Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 3.084
Filter
1.
J Dent ; 149: 105283, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39096997

ABSTRACT

OBJECTIVE: The aim of this study was to evaluate the effect of an adhesive loaded with 0.2 % copper (Cu) and 5 % zinc oxide (ZnO) nanoparticles (Nps) on its adhesive properties and enzymatic activity at the hybrid layer ex vivo in a randomized clinical model. METHODS: Fifteen patients participated in this study, and a total of 30 third molars were used. Occlusal cavities (4 × 4 × 2 mm) were made in each tooth, and randomly divided into 2 groups: (i) Experimental group: commercial adhesive loaded with 0.2wt % CuNps and 5wt % ZnONps; and (ii) Control Group: non-loaded commercial adhesive. Teeth were restored with resin composite. Thirty days later, extractions were performed. Extracted teeth were longitudinally sectioned. Nps in powder were characterized by field emission scanning electron microscope (FE-SEM) and energy dispersive X-ray (EDX) analysis. Microtensile bond strength (µTBS), degree of conversion (DC), and nanoleakeage (NL) tests were executed. In situ zymography (Zym) was performed to evaluate the gelatinolytic activity at the hybrid layer. Student's t-test (α = 0.05) was applied for all tests. RESULTS: µTBS and DC did not show significant differences (p > 0.05) between both groups. However, NL and gelatinolytic activity at the hybrid layer showed significant values (p < 0.05) for experimental group in comparison with control group. CONCLUSION: The addition of 0.2 % CuNps and 5 % ZnONps to a universal adhesive decreases NL and gelatinolytic activity at the hybrid layer, without jeopardizing its adhesive properties. SIGNIFICANCE: This randomized clinical trial with ex vivo analysis demonstrate that a commercial adhesive modified with 0.2wt % Cu and 5wt % ZnO Nps that does not affect its adhesive properties, reducing gelatinolytic activity and nanoleakage at the hybrid layer, which should contribute to an improvement of long term bonding-dentine clinical performance.


Subject(s)
Composite Resins , Copper , Dental Bonding , Microscopy, Electron, Scanning , Tensile Strength , Zinc Oxide , Humans , Zinc Oxide/chemistry , Copper/chemistry , Dental Bonding/methods , Composite Resins/chemistry , Nanoparticles/chemistry , Dentin-Bonding Agents/chemistry , Dentin/drug effects , Dentin/enzymology , Materials Testing , Male , Resin Cements/chemistry , Adult , Female , Surface Properties , Dental Cements/chemistry , Molar, Third , Dental Restoration, Permanent/methods , Spectrometry, X-Ray Emission
2.
Chemosphere ; 364: 142995, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39097114

ABSTRACT

This paper describes an alternative method for the in situ synthesis of gold nanoparticles (AuNPs) with a particle size of less than 3 nm, using nanoreactors formed by reverse micelles of 1,4-bis-(2-ethylhexyl) sulfosuccinate sodium (AOT) and nanoparticle stabilization with l-cysteine, which favor the preparation of nanoparticles with size and shape control, which are homogeneously dispersed (1% by weight) on the support of titanium dioxide nanowires (TNWs). To study the activity and selectivity of the prepared catalyst (AuNPs@TNWs), an aqueous solution of 40 mM glycerol was irradiated with a green laser (λ = 530 nm, power = 100 mW) in the presence of the catalyst and O2 as an oxidant at 22 °C for 6 h, obtaining a glycerol conversion of 86% with a selectivity towards hydroxypyruvic acid (HA) of more than 90%. From the control and reactions, we concluded that the Ti-OH groups promote the glycerol adsorption on the nanowires surface and the surface plasmon of the gold nanoparticles favors the selectivity of the reaction towards the hydroxypyruvic acid.


Subject(s)
Glycerol , Gold , Metal Nanoparticles , Nanowires , Oxidation-Reduction , Titanium , Titanium/chemistry , Gold/chemistry , Metal Nanoparticles/chemistry , Nanowires/chemistry , Glycerol/chemistry , Catalysis
3.
Int J Biol Macromol ; 278(Pt 1): 134503, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39111503

ABSTRACT

Thermolysin (TLN) is a microbial highly-priced thermostable metallo-endoprotease with complementary substrate specificity to those of proteases widely used in science and industry for protein digestion and milk-clotting. This study is the first to immobilize TLN on aminated superparamagnetic nanoparticles (Fe3O4@silica-NH2) aiming for higher stability, recoverability, reusability, and applicability in proteolysis and as a microbial rennet-like milk-clotting enzyme. The nanobiocatalyst developed (Fe3O4@silica-TLN) displays hydrolytic activity on a synthetic TLN substrate and, apparently, was fully recovered from reaction media by magnetic decantation. More importantly, Fe3O4@silica-TLN retains TLN catalytic properties in the presence of calcium ions even after exposure to 60 °C for 48 h, storage at 4 °C for 80 days and room temperature for 42 days, use in proteolyses, and in milk-clotting for up to 11 cycles. Its proteolytic activity on bovine milk casein in 24 h furnished 84 peptides, of which 29 are potentially bioactive. Also, Fe3O4@silica-TLN catalyzed the digestion of bovine serum albumin. In conclusion, Fe3O4@silica-TLN showed to be a new, less autolytic, thermostable, non-toxic, magnetically-separable, and reusable nanobiocatalyst with highly attractive properties for both science (peptide/protein chemistry and structure, proteomic studies, and the search for new bioactive peptides) and food industry (cheese manufacture).


Subject(s)
Enzymes, Immobilized , Milk , Proteolysis , Silicon Dioxide , Thermolysin , Silicon Dioxide/chemistry , Animals , Milk/chemistry , Enzymes, Immobilized/chemistry , Enzymes, Immobilized/metabolism , Thermolysin/metabolism , Thermolysin/chemistry , Biocatalysis , Cattle , Enzyme Stability , Magnetite Nanoparticles/chemistry
4.
Int J Biol Macromol ; 278(Pt 2): 134777, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39153669

ABSTRACT

Glioblastoma (GBM) represents a formidable challenge in oncology, characterized by aggressive proliferation and poor prognosis. Iron metabolism plays a critical player in GBM progression, with dysregulated iron uptake and utilization contributing to tumor growth and therapeutic resistance. Iron's pivotal role in DNA synthesis, oxidative stress, and angiogenesis underscores its significance in GBM pathogenesis. Elevated expression of iron transporters, such as transferrin receptor 1 (TfR1), highlights the tumor's reliance on iron for survival. Innovative treatment strategies targeting iron dysregulation hold promise for overcoming therapeutic challenges in GBM management. Approaches such as iron chelation therapies, induction of ferroptosis to nanoparticle-based drug delivery systems exploit iron-dependent vulnerabilities, offering avenues for enhance treatment efficacy and improve patient outcomes. As research advances, understanding the complexities of iron-mediated carcinogenesis provides a foundation for developing precision medicine approaches tailored to combat GBM effectively. This review explores the intricate relationship between iron metabolism and GBM, elucidating its multifaceted implications and therapeutic opportunities. By consolidating the latest insights into iron metabolism in GBM, this review underscores its potential as a therapeutic target for improving patient care in combination with the standard of care approach.


Subject(s)
Ferroptosis , Glioblastoma , Iron , Receptors, Transferrin , Humans , Receptors, Transferrin/metabolism , Iron/metabolism , Ferroptosis/drug effects , Glioblastoma/metabolism , Glioblastoma/drug therapy , Glioblastoma/pathology , Animals , Brain Neoplasms/metabolism , Brain Neoplasms/drug therapy , Brain Neoplasms/pathology , Antigens, CD/metabolism , Antigens, CD/genetics , Iron Chelating Agents/therapeutic use , Iron Chelating Agents/pharmacology
5.
Bioprocess Biosyst Eng ; 47(11): 1777-1787, 2024 Nov.
Article in English | MEDLINE | ID: mdl-39090227

ABSTRACT

The present study aims to analyze the interaction between Rhodotorula toruloides and magnetic nanoparticles and evaluate their effect on carotenoid production. The manganese ferrite nanoparticles were synthesized without chitosan (MnFe2O4) and chitosan coating (MnFe2O4-CS) by the co-precipitation method assisted by hydrothermal treatment. XRD (X-ray diffraction), Magnetometry, Dynamic Light Scattering (DLS) and FTIR (Fourier-Transform Infrared Spectroscopy), are used to characterize the magnetic nanoparticles. The crystallite size of MnFe2O4 was 16 nm for MnFe2O4 and 20 nm for MnFe2O4-CS. The magnetic saturation of MnFe2O4-CS was lower (39.6 ± 0.6 emu/g) than the same MnFe2O4 nanoparticles (42.7 ± 0.3 emu/g), which was attributed to the chitosan fraction presence. The MnFe2O4-CS FTIR spectra revealed the presence of the characteristic chitosan bands. DLS demonstrated that the average hydrodynamic diameters were 344 nm for MnFe2O4 and 167 nm for MnFe2O4-CS. A kinetic study of cell immobilization performed with their precipitation with a magnet demonstrated that interaction between magnetic nanoparticles and R. toruloides was characterized by an equilibrium time of 2 h. The adsorption isotherm models (Langmuir and Freundlich) were fitted to the experimental values. The trypan blue assay was used for cell viability assessment. The carotenoid production increased to 256.2 ± 6.1 µg/g dry mass at 2.0 mg/mL MnFe2O4-CS. The use of MnFe2O4-CS to stimulate carotenoid yeast production and the magnetic separation of biomass are promising nanobiotechnological alternatives. Magnetic cell immobilization is a perspective technique for obtaining cell metabolites.


Subject(s)
Carotenoids , Chitosan , Ferric Compounds , Manganese Compounds , Rhodotorula , Rhodotorula/metabolism , Chitosan/chemistry , Manganese Compounds/chemistry , Ferric Compounds/chemistry , Carotenoids/chemistry , Magnetite Nanoparticles/chemistry , Spectroscopy, Fourier Transform Infrared
6.
Nanomedicine (Lond) ; 19(23): 1895-1911, 2024.
Article in English | MEDLINE | ID: mdl-39109488

ABSTRACT

Aim: Breast cancer and its metastases involve high mortality even with advances in chemotherapy. Solid lipid nanoparticles provide a platform for drug delivery, reducing side effects and treatment-induced bone loss. A solid nanoparticle containing doxorubicin was evaluated for its ability to prevent bone loss in a pre-clinical breast cancer model.Methods: We investigated the effects of SLNDox in an aggressive metastatic stage IV breast cancer model, which has some important features that are interesting for bone loss investigation. This study evaluates bone loss prevention potential from solid lipid nanoparticles containing doxorubicin breast cancer treatment, an evaluation of the attenuation of morphological changes in bone tissue caused by the treatment and the disease and an assessment of bone loss imaging using computed tomography and electron microscopy.Results: Chemotherapy-induced bone loss was also observed in tumor-free animals; a solid lipid nanoparticle containing doxorubicin prevented damage to the growth plate and to compact and cancellous bones in the femur of tumor-bearing and healthy animals.Conclusion: The association of solid lipid nanoparticles with chemotherapeutic drugs with proven efficacy promotes the prevention of serious consequences of chemotherapy, reducing tumor progression, increasing quality of life and improving prognosis and survival.


[Box: see text].


Subject(s)
Doxorubicin , Nanoparticles , Doxorubicin/administration & dosage , Animals , Female , Nanoparticles/chemistry , Humans , Breast Neoplasms/drug therapy , Mice , Lipids/chemistry , Cell Line, Tumor , Drug Carriers/chemistry , Antibiotics, Antineoplastic/administration & dosage , Antibiotics, Antineoplastic/pharmacology , Liposomes
7.
ACS Appl Bio Mater ; 7(8): 5530-5540, 2024 Aug 19.
Article in English | MEDLINE | ID: mdl-39093994

ABSTRACT

This study reports on the modification of bacterial cellulose (BC) membranes produced by static fermentation of Komagataeibacter xylinus bacterial strains with graphene oxide-silver nanoparticles (GO-Ag) to yield skin wound dressings with improved antibacterial properties. The GO-Ag sheets were synthesized through chemical reduction with sodium citrate and were utilized to functionalize the BC membranes (BC/GO-Ag). The BC/GO-Ag composites were characterized to determine their surface charge, morphology, exudate absorption, antimicrobial activity, and cytotoxicity by using fibroblast cells. The antimicrobial activity of the wound dressings was assessed against Staphylococcus aureus, Escherichia coli, and Pseudomonas aeruginosa. The results indicate that the BC/GO-Ag dressings can inhibit ∼70% of E. coli cells. Our findings also revealed that the porous BC/GO-Ag antimicrobial dressings can efficiently retain 94% of exudate absorption after exposure to simulated body fluid (SBF) for 24 h. These results suggest that the dressings could absorb excess exudate from the wound during clinical application, maintaining adequate moisture, and promoting the proliferation of epithelial cells. The BC/GO-Ag hybrid materials exhibited excellent mechanical flexibility and low cytotoxicity to fibroblast cells, making excellent wound dressings able to control bacterial infectious processes and promote the fast healing of dermal lesions.


Subject(s)
Anti-Bacterial Agents , Biocompatible Materials , Cellulose , Escherichia coli , Graphite , Materials Testing , Metal Nanoparticles , Microbial Sensitivity Tests , Silver , Staphylococcus aureus , Wound Healing , Graphite/chemistry , Graphite/pharmacology , Silver/chemistry , Silver/pharmacology , Wound Healing/drug effects , Cellulose/chemistry , Cellulose/pharmacology , Metal Nanoparticles/chemistry , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Staphylococcus aureus/drug effects , Escherichia coli/drug effects , Biocompatible Materials/chemistry , Biocompatible Materials/pharmacology , Particle Size , Pseudomonas aeruginosa/drug effects , Gluconacetobacter xylinus/chemistry , Humans , Mice , Bandages , Animals
8.
J Clin Pediatr Dent ; 48(4): 160-167, 2024 Jul.
Article in English | MEDLINE | ID: mdl-39087226

ABSTRACT

Glass ionomer cements (GICs) are the common materials employed in pediatric dentistry because of their specific applications in class I restorations and atraumatic restoration treatments (ART) of deciduous teeth in populations at high risk of caries. Studies show a limited clinical durability of these materials. Attempts have thus been made to incorporate nanoparticles (NPs) into the glass ionomer for improving resistance and make it like the tooth structure. An in vitro experimental study was conducted using the required samples dimensions and prepared based on the test being carried out on the three groups with or without the modification of light-cured glass ionomer. Samples were grouped as follows: control group (G1_C), 2% silver phosphate/hydroxyapatite NPs group (G2_SPH), and 2% titanium dioxide NPs group (G3_TiO2). The physical tests regarding flexural strength (n = 10 per group), solubility (n = 10 per group), and radiopacity (n = 3 per group) were performed. The data were analyzed by Shapiro Wilks test, and one-way analysis of variance (one-way ANOVA), and multiple comparisons by post hoc Tukey's test. The p-value of < 0.05 was considered significant. No statistically significant difference was observed between the control group (G1_C) and (G2_SPH) (p = 0.704) in the flexural strength test, however differences were found between G2_SPH and G3_TiO2 groups, ANOVA (p = 0.006); post hoc Tukey's test (p = 0.014). Pertaining to the solubility, G2_SPH obtained the lowest among the three groups, ANOVA (p = 0.010); post hoc Tukey's test (p = 0.009). The three study groups obtained an adequate radiopacity of >1 mm Al, respectively. The resin-modified glass ionomer cement (RMGIC) was further modified with 2% silver phosphate/hydroxyapatite NPs to improve the physical properties such as enhancing the solubility and sorption without compromising the flexural strength and radiopacity behavior of modified RMGIC. The incorporation of 2% titanium dioxide NPs did not improve the properties studied.


Subject(s)
Durapatite , Glass Ionomer Cements , Nanoparticles , Phosphates , Titanium , Titanium/chemistry , Glass Ionomer Cements/chemistry , Durapatite/chemistry , Nanoparticles/chemistry , Phosphates/chemistry , In Vitro Techniques , Materials Testing , Humans , Silver Compounds/chemistry , Solubility , Flexural Strength
9.
Front Microbiol ; 15: 1440065, 2024.
Article in English | MEDLINE | ID: mdl-39149204

ABSTRACT

Nanoparticles play a crucial role in the field of nanotechnology, offering different properties due to their surface area attributed to their small size. Among them, silver nanoparticles (AgNPs) have attracted significant attention due to their antimicrobial properties, with applications that date back from ancient medicinal practices to contemporary commercial products containing ions or silver nanoparticles. AgNPs possess broad-spectrum biocidal potential against bacteria, fungi, viruses, and Mycobacterium, in addition to exhibiting synergistic effects when combined with certain antibiotics. The mechanisms underlying its antimicrobial action include the generation of oxygen-reactive species, damage to DNA, rupture of bacterial cell membranes and inhibition of protein synthesis. Recent studies have highlighted the effectiveness of AgNPs against various clinically relevant bacterial strains through their potential to combat antibiotic-resistant pathogens. This review investigates the proteomic mechanisms by which AgNPs exert their antimicrobial effects, with a special focus on their activity against planktonic bacteria and in biofilms. Furthermore, it discusses the biomedical applications of AgNPs and their potential non-preparation of antibiotic formulations, also addressing the issue of resistance to antibiotics.

10.
Heliyon ; 10(14): e34564, 2024 Jul 30.
Article in English | MEDLINE | ID: mdl-39113960

ABSTRACT

The aim of this study was to systematically review the literature to investigate whether silver nanoparticles (AgNPs) have an anti-inflammatory effect in vivo. The guidelines of PRISMA were applied, and a registration was made in PROSPERO. A personalized search of the PubMed, Web of Science, Scopus, Embase, Lilacs, and Google Scholar databases was conducted in September 2023. For the data analysis, the inverse variance in the random effects model was used. The tools of SYRCLE and GRADE were used to assess the risk of bias and the certainty of evidence, respectively. From the 9185 identified studies, 5685 duplicate studies were excluded; 52 were read in full text, and 7 were included in this review. Six studies were evaluated by the meta-analysis, and an increase in anti-inflammatory molecules (SMD -5.22; PI [-6.50, -3.94]) and an increase in anti-inflammatory ones (SMD 5.75; PI [3.79, 7.72]) were observed. Qualitative analysis showed a reduction in pro-inflammatory proteins and in the COX-2 pathway. It was concluded that AgNPs present an anti-inflammatory action in vivo through mechanisms involving the reduction of pro-inflammatory molecules and proteins, the increase of anti-inflammatory molecules, and selective inhibition of the COX-2 pathway.

11.
J Biomater Sci Polym Ed ; : 1-14, 2024 Aug 14.
Article in English | MEDLINE | ID: mdl-39140253

ABSTRACT

Bone defects and injuries are common, and better solutions are needed for improved regeneration and osseointegration. Bioresorbable membranes hold great potential in bone tissue engineering due to their high surface area and versatility. In this context, polymers such as poly(lactic-co-glycolic acid) (PLGA) can be combined with osteoconductive materials like hydroxyapatite (HA) nanoparticles (NPs) to create membranes with enhanced bioactivity and bone regeneration. Rotary Jet spinning (RJS) is a powerful technique to produce these composite membranes. This study presents an innovative and efficient method to obtain PLGA-HA(NPs) membranes with continuous fibers containing homogeneous HA(NPs) distribution. The membranes demonstrated stable thermal degradation, allowing HA(NPs) quantification. In addition, the PLGA-HA(NPs) presented osteoconductivity, were not cytotoxic, and had high cell adhesion when cultured with pre-osteoblastic cells. These findings demonstrate the potential of RJS to produce PLGA-HA(NPs) membranes for easy and effective application in bone regeneration.

12.
Molecules ; 29(15)2024 Jul 31.
Article in English | MEDLINE | ID: mdl-39125026

ABSTRACT

Safety and effectiveness are the cornerstone objectives of nanomedicine in developing nanotherapies. It is crucial to understand the biological interactions between nanoparticles and immune cells. This study focuses on the manufacture by the microfluidic technique of N-trimethyl chitosan/protein nanocarriers and their interaction with J774 cells to elucidate the cellular processes involved in absorption and their impact on the immune system, mainly through endocytosis, activation of lysosomes and intracellular degradation. TEM of the manufactured nanoparticles showed spherical morphology with an average diameter ranging from 36 ± 16 nm to 179 ± 92 nm, depending on the concentration of the cargo protein (0, 12, 55 µg/mL). FTIR showed the crosslinking between N-trimethyl chitosan and the sodium tripolyphosphate and the α-helix binding loss of BSA. TGA revealed an increase in the thermal stability of N-trimethyl chitosan/protein nanoparticles compared with the powder. The encapsulation of the cargo protein used was demonstrated using XPS. Their potential to improve cell permeability and use as nanocarriers in future vaccine formulations was demonstrated. The toxicity of the nanoparticles in HaCaT and J774 cells was studied, as well as the importance of evaluating the differentiation status of J774 cells. Thus, possible endocytosis pathways and their impact on the immune response were discussed. This allowed us to conclude that N-trimethyl chitosan nanoparticles show potential as carriers for the immune system. Still, more studies are required to understand their effectiveness and possible use in therapies.


Subject(s)
Chitosan , Endocytosis , Lysosomes , Nanoparticles , Chitosan/chemistry , Lysosomes/metabolism , Endocytosis/drug effects , Nanoparticles/chemistry , Animals , Mice , Cell Line , Humans , Drug Carriers/chemistry , Particle Size , Serum Albumin, Bovine/chemistry , Cell Survival/drug effects
13.
Int J Mol Sci ; 25(15)2024 Aug 02.
Article in English | MEDLINE | ID: mdl-39126001

ABSTRACT

Breast cancer is the most diagnosed type of cancer worldwide and the second cause of death in women. Triple-negative breast cancer (TNBC) is the most aggressive, and due to the lack of specific targets, it is considered the most challenging subtype to treat and the subtype with the worst prognosis. The present study aims to determine the antitumor effect of beta-D-glucose-reduced silver nanoparticles (AgNPs-G) in a murine model of TNBC, as well as to study its effect on the tumor microenvironment. In an airbag model with 4T1 tumor cell implantation, the administration of AgNPs-G or doxorubicin showed antitumoral activity. Using immunohistochemistry it was demonstrated that treatment with AgNPs-G decreased the expression of PCNA, IDO, and GAL-3 and increased the expression of Caspase-3. In the tumor microenvironment, the treatment increased the percentage of memory T cells and innate effector cells and decreased CD4+ cells and regulatory T cells. There was also an increase in the levels of TNF-α, IFN-γ, and IL-6, while TNF-α was increased in serum. In conclusion, we suggest that AgNPs-G treatment has an antitumor effect that is demonstrated by its ability to remodel the tumor microenvironment in mice with TNBC.


Subject(s)
Glucose , Metal Nanoparticles , Silver , Triple Negative Breast Neoplasms , Tumor Microenvironment , Animals , Tumor Microenvironment/drug effects , Triple Negative Breast Neoplasms/drug therapy , Triple Negative Breast Neoplasms/pathology , Triple Negative Breast Neoplasms/metabolism , Silver/chemistry , Metal Nanoparticles/chemistry , Female , Mice , Glucose/metabolism , Cell Line, Tumor , Disease Models, Animal , Mice, Inbred BALB C , Doxorubicin/pharmacology , Humans
14.
Plants (Basel) ; 13(15)2024 Jul 25.
Article in English | MEDLINE | ID: mdl-39124160

ABSTRACT

In a scenario of accelerated global climate change, the continuous growth of the world population, and the excessive use of chemical fertiliser, the search for sustainable alternatives for agricultural production is crucial. The present study was conducted to evaluate the plant growth-promoting (PGP) characteristics of two yeast strains, Candida guilliermondii and Rhodotorula mucilaginosa, and the physicochemical characteristics of nanometric capsules and iron oxide nanoparticles (Fe2O3-NPs) for the formulation of nanobiofertilisers. The physiological and productive effects were evaluated in a greenhouse assay using lettuce plants. The results showed that C. guilliermondii exhibited higher tricalcium phosphate solubilisation capacity, and R. mucilaginosa had a greater indole-3-acetic acid (IAA) content. The encapsulation of C. guilliermondii in sodium alginate capsules significantly improved the growth, stomatal conductance, and photosynthetic rate of the lettuce plants. Physicochemical characterisation of the Fe2O3-NPs revealed a particle size of 304.1 nm and a negative Z-potential, which indicated their stability and suitability for agricultural applications. The incorporation of Fe2O3-NPs into the capsules was confirmed by SEM-EDX analysis, which showed the presence of Fe as the main element. In summary, this study highlights the potential of nanobiofertilisers containing yeast strains encapsulated in sodium alginate with Fe2O3-NPs to improve plant growth and photosynthetic efficiency as a path toward more sustainable agriculture.

15.
ChemMedChem ; : e202400321, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-39087920

ABSTRACT

Hearing loss (HL) affects more than 5% of the global population, with projections indicating an impact of up to 50% on young individuals in the next years. HL treatments remain limited due to the inner ear's hermeticism. HL often involves inflammatory processes, underscoring the need for enhanced delivery of antiinflammatory agents to the inner ear. Our research focuses on the development of a directed therapy based on magnetic nanoparticles (MNPs). We previously synthesized biocompatible folic acid-coated iron oxide-core nanoparticles (MNPs@FA) as potential carriers for the anti-inflammatory Diclofenac (Dfc). This study aims to incorporate Dfc onto MNPs@FA to facilitate targeted drug delivery to the inner ear. Through optimizing the loading procedure, we achieved optimal loading capacity. Dfc release was studied in the simulated target fluid and the administration vehicle. Complete characterization is also shown. In vitro biocompatibility testing ensured the biosafety of the resulting formulation. Subsequent ex vivo targeting assays on murine cochleae validated the nanosystems' ability to penetrate the round window membrane, one of the main HL therapy barriers. These findings serve as validation before continuing to more complex in vivo studies. Together, the data here presented represent an advancement in addressing unmet medical needs in HL therapy.

16.
J Dent ; 149: 105273, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39084548

ABSTRACT

OBJECTIVES: The present study aimed to synthesize toothpastes containing Beta- TriCalcium Phosphate (ß-TCP) nanoparticles, functionalized with fluoride and tin, and test their ability to reduce erosive tooth wear (ETW). METHODS: Toothpastes were synthesized with the following active ingredients: 1100 ppm of fluoride (as sodium fluoride, F-), 3500 ppm of tin (as stannous chloride, Sn2+), and 800 ppm of ß-TCP (Sizes a - 20 nm; and b - 100 nm). Enamel specimens were randomly assigned into the following groups (n = 10): 1. Commercial toothpaste; 2. Placebo; 3 F-; 4. F- + ß-TCPa; 5. F- + ß-TCPb; 6. F- + Sn2+; 7. F- + Sn2+ + ß-TCPa and 8. F- + Sn2+ + ß-TCPb. Specimens were subjected to erosion-abrasion cycling. Surface loss (in µm) was measured by optical profilometry. Toothpastes pH and available F- were also assessed. RESULTS: Brushing with placebo toothpaste resulted in higher surface loss than brushing with F- (p = 0.005) and F- + ß-TCPb (p = 0.007); however, there was no difference between F- and F- + ß-TCPb (p = 1.00). Commercial toothpaste showed no difference from Placebo (p = 0.279). The groups F-, F- + ß-TCPa, F- + ß-TCPb, F- + Sn2+, F- + Sn2+ + ß-TCPa and F- + Sn2+ + ß-TCPb were not different from the commercial toothpaste (p > 0.05). Overall, the addition of ß-TCP reduced the amount of available fluoride in the experimental toothpastes. The pH of toothpastes ranged from 4.97 to 6.49. CONCLUSIONS: Although toothpaste containing ß-TCP nanoparticles protected enamel against dental erosion-abrasion, this effect was not superior to the standard fluoride toothpaste (commercial). In addition, the functionalization of ß-TCP nanoparticles with fluoride and tin did not enhance their protective effect. CLINICAL SIGNIFICANCE: Although ß-TCP nanoparticles have some potential to control Erosive Tooth Wear, their incorporation into an experimental toothpaste appears to have a protective effect that is similar to a commercial fluoride toothpaste.


Subject(s)
Calcium Phosphates , Dental Enamel , Nanoparticles , Tooth Erosion , Toothpastes , Calcium Phosphates/chemistry , Calcium Phosphates/therapeutic use , Toothpastes/chemistry , Toothpastes/therapeutic use , Tooth Erosion/prevention & control , Nanoparticles/chemistry , Dental Enamel/drug effects , Hydrogen-Ion Concentration , Tin Compounds/therapeutic use , Tin Compounds/chemistry , Sodium Fluoride/therapeutic use , Sodium Fluoride/chemistry , Animals , Fluorides/therapeutic use , Tin/chemistry , Tooth Abrasion/prevention & control , Cattle , Materials Testing , Surface Properties , Random Allocation , Toothbrushing , Humans
17.
Chemosphere ; 363: 142881, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39032733

ABSTRACT

This work explores the efficiency of honey bees (Apis mellifera) as biosamplers of metal pollution. To understand this, we selected two cities with different urbanization (a medium-sized city and a megacity), and we collected urban dust and honey bees captured during flight. We sampled two villages and a university campus as control areas. The metal content in dust was analyzed by inductively coupled plasma mass spectrometry (ICP-MS). Atomic Force Microscopy (AFM) and Scanning electron microscopy (SEM) were used to investigate the shape and size distribution of the particles, and to characterize the semiquantitative chemical composition of particles adhered to honey bee's wings. Principal Component Analysis (PCA) shows a distinctive urban dust geochemical signature for each city, with component 1 defining V-Cr-Ni-Tl-Pt-Pb-Sb as characteristic of Mexico City and Ce-As-Zr for dust from Hermosillo. Particle count using SEM indicates that 69% and 63.4% of the resuspended dust from Hermosillo and Mexico City, respectively, corresponds to PM2.5. Instead, the particle count measured on the honey bee wings from Hermosillo and Mexico City is mainly PM2.5, 91.4% and 88.9%, respectively. The wings from honey bees collected in the villages and the university campus show much lower particle amounts. AFM-histograms confirmed that the particles identified in Mexico City have even smaller sizes (between 60 and 480 nm) than those in Hermosillo (between 400 and 1400 nm). Particles enriched in As, Zr, and Ce mixed with geogenic elements such as Si, Ca, Mg, K, and Na dominate honey bee' wings collected in Hermosillo. In contrast, those particles collected from Mexico City contain V, Cr, Ni, Tl, Pt, Pb, and Sb. Such results agree with the urban dust data. This work shows that honey bees are suitable biosamplers for the characterization of fine dust fractions by microscopy techniques and reflect the urban pollution of the sites.


Subject(s)
Cities , Dust , Environmental Monitoring , Particulate Matter , Bees , Animals , Mexico , Particulate Matter/analysis , Dust/analysis , Air Pollutants/analysis , Particle Size , Urbanization , Metals/analysis
18.
ACS Infect Dis ; 10(8): 2485-2506, 2024 Aug 09.
Article in English | MEDLINE | ID: mdl-39001837

ABSTRACT

Leishmaniasis, a critical Neglected Tropical Disease caused by Leishmania protozoa, represents a significant global health risk, particularly in resource-limited regions. Conventional treatments are effective but suffer from serious limitations, such as toxicity, prolonged treatment courses, and rising drug resistance. Herein, we highlight the potential of inorganic nanomaterials as an innovative approach to enhance Leishmaniasis therapy, aligning with the One Health concept by considering these treatments' environmental, veterinary, and public health impacts. By leveraging the adjustable properties of these nanomaterials─including size, shape, and surface charge, tailored treatments for various diseases can be developed that are less harmful to the environment and nontarget species. We review recent advances in metal-, oxide-, and carbon-based nanomaterials for combating Leishmaniasis, examining their mechanisms of action and their dual use as standalone treatments or drug delivery systems. Our analysis highlights a promising yet underexplored frontier in employing these materials for more holistic and effective disease management.


Subject(s)
Antiprotozoal Agents , Leishmania , Leishmaniasis , Nanostructures , Leishmaniasis/drug therapy , Leishmaniasis/parasitology , Nanostructures/therapeutic use , Humans , Leishmania/drug effects , Antiprotozoal Agents/therapeutic use , Antiprotozoal Agents/pharmacology , Animals , Drug Delivery Systems
19.
Curr Med Chem ; 2024 07 26.
Article in English | MEDLINE | ID: mdl-39069809

ABSTRACT

Nanotechnology has been established as a promising alternative for treating a myriad of disease-causing microorganisms that pose threats to human health. The utilization of nanoparticles (NPs) emerges as a strategy to enhance the therapeutic arsenal against these diseases, especially given the tendency of many pathogens to develop resistance to conventional medications. Notably, titanium dioxide nanoparticles (TiO2NPs) have garnered attention for their multifaceted biomedical applications, encompassing antibacterial, antifungal, antiviral, anticancer, antioxidant, and drug delivery properties. This review focuses on the cutting-edge potential of TiO2NPs against helminths, protozoa, and vectors, underscoring their pivotal role in combating these health-threatening agents.

20.
J Drug Target ; 32(9): 1086-1100, 2024 Nov.
Article in English | MEDLINE | ID: mdl-38980282

ABSTRACT

Cost-effective strategies for the treatment of chronic wounds must be developed. The green synthesis of gold nanoparticles (GNPs) it is possible to guarantee a lower toxicity in biological tissues and greater safety of applicability, in addition to adding the effects of nanoparticles (NPs) to those of extracts. The objective of this study was to evaluate the effects of treatment with biosynthesized GNPs in a chronic wound model. Wistar rats were distributed into 7 groups: Acute Wound (AW); Chronic wound (CW); CW + GNPs-Açaí; CW + GNPs-DB; CW + AV-GNPs; CW + SafGel®; CW + 660 nm laser. The chronic injury model was induced with topically applied Resiquimod for 6 days. Treatments were then initated on the fourteenth day after the last application of Resiquimod and carried out daily for ten days. The proposed therapies with GNPs were able to significantly reduce the inflammatory score and increase the rate of wound contraction. In histology, there was a reduction in the inflammatory infiltrate and increased gene expression of fibronectin and type III collagen, mainly in the CW + AV-GNPs group. The therapies were able to reduce pro-inflammatory cytokines, increase anti-inflammatory cytokines, and reduce oxidative stress. The results demonstrated that the effects of GNPs appear to complement those of the extracts, thereby enhancing the tissue repair process.


Subject(s)
Disease Models, Animal , Gold , Green Chemistry Technology , Imidazoles , Metal Nanoparticles , Rats, Wistar , Wound Healing , Animals , Gold/chemistry , Gold/administration & dosage , Metal Nanoparticles/administration & dosage , Rats , Imidazoles/administration & dosage , Imidazoles/pharmacology , Wound Healing/drug effects , Green Chemistry Technology/methods , Male , Oxidative Stress/drug effects , Chronic Disease , Cytokines/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL