uses a water-mediated interaction. We provide evidence of depletion of proteins with NMT-dependent K-myristoylation motifs in humans, suggesting evolutionary pressure to prevent this modification in favor of G-myristoylation. In turn, we reveal that K-myristoylation may only result from post-translational events. Our studies finally unravel the respective paths towards K-myristoylation or G-myristoylation, which rely on a very subtle tradeoff embracing the chemical landscape around the reactive group.


Subject(s)
Acyltransferases , Glycine , Lysine , Myristic Acid , Protein Processing, Post-Translational , Humans , Acyltransferases/chemistry , Catalysis , Glycine/chemistry , Kinetics , Lysine/chemistry , Myristic Acid/chemistry
11.
Anal Biochem ; 619: 114128, 2021 04 15.
Article in English | MEDLINE | ID: mdl-33577792

ABSTRACT

Rubredoxins (Rds), like those from Pyrococcus furious (Pf), have largely been found to be expressed in Escherichia coli (E. coli) as a mixture of different N-terminal forms, which may affect the properties of the protein. The typical procedures for the purification of Rds are cumbersome and usually with low yield. We present herein a streamlined purification strategy based on the reversed-phase high performance liquid chromatography (RP-HPLC), which offers high yield and high resolution after simply one-step purification following pre-treatment. We also show that RP-HPLC can be a valuable tool to gain information related to the thermal decomposition pathway of Pf-Rds.


Subject(s)
Archaeal Proteins/chemistry , Models, Molecular , Protein Processing, Post-Translational , Pyrococcus furiosus/chemistry , Rubredoxins/chemistry , Archaeal Proteins/genetics , Chromatography, High Pressure Liquid , Chromatography, Reverse-Phase , Escherichia coli/chemistry , Escherichia coli/genetics , Pyrococcus furiosus/genetics , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Rubredoxins/genetics , Rubredoxins/isolation & purification
12.
ACS Appl Mater Interfaces ; 13(1): 88-96, 2021 Jan 13.
Article in English | MEDLINE | ID: mdl-33382581

ABSTRACT

Polymer-protein conjugates are a class of biohybrids with unique properties that are highly useful in biomedicine ranging from protein therapeutics to biomedical imaging; however, it remains a considerable challenge to conjugate polymers to proteins in a site-specific, mild, and efficient way to form polymer-protein conjugates with uniform structures and properties and optimal functions. Herein we report pyridine-2,6-dicarboxaldehyde (PDA)-enabled N-terminal modification of proteins with polymerization initiators for in situ growth of poly(oligo(ethylene glycol)methyl ether methacrylate) (POEGMA) conjugates uniquely at the N-termini of a range of natural and recombinant proteins in a mild and efficient fashion. The formed POEGMA-protein conjugates showed highly retained in vitro bioactivity as compared with free proteins. Notably, the in vitro bioactivity of a POEGMA-interferon α (IFN) conjugate synthesized by this new chemistry is 8.1-fold higher than that of PEGASYS that is a commercially available and Food and Drug Administration (FDA) approved PEGylated IFN. The circulation half-life of the conjugate is similar to that of PEGASYS but is 46.2 times longer than that of free IFN. Consequently, the conjugate exhibits considerably improved antiviral bioactivity over free IFN and even PEGASYS in a mouse model. These results indicate that the PDA-enabled N-terminal grafting-from method is applicable to a number of proteins whose active sites are far away from the N-terminus for the synthesis of N-terminal polymer-protein conjugates with high yield, well-retained activity, and considerably improved pharmacology for biomedical applications.


Subject(s)
Aldehydes/chemistry , Antiviral Agents/pharmacology , Indicators and Reagents/chemistry , Interferon-alpha/pharmacology , Polyethylene Glycols/pharmacology , Pyridines/chemistry , 2',5'-Oligoadenylate Synthetase/metabolism , Amino Acid Sequence , Animals , Antiviral Agents/chemistry , Antiviral Agents/pharmacokinetics , Half-Life , Interferon-alpha/chemistry , Interferon-alpha/pharmacokinetics , Mice , Polyethylene Glycols/chemistry , Polyethylene Glycols/pharmacokinetics , Polymerization
13.
Sheng Wu Gong Cheng Xue Bao ; 36(8): 1689-1698, 2020 Aug 25.
Article in Chinese | MEDLINE | ID: mdl-32924367

ABSTRACT

Enterokinase is a class of serine proteases that specifically recognize the cleavage DDDDK sequences. Therefore, enterokinase has been widely used as a tool enzyme in the field of biomedicine. Currently, the expression level of enterokinase in Pichia pastoris is low, which hinders related practical applications. In this study, the effects of six different signal peptides SP1, SP2, SP3, SP4, SP7 and SP8 on the secretory expression of enterokinase in Pichia pastoris were studied. Compared with α-factor, SP1 significantly increased the secretory expression of enterokinase (from 6.8 mg/L to 14.3 mg/L), and the enterokinase activity increased from (2 390±212) U/mL to (4 995±378) U/mL in shaking flask cultures. On this basis, the enterokinase activity was further enhanced to (7 219±489) U/mL by co-expressing the endogenous protein Kex2. Moreover, the activity that the mutant strain with N-terminal fusion of three amino acids of WLR was increased to (15 145±920) U/mL with a high specific activity of (1 174 600±53 100) U/mg. The efficient secretory expression of enterokinase laid a foundation for its applications in near future.


Subject(s)
Enteropeptidase , Gene Expression Regulation, Fungal , Industrial Microbiology , Pichia , Amino Acids , Enteropeptidase/genetics , Gene Expression Regulation, Fungal/genetics , Industrial Microbiology/methods , Pichia/enzymology , Pichia/genetics , Protein Sorting Signals
14.
Chembiochem ; 21(9): 1274-1278, 2020 05 04.
Article in English | MEDLINE | ID: mdl-31794069

ABSTRACT

Site-specific modification of peptides and proteins is a key aspect of protein engineering. We developed a method for modification of the N terminus of proteins using 1H-1,2,3-triazole-4-carbaldehyde (TA4C) derivatives, which can be prepared in one step. The N-terminal specific labeling of bioactive peptides and proteins with the TA4C derivatives proceeds under mild reaction conditions in excellent conversion (angiotensin I: 92 %, ribonuclease A: 90 %). This method enables site-specific conjugation of various functional molecules such as fluorophores, biotin, and polyethylene glycol attached to the triazole ring to the N terminus. Furthermore, a functional molecule modified with a primary amine moiety can be directly converted into a TA4C derivative through a Dimroth rearrangement reaction with 1-(4-nitrophenyl)-1H-1,2,3-triazole-4-carbaldehyde. This method can be used to obtain N-terminal-modified proteins via only two steps: 1) convenient preparation of a TA4C derivative with a functional group and 2) modification of the N terminus of the protein with the TA4C derivative.


Subject(s)
Peptide Fragments/chemistry , Protein Engineering/methods , Proteins/chemistry , Triazoles/chemistry , Humans , Protein Domains
15.
Chinese Journal of Biotechnology ; (12): 1689-1698, 2020.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-826808

ABSTRACT

Enterokinase is a class of serine proteases that specifically recognize the cleavage DDDDK sequences. Therefore, enterokinase has been widely used as a tool enzyme in the field of biomedicine. Currently, the expression level of enterokinase in Pichia pastoris is low, which hinders related practical applications. In this study, the effects of six different signal peptides SP1, SP2, SP3, SP4, SP7 and SP8 on the secretory expression of enterokinase in Pichia pastoris were studied. Compared with α-factor, SP1 significantly increased the secretory expression of enterokinase (from 6.8 mg/L to 14.3 mg/L), and the enterokinase activity increased from (2 390±212) U/mL to (4 995±378) U/mL in shaking flask cultures. On this basis, the enterokinase activity was further enhanced to (7 219±489) U/mL by co-expressing the endogenous protein Kex2. Moreover, the activity that the mutant strain with N-terminal fusion of three amino acids of WLR was increased to (15 145±920) U/mL with a high specific activity of (1 174 600±53 100) U/mg. The efficient secretory expression of enterokinase laid a foundation for its applications in near future.

16.
Cell Chem Biol ; 26(6): 901-907.e6, 2019 06 20.
Article in English | MEDLINE | ID: mdl-31006619

ABSTRACT

The dipeptidyl peptidases (DPPs) regulate hormones, cytokines, and neuropeptides by cleaving dipeptides after proline from their amino termini. Due to technical challenges, many DPP substrates remain unknown. Here, we introduce a simple method, termed CHOPS (chemical enrichment of protease substrates), for the discovery of protease substrates. CHOPS exploits a 2-pyridinecarboxaldehyde (2PCA)-biotin probe, which selectively biotinylates protein N-termini except those with proline in the second position. CHOPS can, in theory, discover substrates for any protease, but is particularly well suited to discover canonical DPP substrates, as cleaved but not intact DPP substrates can be identified by gel electrophoresis or mass spectrometry. Using CHOPS, we show that DPP8 and DPP9, enzymes that control the Nlrp1 inflammasome through an unknown mechanism, do not directly cleave Nlrp1. We further show that DPP9 robustly cleaves short peptides but not full-length proteins. More generally, this work delineates a practical technology for identifying protease substrates, which we anticipate will complement available "N-terminomic" approaches.


Subject(s)
Peptide Hydrolases/metabolism , Adaptor Proteins, Signal Transducing/metabolism , Apoptosis Regulatory Proteins/metabolism , Biotin/chemistry , Biotin/metabolism , Dipeptidases/metabolism , Dipeptidyl-Peptidases and Tripeptidyl-Peptidases/metabolism , Humans , Inflammasomes/metabolism , Molecular Structure , NLR Proteins , Peptide Hydrolases/chemistry , Pyridines/chemistry , Pyridines/metabolism , Substrate Specificity
17.
Annu Rev Plant Biol ; 70: 119-151, 2019 04 29.
Article in English | MEDLINE | ID: mdl-30786234

ABSTRACT

Assessing posttranslational modification (PTM) patterns within protein molecules and reading their functional implications present grand challenges for plant biology. We combine four perspectives on PTMs and their roles by considering five classes of PTMs as examples of the broader context of PTMs. These include modifications of the N terminus, glycosylation, phosphorylation, oxidation, and N-terminal and protein modifiers linked to protein degradation. We consider the spatial distribution of PTMs, the subcellular distribution of modifying enzymes, and their targets throughout the cell, and we outline the complexity of compartmentation in understanding of PTM function. We also consider PTMs temporally in the context of the lifetime of a protein molecule and the need for different PTMs for assembly, localization, function, and degradation. Finally, we consider the combined action of PTMs on the same proteins, their interactions, and the challenge ahead of integrating PTMs into an understanding of protein function in plants.


Subject(s)
Plants , Protein Processing, Post-Translational , Oxidation-Reduction
18.
Methods Mol Biol ; 1927: 47-72, 2019.
Article in English | MEDLINE | ID: mdl-30788785

ABSTRACT

Eukaryotic membrane bound cytochrome P450s are expressed in bacterial systems to produce large yields of catalytically active protein for structure function studies. Recently, there have been several instances of expressing eukaryotic membrane bound CYPs in bacteria after making various modifications to both the N-terminus membrane binding domains of the protein and to noncontiguous F-G membrane binding loop that is also implicated in substrate binding. These modifications have been shown not to disturb the function of the protein of interest. The major factors that have been key to express the membrane bound cytochrome P450s in bacteria have been the following: (a) exon optimization (b) selection of the appropriate vector and host strain, and (c) growth and expression conditions with respect to temperature and speed of shaking the media flask. Herein, we describe methods to express and purify eukaryotic membrane bound cytochrome P450s. We also describe the measurement of the activity of the cytochrome P450 expressed by taking the example of cytochrome P450 2J2, the primary P450 expressed in the human heart and CYP725A4, the primary cytochrome P450 expressed in the first step of taxol synthesis. Additionally, we discuss the pros and cons of the different modifications done in order to express the membrane bound cytochrome P450s.


Subject(s)
Cell Membrane/metabolism , Cytochrome P-450 Enzyme System/genetics , Cytochrome P-450 Enzyme System/metabolism , Gene Expression Regulation, Bacterial , Nanotechnology , Animals , Cell Membrane/enzymology , Cytochrome P-450 CYP2J2 , Cytochrome P-450 Enzyme System/isolation & purification , Enzyme Activation , Multigene Family , Mutation , Nanotechnology/methods , Rats , Recombinant Fusion Proteins , Spectrophotometry/methods
19.
Trends Biochem Sci ; 44(3): 181-183, 2019 03.
Article in English | MEDLINE | ID: mdl-30661830

ABSTRACT

Unlike prokaryotes, N-terminal formylation has been confined to a handful of mitochondrial proteins in eukaryotes. A recent study unveils a new role for eukaryotic cytoplasmic N-terminal formylation linking diverse cellular stresses to N-terminal-dependent protein degradation. These findings suggest broad cellular implications in higher eukaryotes for N-terminal methionine formylation.


Subject(s)
Eukaryota , Eukaryotic Cells , Methionine , Prokaryotic Cells , Proteolysis
20.
Bioresour Technol ; 243: 716-723, 2017 Nov.
Article in English | MEDLINE | ID: mdl-28711799

ABSTRACT

Native d-amino acid oxidase (DAAO) that is expressed mostly as inclusion body and its toxicity for E. coli hamper efficient heterologous expression. In this study, the soluble expression of DAAO from Rhodosporidium toruloides (RtDAAO) was improved in E. coli through N-terminal modification, but the cell biomass was decreased. Then a trade-off between DAAO expression and biomass was achieved to obtain the highest volumetric activity of DAAO through regulated the number of N-terminus histidine residues. When variant 2H3G was fused with three N-terminus histidine residues, the volumetric activity was increased by 3.1 times and the biomass was not significant change compared with the wild type. Finally, the N-terminus disordered region of RtDAAO (HSQK) was replaced with HHHG and the variant enzyme activity reached 80.7U/mL (with a 40 percent of inactive DAAO reduced) in a 7.5L fermenter in 24h.


Subject(s)
Amino Acid Oxidoreductases , Escherichia coli , Amino Acids , Biomass , Bioreactors
SELECTION OF CITATIONS
SEARCH DETAIL