Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 26
Filter
Add more filters











Publication year range
1.
Int J Biol Macromol ; 277(Pt 4): 134538, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39111462

ABSTRACT

Dihydro-ß-ionone, a high-value compound with distinctive fragrance, is widely utilized in the flavor and fragrance industries. However, its low abundance in plant sources poses a significant challenge to its application through traditional extraction methods. Development of an enzyme cascade reaction with artificial design offers a promising alternative. Herein, a short-chain dehydrogenase NaSDR, was identified from Novosphingobium aromaticivorans DSM 12444, which exhibited a high activity in converting ß-ionol to ß-ionone. A novel biosynthesis route to produce dihydro-ß-ionone from ß-ionol was developed, by utilizing alcohol dehydrogenase NaSDR and enoate reductase AaDBR1. Under the optimized conditions (0.29 mg/mL NaSDR, 0.39 mg/mL AaDBR1, 1 mM NADP+ and 2.5 mM ß-ionol at 40 °C for 2 h), a maximum yield (173.11 mg/L) of dihydro-ß-ionone was achieved with a molar conversion rate of 35.6 %, which was 2.7-fold higher than that before optimization. Additionally, this cascade reaction achieved self-sufficient NADPH regeneration through the actions of NaSDR and AaDBR1. This study offered a fresh perspective for achieving a green and sustainable synthesis of dihydro-ß-ionone and could inspire on another natural products biosynthesis.


Subject(s)
Norisoprenoids , Norisoprenoids/chemistry , Norisoprenoids/metabolism , Short Chain Dehydrogenase-Reductases/metabolism , Short Chain Dehydrogenase-Reductases/chemistry , Sphingomonadaceae/enzymology , NADP/metabolism , Oxidoreductases/metabolism
2.
Front Endocrinol (Lausanne) ; 15: 1371444, 2024.
Article in English | MEDLINE | ID: mdl-38836220

ABSTRACT

Objective: Individuals with hypopituitarism (HPs) have an increased risk of developing non-alcoholic fatty liver disease (NAFLD)/non-alcoholic steatohepatitis (NASH) due to growth hormone deficiency (GHD). We aimed to investigate the possible mechanisms underlying the relationship between GHD and NAFLD using proteomic and metabolomic insights. Methods: Serum metabolic alternations were assessed in male HPs using untargeted metabolomics. A rat model of HP was established through hypophysectomy, followed by recombinant human growth hormone (rhGH) intervention. The mechanisms underlying GHD-mediated NAFLD were elucidated through the application of label-free proteomics and phosphorylation proteomics. Results: Metabolomic analysis revealed that biomarkers of mitochondrial dysfunction and oxidative stress, such as alanine, lactate, and creatine, were significantly elevated in HPs compared to age-matched controls. In rats, hypophysectomy led to marked hepatic steatosis, lipid peroxidation, and reduced glutathione (GSH), which were subsequently modulated by rhGH replacement. Proteomic analysis identified cytochrome P450s, mitochondrial translation elongation, and PPARA activating genes as the major distinguishing pathways in hypophysectomized rats. The processes of fatty acid transport, synthesis, oxidation, and NADP metabolism were tightly described. An enhanced regulation of peroxisome ß-oxidation and ω-oxidation, together with a decreased NADPH regeneration, may exacerbate oxidative stress. Phosphoproteome data showed downregulation of JAK2-STAT5B and upregulation of mTOR signaling pathway. Conclusions: This study identified proteo-metabolomic signatures associated with the development of NAFLD in pituitary GHD. Evidence was found of oxidative stress imbalance resulting from abnormal fatty acid oxidation and NADPH regeneration, highlighting the role of GH deficiency in the development of NAFLD.


Subject(s)
Hypopituitarism , Metabolomics , Non-alcoholic Fatty Liver Disease , Oxidative Stress , Proteomics , Animals , Male , Non-alcoholic Fatty Liver Disease/metabolism , Non-alcoholic Fatty Liver Disease/etiology , Rats , Hypopituitarism/metabolism , Hypopituitarism/etiology , Rats, Sprague-Dawley , Human Growth Hormone/deficiency , Human Growth Hormone/metabolism , Humans
3.
Chem Biodivers ; 21(6): e202400329, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38590163

ABSTRACT

The need for sunlight chemical renewal and contemporary organic transformation has fostered the advancement of environmentally friendly photocatalytic techniques. For the first time, we report on the novel crafting of a bright future with selenium-infused Eosin-B (Sein-E-B) nanocomposite photocatalysts in this work. The Sein-E-B nanocomposite materials were created using a hydrothermal process for solar chemical regeneration and organic transformation under visible light. The synthesized samples were subjected to UV-DRS-visible spectroscopy, FT-IR, SEM, EDX, EIS and XRD analysis. The energy band gap of the Sein-E-B nanocomposite photocatalyst was measured using UV-DRS, and the result was around 2.06 eV. to investigate the generated Sein-E-B catalytic activity as a nanocomposite for 1,4-NADH/NADPH re-formation and C-N bond activation. This novel photocatalyst offers a promising alternative for the regeneration of solar chemicals and C-N bond creation between pyrrole and aryl halides.


Subject(s)
Nanocomposites , Catalysis , Molecular Structure , Nanocomposites/chemistry , Photochemical Processes , Selenium/chemistry
4.
J Agric Food Chem ; 72(18): 10459-10468, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38666490

ABSTRACT

Violaxanthin is a plant-derived orange xanthophyll with remarkable antioxidant activity that has wide applications in various industries, such as food, agriculture, and cosmetics. In addition, it is the key precursor of important substances such as abscisic acid and fucoxanthin. Saccharomyces cerevisiae, as a GRAS (generally regarded as safe) chassis, provides a good platform for producing violaxanthin production with a yield of 7.3 mg/g DCW, which is far away from commercialization. Herein, an integrated strategy involving zeaxanthin epoxidase (ZEP) source screening, cytosol redox state engineering, and nicotinamide adenine dinucleotide phosphate (NADPH) regeneration was implemented to enhance violaxanthin production in S. cerevisiae. 58aa-truncated ZEP from Vitis vinifera exhibited optimal efficiency in an efficient zeaxanthin-producing strain. The titer of violaxanthin gradually increased by 17.9-fold (up to 119.2 mg/L, 15.19 mg/g DCW) via cytosol redox state engineering and NADPH supplementation. Furthermore, balancing redox homeostasis considerably improved the zeaxanthin concentration by 139.3% (up to 143.9 mg/L, 22.06 mg/g DCW). Thus, the highest reported titers of violaxanthin and zeaxanthin in S. cerevisiae were eventually achieved. This study not only builds an efficient platform for violaxanthin biosynthesis but also serves as a useful reference for the microbial production of xanthophylls.


Subject(s)
Metabolic Engineering , Saccharomyces cerevisiae , Vitis , Xanthophylls , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae/genetics , Xanthophylls/metabolism , Vitis/metabolism , Vitis/microbiology , Vitis/chemistry , Oxidation-Reduction , Zeaxanthins/metabolism , Zeaxanthins/biosynthesis , NADP/metabolism , Plant Proteins/metabolism , Plant Proteins/genetics , Oxidoreductases/metabolism , Oxidoreductases/genetics
5.
Synth Syst Biotechnol ; 8(4): 716-723, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38053583

ABSTRACT

2'-Fucosyllactose (2'-FL) has great application value as a nutritional component and the whole cell biosynthesis of 2'-FL has become the focus of current research. Yarrowia lipolytica has great potential in oligosaccharide synthesis and large-scale fermentation. In this study, systematic engineering of Y. lipolytica for efficient 2'-FL production was performed. By fusing different protein tags, the synthesis of 2'-FL was optimized and the ubiquitin tag was demonstrated to be the best choice to increase the 2'-FL production. By iterative integration of the related genes, increasing the precursor supply, and promoting NADPH regeneration, the 2'-FL synthesis was further improved. The final 2'-FL titer, 41.10 g/L, was obtained in the strain F5-1. Our work reports the highest 2'-FL production in Y. lipolytica, and demonstrates that Y. lipolytica is an efficient microbial chassis for the synthesis of oligosaccharides.

6.
Photochem Photobiol ; 2023 Dec 06.
Article in English | MEDLINE | ID: mdl-38054563

ABSTRACT

Sulfur-doped Eosin-B (SDE-B) photocatalysts were synthesized for the first time utilizing sublimed sulfur (S8 ) as a dopant in an in situ thermal copolymerization technique. Sulfur doping not only increased Eosin-B (E-B) absorption range for solar radiation but also improved fixation and oxygenation capabilities. The doped sulfur bridges the S-S bond by substituting for the edge bromine of the E-B bond. The improved photocatalytic activity of SDE-B in the fixation and oxygenation of NAD+ /NADP+ and sulfides using solar light is attributed to the photo-induced hole of SDE-B's high fixation and oxygenation capacity, as well as an efficient suppression of electron and hole recombination. The powerful light-harvesting bridge system created using SDE-B as a photocatalyst works extremely well, resulting in high NADH/NADPH regeneration (79.58/76.36%) and good sulfoxide yields (98.9%) under solar light. This study focuses on the creation and implementation of a sulfur-doped photocatalyst for direct fine chemical regeneration and organic transformation.

7.
Chembiochem ; 24(24): e202300587, 2023 12 14.
Article in English | MEDLINE | ID: mdl-37783667

ABSTRACT

Most natural formate dehydrogenases (FDHs) exhibit NAD+ specificity, making it imperative to explore the engineering of FDH cofactor specificity for NADPH regeneration systems. The endogenous FDH of Komagataella phaffii (K. phaffii), termed KphFDH, is a typical NAD+ -specific FDH. However, investigations into engineering the cofactor specificity of KphFDH have yet to be conducted. To develop an NADP+ -specific variant of KphFDH, we selected D195, Y196, and Q197 as mutation sites and generated twenty site-directed variants. Through kinetic characterization, KphFDH/V19 (D195Q/Y196R/Q197H) was identified as the variant with the highest specificity towards NADP+ , with a ratio of catalytic efficiency (kcat /KM )NADP+ /(kcat /KM )NAD+ of 129.226. Studies of enzymatic properties revealed that the optimal temperature and pH for the reduction reaction of NADP+ catalyzed by KphFDH/V19 were 45 °C and 7.5, respectively. The molecular dynamics (MD) simulation was performed to elucidate the mechanism of high catalytic activity of KphFDH/V19 towards NADP+ . Finally, KphFDH/V19 was applied to an in vitro NADPH regeneration system with Meso-diaminopimelate dehydrogenase from Symbiobacterium thermophilum (StDAPDH/H227V). This study successfully created a KphFDH variant with high NADP+ specificity and demonstrated its practical applicability in an in vitro NADPH regeneration system.


Subject(s)
NAD , Saccharomycetales , NADP/metabolism , NAD/metabolism , Formate Dehydrogenases/chemistry , Saccharomycetales/metabolism , Kinetics
8.
Int J Mol Sci ; 23(23)2022 Dec 05.
Article in English | MEDLINE | ID: mdl-36499645

ABSTRACT

The enzymatic transformation of various chemicals, especially using NADPH-dependent hydroxylase, into more soluble and/or high value-added products has steadily garnered increasing attention. However, the industrial application of these NADPH-dependent hydroxylases has been limited due to the high cost of the cofactor NADPH. As an alternative, enzymatic NADPH-regeneration systems have been developed and are frequently used in various fields. Here, we expressed and compared two recombinant isocitrate dehydrogenases (IDHs) from Corynebacterium glutamicum and Azotobacter vinelandii in Escherichia coli. Both enzymes were hyper-expressed in the soluble fraction of E. coli and were single-step purified to apparent homogeneity with yields of more than 850 mg/L. These enzymes also functioned well when paired with NADPH consumption systems. Specifically, NADPH was regenerated from NADP+ when an NADPH-consuming cytochrome P450 BM3 from Bacillus megaterium was incorporated. Therefore, both enzymes could be used as alternatives to the commonly used regeneration system for NADPH. These enzymes also have promising potential as genetic fusion partners with NADPH-dependent enzymes due to the monomeric nature of their quaternary structure, thereby resulting in self-sufficient biocatalysts via NADPH regeneration in a single polypeptide with NADPH-dependent activity.


Subject(s)
Azotobacter vinelandii , Corynebacterium glutamicum , Azotobacter vinelandii/genetics , Azotobacter vinelandii/metabolism , NADP/metabolism , Isocitrate Dehydrogenase/metabolism , Corynebacterium glutamicum/genetics , Corynebacterium glutamicum/metabolism , Escherichia coli/metabolism , Cytochrome P-450 Enzyme System/metabolism
9.
ACS Synth Biol ; 11(7): 2473-2483, 2022 07 15.
Article in English | MEDLINE | ID: mdl-35723427

ABSTRACT

Parthenolide, a kind of sesquiterpene lactone, is the direct precursor for the promising anti-glioblastoma drug ACT001. Compared with traditional parthenolide source from plant extraction, de novo biosynthesis of parthenolide in microorganisms has the potential to make a sustainable supply. Herein, an integrated strategy was designed with P450 source screening, nicotinamide adenine dinucleotide phosphate (NADPH) supply, and endoplasmic reticulum (ER) size rewiring to manipulate three P450s regarded as the bottleneck for parthenolide production. Germacrene A oxidase from Cichorium intybus, costunolide synthase from Lactuca sativa, and parthenolide synthase from Tanacetum parthenium have the best efficiency, resulting in a parthenolide titer of 2.19 mg/L, which was first achieved in yeast. The parthenolide titer was further increased by 300% with NADPH supplementation and ER expanding stepwise. Finally, the highest titers of 31.0 mg/L parthenolide and 648.5 mg/L costunolide in microbes were achieved in 2.0 L fed-batch fermentation. This study not only provides an alternative microbial platform for producing sesquiterpene lactones in a sustainable way but also highlights a general strategy for manipulating multiple plant-derived P450s in microbes.


Subject(s)
Saccharomyces cerevisiae , Sesquiterpenes , Furans , Lactones/chemistry , NADP , Plants , Sesquiterpenes/chemistry
10.
Eng Life Sci ; 22(5): 407-416, 2022 May.
Article in English | MEDLINE | ID: mdl-35573132

ABSTRACT

(R)-(+)-perillyl alcohol is widely used in agricultural and anticarcinogenic fields. Microbial production of (R)-(+)-perillyl alcohol was investigated in this study. We optimized biosynthesis of (R)-(+)-perillyl alcohol in Escherichia coli by using neryl pyrophosphate synthase and NADPH regeneration. Engineering neryl pyrophosphate (NPP)-supplied pathway resulted in a 4-fold improvement of (R)-(+)-perillyl alcohol titer. Subsequently, combined engineering of p-cymene monooxygenase (CymA) expression and module for NADPH regeneration exhibited a 15.4-fold increase of titer over the initial strain S02. Finally, 453 mg/L (R)-(+)-perillyl alcohol was achieved in fed-batch fermentation, which is the highest (R)-(+)-perillyl alcohol titer in E. coli.

11.
Bioprocess Biosyst Eng ; 45(5): 891-900, 2022 May.
Article in English | MEDLINE | ID: mdl-35244776

ABSTRACT

Dihydro-ß-ionone is a characteristic aroma compound of Osmanthus fragrans and is widely applied in the flavor & fragrance industry. However, the main focus is on chemical synthesis due to the metabolic pathways of dihydro-ß-ionone is still unclear. Here, we explored the one-pot synthesis system for dihydro-ß-ionone production using carotenoid cleavage dioxygenase (CCD) and enoate reductase. After screening the CCD enzyme, PhCCD1 from the Petunia hybrid was identified as the suitable enzyme for the first step of dihydro-ß-ionone synthesis due to the high enzyme activity for carotenoid. The PhCCD1 was expressed in Escherichia coli and further characterized. The optimal activity of PhCCD1 was observed at pH 6.8 and 45 °C. The enzyme was stable over the pH range of 6.0-8.0 and had good thermal stability below 40 °C. Then, we optimized the coupled reaction conditions for dihydro-ß-ionone production by PhCCD1 and enoate reductase AaDBR1 from Artemisia annua. Furthermore, we introduced the NADPH regeneration system with a 1.5-fold enhancement for dihydro-ß-ionone production. Collectively, approximately 13.34 mg/L dihydro-ß-ionone was obtained by the one-pot biosystem with a corresponding molar conversion of 85.8%. For the first time, we successfully designed and constructed a new synthesis pathway for dihydro-ß-ionone production in vitro. The coupled catalysis reported herein illustrates the feasibility of producing dihydro-ß-ionone from carotenoids and guides further engineering in the food industry.


Subject(s)
Dioxygenases , Carotenoids/metabolism , Dioxygenases/chemistry , Dioxygenases/genetics , Escherichia coli/genetics , Escherichia coli/metabolism , Norisoprenoids/chemistry , Norisoprenoids/metabolism , Oxidoreductases/metabolism
12.
ACS Appl Mater Interfaces ; 13(35): 41454-41463, 2021 Sep 08.
Article in English | MEDLINE | ID: mdl-34431298

ABSTRACT

Engineering of biological pathways with man-made materials provides inspiring blueprints for sustainable drug production. (R)-1-[3,5-Bis(trifluoromethyl)phenyl]ethanol [(R)-3,5-BTPE], as an important artificial chiral intermediate for complicated pharmaceutical drugs and biologically active molecules, is often synthesized through a hydrogenation reaction of 3,5-bis(trifluoromethyl)acetophenone (3,5-BTAP), in which enantioselectivity and sufficient active hydrogen are the key to restricting the reaction. In this work, a biohybrid photocatalytic hydrogenation system based on an artificial cross-linked enzymes (CLEs)-TiO2-Cp*Rh(bpy) photoenzyme is developed through a bottom-up engineering strategy. Here, TiO2 nanotubes in the presence of Cp*Rh(bpy) are used to transform NADP+ to NADPH during the formation of chiral alcohol intermediates from the catalytic reduction of a ketone substrate by alcohol dehydrogenase CLEs. Hydrogen and electrons, provided by water and photocatalytic systems, respectively, are transferred to reduce NADP+ to NADPH via [Cp*Rh(bpy)(H2O)]2+. With the resulting NADPH, [(R)-3,5-BTPE] is synthesized using our efficient CLEs obtained from the cell lysate by nonstandard amino acid modification. Through this biohybrid photocatalytic system, the photoenzyme-catalyzed combined reductive synthesis of [(R)-3,5-BTPE] has a yield of 41.2% after reaction for 24 h and a very high enantiomeric excess value (>99.99%). In the case of reuse, this biohybrid system retained nearly 95% of its initial catalytic activity for synthesizing the above chiral alcohol. The excellent reusability of the CLEs and TiO2 nanotubes hybrid catalytic materials highlights the environmental friendliness of (R)-3,5-BTPE production.


Subject(s)
Alcohol Dehydrogenase/chemistry , Nanotubes/chemistry , Phenylethyl Alcohol/analogs & derivatives , Titanium/chemistry , Bacterial Proteins/chemistry , Catalysis/radiation effects , Coordination Complexes/chemistry , Coordination Complexes/radiation effects , Hydrogenation , Lactobacillus/enzymology , Light , NADP/chemical synthesis , Nanotubes/radiation effects , Phenylethyl Alcohol/chemical synthesis , Rhodium/chemistry , Rhodium/radiation effects , Stereoisomerism , Titanium/radiation effects , Water/chemistry
13.
J Agric Food Chem ; 69(33): 9625-9631, 2021 Aug 25.
Article in English | MEDLINE | ID: mdl-34382797

ABSTRACT

Cofactor availability is often a rate-limiting factor in the bioconversion of xylose to xylitol. The overexpression of pentose phosphate pathway genes and the deletion of Embden-Meyerhof-Parnas pathway genes can modulate the glucose metabolic flux and increase the intracellular NADPH supply, enabling Escherichia coli cells to produce xylitol from corncob hydrolysates. The effects of zwf and/or gnd overexpression and pfkA, pfkB, and/or pgi deletion on the intracellular redox environment and xylitol production were examined. The NADPH-enhanced strain 2bpgi produced 162 g/L xylitol from corncob hydrolysates after a 76 h fed-batch fermentation in a 15 L bioreactor, which was 13.3% greater than the 143 g/L xylitol produced by the IS5-d control strain. Additionally, the xylitol productivity and xylitol yield per glucose for 2bpgi were 2.13 g/L/h and 2.50 g/g, respectively. Thus, the genetic modifications in 2bpgi significantly enhanced NADPH regeneration, making 2bpgi a potentially useful strain for the industrial-scale production of xylitol from detoxified corncob hydrolysates.


Subject(s)
Pentose Phosphate Pathway , Xylitol , Escherichia coli/genetics , Escherichia coli/metabolism , Fermentation , Gene Deletion , Glucose , Glycolysis , NADP/metabolism , Phosphates , Xylose
14.
J Agric Food Chem ; 69(8): 2549-2556, 2021 Mar 03.
Article in English | MEDLINE | ID: mdl-33593064

ABSTRACT

Raspberry ketone (RK), the main aroma compound of raspberry fruit, has applications in cosmetics, food industry, and pharmaceutics. In this study, we biosynthesized RK via the catalytic reduction of 4-hydroxybenzylidenacetone using a whole-cell biocatalyst. Reductase RiRZS1 from Rubus idaeus and glucose dehydrogenase SyGDH from Thermoplasma acidophilum were expressed in Escherichia coli to regenerate NADPH for the whole-cell catalytic reaction. Following the optimization of balancing the coexpression of two enzymes in pRSFDuet-1, we obtained 9.89 g/L RK with a conversion rate of 98% and a space-time yield of 4.94 g/(L·h). The optimum conditions are 40 °C, pH 5.5, and a molar ratio of substrate to auxiliary substrate of 1:2.5. Our study findings provide a promising method of biosynthesizing RK.


Subject(s)
Escherichia coli , Glucose 1-Dehydrogenase , Butanones , Escherichia coli/genetics , Guaiacol/analogs & derivatives
15.
Bioresour Bioprocess ; 8(1): 32, 2021 Apr 22.
Article in English | MEDLINE | ID: mdl-38650214

ABSTRACT

ε-Caprolactone is a monomer of poly(ε-caprolactone) which has been widely used in tissue engineering due to its biodegradability and biocompatibility. To meet the massive demand for this monomer, an efficient whole-cell biocatalytic approach was constructed to boost the ε-caprolactone production using cyclohexanol as substrate. Combining an alcohol dehydrogenase (ADH) with a cyclohexanone monooxygenase (CHMO) in Escherichia coli, a self-sufficient NADPH-cofactor regeneration system was obtained. Furthermore, some improved variants with the better substrate tolerance and higher catalytic ability to ε-caprolactone production were designed by regulating the ribosome binding sites. The best mutant strain exhibited an ε-caprolactone yield of 0.80 mol/mol using 60 mM cyclohexanol as substrate, while the starting strain only got a conversion of 0.38 mol/mol when 20 mM cyclohexanol was supplemented. The engineered whole-cell biocatalyst was used in four sequential batches to achieve a production of 126 mM ε-caprolactone with a high molar yield of 0.78 mol/mol.

16.
Bioresour Bioprocess ; 8(1): 12, 2021 Feb 07.
Article in English | MEDLINE | ID: mdl-38650213

ABSTRACT

Nicotinamide adenine dinucleotide phosphate (NADPH), as a well-known cofactor, is widely used in the most of enzymatic redox reactions, playing an important role in industrial catalysis. However, the absence of a comparable method for efficient NADP+ to NADPH cofactor regeneration radically impairs efficient green chemical synthesis. Alcohol dehydrogenase (ADH) enzymes, allowing the in situ regeneration of the redox cofactor NADPH with high specific activity and easy by-product separation process, are provided with great industrial application potential and research attention. Accordingly, herein a NADP+-specific ADH from Clostridium beijerinckii was selected to be engineered for cofactor recycle, using an automated algorithm named Protein Repair One-stop Shop (PROSS). The mutant CbADH-6M (S24P/G182A/G196A/H222D/S250E/S254R) exhibited a favorable soluble and highly active expression with an activity of 46.3 U/mL, which was 16 times higher than the wild type (2.9 U/mL), and a more stable protein conformation with an enhanced thermal stability: Δ T 1 / 2 60 min = + 3.6 °C (temperature of 50% inactivation after incubation for 60 min). Furthermore, the activity of CbADH-6M was up-graded to 2401.8 U/mL by high cell density fermentation strategy using recombinant Escherichia coli, demonstrating its industrial potential. Finally, the superb efficiency for NADPH regeneration of the mutant enzyme was testified in the synthesis of some fine chiral aromatic alcohols coupling with another ADH from Lactobacillus kefir (LkADH).

17.
Appl Biochem Biotechnol ; 192(2): 530-543, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32405732

ABSTRACT

Formate dehydrogenases are critical tools for nicotinamide cofactor regeneration, but their limited catalytic efficiency (kcat/Km) is a major drawback. A formate dehydrogenase from Burkholderia stabilis 15516 (BstFDH) was the first native NADP+-dependent formate dehydrogenase reported and has the highest kcat/Km toward NADP+ (kcat/KmNADP+) compared with other FDHs that can utilize NADP+ as a hydrogen acceptor. However, the substrate and cofactor affinities of BstFDH are inferior to those of other FDHs, making its practical application difficult. Herein, we engineered recombinant BstFDH to enhance its HCOO- and NADP+ affinities. Based on sequence information analysis and homologous modeling results, I124, G146, S262, and A287 were found to affect the binding affinity for HCOO- and NADP+. By combining these mutations, we identified a BstFDH variant (G146M/A287G) that reduced KmNADP+ to 0.09 mM, with a concomitant decrease in KmHCOO-, and gave 1.6-fold higher kcat/KmNADP+ than the wild type (WT). Furthermore, BstFDH I124V/G146H/A287G, with the lowest KmHCOO- of 8.51 mM, showed a catalytic efficiency that was 2.3-fold higher than that of the wild type and a decreased KmNADP+ of 0.11 mM. These results are beneficial for improving the performance of NADP+-dependent formate dehydrogenase in the NADPH regeneration of various bioreductive reactions and provide a useful guide for engineering of the substrate and cofactor affinity of other enzymes.


Subject(s)
Formate Dehydrogenases/genetics , Formate Dehydrogenases/metabolism , NADP/metabolism , Protein Engineering , Biocatalysis , Burkholderia/enzymology , Kinetics , Mutagenesis, Site-Directed , Oxidation-Reduction , Substrate Specificity
18.
Article in English | MEDLINE | ID: mdl-31275934

ABSTRACT

The ethanol synthesis pathway engineered Synechocystis sp. PCC 6803 (hereafter Synechocystis) was used to investigate the influence of metal oxide mediated extracellular NADPH regeneration on ethanol synthesis. The in-vitro studies proved that the metal oxides have the potential to generate the NADPH in the presence of electron donor, the usual components of photoautotrophic growth conditions. When the NADPH regeneration was applied in Synechocystsis, the strain showed improved growth and ethanol production. This improved ethanol synthesis is attributed to the increased availability of NADPH to the ethanol synthesis pathway and redirection of closely related carbon metabolism into the ethanol synthesis. Under optimized light intensity and NADP addition, the maximum ethanol production of 5,100 mg/L was observed in MgO mediated extracellular NADPH regeneration after 25 days of cultivation, which is 2-fold higher than the control. This study indicates the feasibility of metal oxide mediated extracellular NADPH regeneration of Synechocystis to increase the production of ethanol.

19.
J Appl Microbiol ; 126(4): 1128-1139, 2019 Apr.
Article in English | MEDLINE | ID: mdl-30656788

ABSTRACT

AIMS: To establish the biotechnology platforms for production of bio-based chemicals in various micro-organisms is considered as a promising target to improve renewable production of isoprene. METHODS AND RESULTS: In this study, we heterologously expressed the mevalonate (MVA) isoprene biosynthesis pathway, and explored three strategies of increasing isoprene production in Escherichia coli. We first manipulated the expression levels of the MVA pathway genes through changing the gene cassettes and promoters. To introduce cofactor engineering, we then overexpressed NADP-dependent glyceraldehyde-3-phosphate dehydrogenase gene from Clostridium acetobutylicum to supply available NADPH. To reduce the inhibitory by-product accumulation, we finally knocked out acetate-producing genes, phosphate acetyl transferase and pyruvate oxidase B in E. coliJM109 (DE3), decreasing acetate accumulation 89% and increasing isoprene production 39%. The strategies described here finally increased the isoprene titre to 92 mg l-1 in two-gene deletion strain JMAB-4T7P1Trc, increasing 2·6-fold comparing to strain JM7T7. CONCLUSION: The multimodularly engineering approaches including promoter engineering, cofactor engineering and by-product reducing could be used to improve isoprene production in E. coli. SIGNIFICANCE AND IMPACT OF THE STUDY: The metabolic strategies in this study show us directions for further studies to promote transformation of renewable sources to isoprene.


Subject(s)
Biosynthetic Pathways/genetics , Escherichia coli/metabolism , Hemiterpenes/biosynthesis , Metabolic Engineering/methods , Mevalonic Acid/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Butadienes , Clostridium acetobutylicum/enzymology , Clostridium acetobutylicum/genetics , Escherichia coli/enzymology , Escherichia coli/genetics , Gene Expression , Genetic Engineering , NADP/metabolism
20.
ACS Synth Biol ; 7(12): 2742-2749, 2018 12 21.
Article in English | MEDLINE | ID: mdl-30475588

ABSTRACT

Insufficient rate of NADPH regeneration often limits the activity of biosynthetic pathways. Expression of NADPH-regenerating enzymes is commonly used to address this problem and increase cofactor availability. Here, we construct an Escherichia coli NADPH-auxotroph strain, which is deleted in all reactions that produce NADPH with the exception of 6-phosphogluconate dehydrogenase. This strain grows on a minimal medium only if gluconate is added as NADPH source. When gluconate is omitted, the strain serves as a "biosensor" for the capability of enzymes to regenerate NADPH in vivo. We show that the NADPH-auxotroph strain can be used to quantitatively assess different NADPH-regenerating enzymes and provide essential information on expression levels and concentrations of reduced substrates required to support optimal NADPH production rate. The NADPH-auxotroph strain thus serves as an effective metabolic platform for evaluating NADPH regeneration within the cellular context.


Subject(s)
Escherichia coli/metabolism , NADP/metabolism , Dihydrolipoamide Dehydrogenase/genetics , Dihydrolipoamide Dehydrogenase/metabolism , Escherichia coli/drug effects , Escherichia coli/growth & development , Formate Dehydrogenases/genetics , Formate Dehydrogenases/metabolism , Genetic Engineering , Gluconates/metabolism , Glyceraldehyde 3-Phosphate Dehydrogenase (NADP+)/genetics , Glyceraldehyde 3-Phosphate Dehydrogenase (NADP+)/metabolism , NAD/metabolism , Phenotype , Propanols/metabolism , Propanols/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL