Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 86
Filter
Add more filters











Publication year range
1.
J Physiol ; 602(17): 4215-4235, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39167700

ABSTRACT

Oxidative stress contributes to the loss of skeletal muscle mass and function in cancer cachexia. However, this outcome may be mitigated by an improved endogenous antioxidant defence system. Here, using the well-established oxidative stress-inducing muscle atrophy model of Lewis lung carcinoma (LLC) in 13-week-old male C57BL/6J mice, we demonstrate that extracellular superoxide dismutase (EcSOD) levels increase in the cachexia-prone extensor digitorum longus muscle. LLC transplantation significantly increased interleukin-1ß (IL-1ß) expression and release from extensor digitorum longus muscle fibres. Moreover, IL-1ß treatment of C2C12 myotubes increased NBR1, p62 phosphorylation at Ser351, Nrf2 nuclear translocation and EcSOD protein expression. Additional studies in vivo indicated that intramuscular IL-1ß injection is sufficient to stimulate EcSOD expression, which is prevented by muscle-specific knockout of p62 and Nrf2 (i.e. in p62 skmKO and Nrf2 skmKO mice, respectively). Finally, since an increase in circulating IL-1ß may lead to unwanted outcomes, we demonstrate that targeting this pathway at p62 is sufficient to drive muscle EcSOD expression in an Nrf2-dependent manner. In summary, cancer cachexia increases EcSOD expression in extensor digitorum longus muscle via muscle-derived IL-1ß-induced upregulation of p62 phosphorylation and Nrf2 activation. These findings provide further mechanistic evidence for the therapeutic potential of p62 and Nrf2 to mitigate cancer cachexia-induced muscle atrophy. KEY POINTS: Oxidative stress plays an important role in muscle atrophy during cancer cachexia. EcSOD, which mitigates muscle loss during oxidative stress, is upregulated in 13-week-old male C57BL/6J mice of extensor digitorum longus muscles during cancer cachexia. Using mouse and cellular models, we demonstrate that cancer cachexia promotes muscle EcSOD protein expression via muscle-derived IL-1ß-dependent stimulation of the NBR1-p62-Nrf2 signalling pathway. These results provide further evidence for the potential therapeutic targeting of the NBR1-p62-Nrf2 signalling pathway downstream of IL-1ß to mitigate cancer cachexia-induced muscle atrophy.


Subject(s)
Cachexia , Interleukin-1beta , Mice, Inbred C57BL , Muscle, Skeletal , NF-E2-Related Factor 2 , Signal Transduction , Superoxide Dismutase , Animals , NF-E2-Related Factor 2/metabolism , NF-E2-Related Factor 2/genetics , Cachexia/metabolism , Cachexia/etiology , Cachexia/genetics , Male , Interleukin-1beta/metabolism , Muscle, Skeletal/metabolism , Mice , Superoxide Dismutase/metabolism , Superoxide Dismutase/genetics , Sequestosome-1 Protein/metabolism , Sequestosome-1 Protein/genetics , Carcinoma, Lewis Lung/metabolism , Carcinoma, Lewis Lung/complications , Carcinoma, Lewis Lung/genetics , Muscular Atrophy/metabolism , Muscular Atrophy/etiology , Muscular Atrophy/genetics , Mice, Knockout , Oxidative Stress
2.
Cells ; 13(14)2024 Jul 20.
Article in English | MEDLINE | ID: mdl-39056807

ABSTRACT

Recycling of unnecessary or dysfunctional cellular structures through autophagy plays a critical role in cellular homeostasis and environmental resilience. Therefore, the autophagy trait may have been unintentionally selected in wheat breeding programs for higher yields in arid climates. This hypothesis was tested by measuring the response of three common autophagy markers, ATG7, ATG8, and NBR1, to a heat wave under reduced soil moisture content in 16 genetically diverse spring wheat landraces originating from different geographical locations. We observed in the greenhouse trials that ATG8 and NBR1 exhibited genotype-specific responses to a 1 h, 40 °C heat wave, while ATG7 did not show a consistent response. Three genotypes from Uruguay, Mozambique, and Afghanistan showed a pattern consistent with higher autophagic activity: decreased or stable abundance of both ATG8 and NBR1 proteins, coupled with increased transcription of ATG8 and NBR1. In contrast, three genotypes from Pakistan, Ethiopia, and Egypt exhibited elevated ATG8 protein levels alongside reduced or unaltered ATG8 transcript levels, indicating a potential suppression or no change in autophagic activity. Principal component analysis demonstrated a correlation between lower abundance of ATG8 and NBR1 proteins and higher yield in the field trials. We found that (i) the combination of heat and drought activated autophagy only in several genotypes, suggesting that despite being a resilience mechanism, autophagy is a heat-sensitive process; (ii) higher autophagic activity correlates positively with greater yield; (iii) the lack of autophagic activity in some high-yielding genotypes suggests contribution of alternative stress-resilient mechanisms; and (iv) enhanced autophagic activity in response to heat and drought was independently selected by wheat breeding programs in different geographic locations.


Subject(s)
Autophagy , Genotype , Hot Temperature , Plant Proteins , Triticum , Triticum/genetics , Triticum/metabolism , Triticum/physiology , Autophagy/genetics , Plant Proteins/genetics , Plant Proteins/metabolism , Gene Expression Regulation, Plant
3.
Cell Rep ; 43(6): 114294, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38814780

ABSTRACT

Ubiquitination of mitochondrial proteins provides a basis for the downstream recruitment of mitophagy machinery, yet whether ubiquitination of the machinery itself contributes to mitophagy is unknown. Here, we show that K63-linked polyubiquitination of the key mitophagy regulator TBK1 is essential for its mitophagy functions. This modification is catalyzed by the ubiquitin ligase TRIM5α and is required for TBK1 to interact with and activate a set of ubiquitin-binding autophagy adaptors including NDP52, p62/SQSTM1, and NBR1. Autophagy adaptors, along with TRIM27, enable TRIM5α to engage with TBK1 following mitochondrial damage. TRIM5α's ubiquitin ligase activity is required for the accumulation of active TBK1 on damaged mitochondria in Parkin-dependent and Parkin-independent mitophagy pathways. Our data support a model in which TRIM5α provides a mitochondria-localized, ubiquitin-based, self-amplifying assembly platform for TBK1 and mitophagy adaptors that is ultimately necessary for the recruitment of the core autophagy machinery.


Subject(s)
Mitochondria , Mitophagy , Protein Serine-Threonine Kinases , Ubiquitin-Protein Ligases , Ubiquitination , Humans , Ubiquitin-Protein Ligases/metabolism , Protein Serine-Threonine Kinases/metabolism , Mitochondria/metabolism , HEK293 Cells , HeLa Cells , Autophagy
4.
bioRxiv ; 2024 May 09.
Article in English | MEDLINE | ID: mdl-38766171

ABSTRACT

During autophagy, potentially toxic cargo is enveloped by a newly formed autophagosome and trafficked to the lysosome for degradation. Ubiquitinated protein aggregates, a key target for autophagy, are identified by multiple autophagy receptors. NBR1 is an archetypal autophagy receptor and an excellent model for deciphering the role of the multivalent, heterotypic interactions made by cargo-bound receptors. Using NBR1 as a model, we find that three critical binding partners - ATG8-family proteins, FIP200, and TAX1BP1 - each bind to a short linear interaction motif (SLiM) within NBR1. Mutational peptide arrays indicate that these binding events are mediated by distinct overlapping determinants, rather than a single, convergent, SLiM. AlphaFold modeling underlines the need for conformational flexibility within the NBR1 SLiM, as distinct conformations mediate each binding event. To test the extent to which overlapping SLiMs exist beyond NBR1, we performed peptide binding arrays on >100 established LC3-interacting regions (LIRs), revealing that FIP200 and/or TAX1BP1 binding to LIRs is a common phenomenon and suggesting LIRs as protein interaction hotspots. Comparative analysis of phosphomimetic peptides highlights that while FIP200 and Atg8-family binding are generally augmented by phosphorylation, TAX1BP1 binding is nonresponsive, suggesting differential regulation of these binding events. In vivo studies confirm that LIR-mediated interactions with TAX1BP1 enhance NBR1 activity, increasing autophagosomal delivery by leveraging an additional LIR from TAX1BP1. In sum, these results reveal a one-to-many binding modality in NBR1, providing key insights into the cooperative mechanisms among autophagy receptors. Furthermore, these findings underscore the pervasive role of multifunctional SLiMs in autophagy, offering substantial avenues for further exploration into their regulatory functions.

5.
Biochem Biophys Res Commun ; 715: 150006, 2024 06 30.
Article in English | MEDLINE | ID: mdl-38678786

ABSTRACT

Vascular endothelial cells play a critical role in maintaining the health of blood vessels, but dysfunction can lead to cardiovascular diseases. The impact of arsenite exposure on cardiovascular health is a significant concern due to its potential adverse effects. This study aims to explore how NBR1-mediated autophagy in vascular endothelial cells can protect against oxidative stress and apoptosis induced by arsenite. Initially, our observations revealed that arsenite exposure increased oxidative stress and triggered apoptotic cell death in human umbilical vein endothelial cells (HUVECs). However, treatment with the apoptosis inhibitor Z-VAD-FMK notably reduced arsenite-induced apoptosis. Additionally, arsenite activated the autophagy pathway and enhanced autophagic flux in HUVECs. Interestingly, inhibition of autophagy exacerbated arsenite-induced apoptotic cell death. Our findings also demonstrated the importance of autophagy receptor NBR1 in arsenite-induced cytotoxicity, as it facilitated the recruitment of caspase 8 to autophagosomes for degradation. The protective effect of NBR1 against arsenite-induced apoptosis was compromised when autophagy was inhibited using pharmacological inhibitors or through genetic knockdown of essential autophagy genes. Conversely, overexpression of NBR1 facilitated caspase 8 degradation and reduced apoptotic cell death in arsenite-treated HUVECs. In conclusion, our study highlights the vital role of NBR1-mediated autophagic degradation of caspase 8 in safeguarding vascular endothelial cells from arsenite-induced oxidative stress and apoptotic cell death. Targeting this pathway could offer a promising therapeutic approach to mitigate cardiovascular diseases associated with arsenite exposure.


Subject(s)
Apoptosis , Arsenites , Autophagy , Caspase 8 , Human Umbilical Vein Endothelial Cells , Oxidative Stress , Humans , Arsenites/toxicity , Human Umbilical Vein Endothelial Cells/drug effects , Human Umbilical Vein Endothelial Cells/metabolism , Apoptosis/drug effects , Autophagy/drug effects , Caspase 8/metabolism , Caspase 8/genetics , Oxidative Stress/drug effects , Intracellular Signaling Peptides and Proteins/metabolism , Intracellular Signaling Peptides and Proteins/genetics , Proteolysis/drug effects , Cells, Cultured
6.
EMBO Rep ; 25(6): 2571-2591, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38684906

ABSTRACT

Auxin dictates root architecture via the Auxin Response Factor (ARF) family of transcription factors, which control lateral root (LR) formation. In Arabidopsis, ARF7 regulates the specification of prebranch sites (PBS) generating LRs through gene expression oscillations and plays a pivotal role during LR initiation. Despite the importance of ARF7 in this process, there is a surprising lack of knowledge about how ARF7 turnover is regulated and how this impacts root architecture. Here, we show that ARF7 accumulates in autophagy mutants and is degraded through NBR1-dependent selective autophagy. We demonstrate that the previously reported rhythmic changes to ARF7 abundance in roots are modulated via autophagy and might occur in other tissues. In addition, we show that the level of co-localization between ARF7 and autophagy markers oscillates and can be modulated by auxin to trigger ARF7 turnover. Furthermore, we observe that autophagy impairment prevents ARF7 oscillation and reduces both PBS establishment and LR formation. In conclusion, we report a novel role for autophagy during development, namely by enacting auxin-induced selective degradation of ARF7 to optimize periodic root branching.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Autophagy , Gene Expression Regulation, Plant , Indoleacetic Acids , Plant Roots , Arabidopsis Proteins/metabolism , Arabidopsis Proteins/genetics , Arabidopsis/metabolism , Arabidopsis/growth & development , Arabidopsis/genetics , Plant Roots/growth & development , Plant Roots/metabolism , Indoleacetic Acids/metabolism , Transcription Factors/metabolism , Transcription Factors/genetics , Carrier Proteins
7.
Chin Med ; 19(1): 60, 2024 Apr 08.
Article in English | MEDLINE | ID: mdl-38589903

ABSTRACT

BACKGROUND: Idiopathic pulmonary fibrosis is a persistent disease of the lung interstitium for which there is no efficacious pharmacological therapy. Protodioscin, a steroidal saponin, possesses diverse pharmacological properties; however, its function in pulmonary fibrosis is yet to be established. Hence, in this investigation, it was attempted to figure out the anti-pulmonary fibrosis influences of protodioscin and its pharmacological properties related to oxidative stress. METHODS: A mouse lung fibrosis model was generated using tracheal injections of bleomycin, followed by intraperitoneal injection of different concentrations of protodioscin, and the levels of oxidative stress and fibrosis were detected in the lungs. Multiple fibroblasts were treated with TGF-ß to induce their transition to myofibroblasts. It was attempted to quantify myofibroblast markers' expression levels and reactive oxygen species levels as well as Nrf2 activation after co-incubation of TGF-ß with fibroblasts and different concentrations of protodioscin. The influence of protodioscin on the expression and phosphorylation of p62, which is associated with Nrf2 activation, were detected, and p62 related genes were predicted by STRING database. The effects of Nrf2 inhibitor or silencing of the Nrf2, p62 and NBR1 genes, respectively, on the activation of Nrf2 by protodioscin were examined. The associations between p62, NBR1, and Keap1 in the activation of Nrf2 by protodioscin was demonstrated using a co-IP assay. Nrf2 inhibitor were used when protodioscin was treated in mice with pulmonary fibrosis and lung tissue fibrosis and oxidative stress levels were detected. RESULTS: In vivo, protodioscin decreased the levels of fibrosis markers and oxidative stress markers and activated Nrf2 in mice with pulmonary fibrosis, and these effects were inhibited by Nrf2 inhibitor. In vitro, protodioscin decreased the levels of myofibroblast markers and oxidative stress markers during myofibroblast transition and promoted Nrf2 downstream gene expression, with reversal of these effects after Nrf2, p62 and NBR1 genes were silenced or Nrf2 inhibitors were used, respectively. Protodioscin promoted the binding of NBR1 to p62 and Keap1, thereby reducing Keap1-Nrf2 binding. CONCLUSION: The NBR1-p62-Nrf2 axis is targeted by protodioscin to reduce oxidative stress and inhibit pulmonary fibrosis.

8.
Chemosphere ; 358: 142138, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38670504

ABSTRACT

Cadmium (Cd), a well-established developmental toxicant, accumulates in the placentae and disrupts its structure and function. Population study found adverse pregnancy outcomes caused by environmental Cd exposure associated with cell senescence. However, the role of autophagy activation in Cd-induced placental cell senescence and its reciprocal mechanisms are unknown. In this study, we employed animal experiments, cell culture, and case-control study to investigate the above mentioned. We have demonstrated that exposure to Cd during gestation induces placental senescence and activates autophagy. Pharmacological and genetic interventions further exacerbated placental senescence induced by Cd through the suppression of autophagy. Conversely, activation of autophagy ameliorated Cd-induced placental senescence. Knockdown of NBR1 exacerbated senescence in human placental trophoblast cells. Further investigations revealed that NBR1 facilitated the degradation of p21 via LC3B. Our case-control study has demonstrated a positive correlation between placental senescence and autophagy activation in all-cause fetal growth restriction (FGR). These findings offer a novel perspective for mitigating placental aging and placental-origin developmental diseases induced by environmental toxicants.


Subject(s)
Autophagy , Cadmium , Cellular Senescence , Placenta , Trophoblasts , Autophagy/drug effects , Cadmium/toxicity , Female , Pregnancy , Humans , Cellular Senescence/drug effects , Trophoblasts/drug effects , Placenta/drug effects , Placenta/cytology , Animals , Environmental Pollutants/toxicity , Case-Control Studies , Fetal Growth Retardation/chemically induced , Mice
9.
Int J Biol Sci ; 20(2): 701-717, 2024.
Article in English | MEDLINE | ID: mdl-38169523

ABSTRACT

Intervertebral disc degeneration (IDD) is a prevalent degenerative disorder that closely linked to aging. Numerous studies have indicated the crucial involvement of autophagy in the development of IDD. However, the non-selective nature of autophagy substrates poses great limitations on the application of autophagy-related medications. This study aims to enhance our comprehension of autophagy in the development of IDD and investigate a novel therapeutic approach from the perspective of selective autophagy receptor NBR1. Proteomics and immunoprecipitation and mass spectrometry analysis, combined with in vivo and in vitro experimental verification were performed. NBR1 is found to be reduced in IDD, and NBR1 retards cellular senescence and senescence-associated secretory phenotype (SASP) of nucleus pulposus cells (NPCs), primarily through its autophagy-dependent function. Mechanistically, NBR1 knockdown leads to the accumulation of S1 RNA-binding domain-containing protein 1 (SRBD1), which triggers cellular senescence via AKT1/p53 and RB/p16 pathways, and promotes SASP via NF-κß pathway in NPCs. Our findings reveal the function and mechanism of selective autophagy receptor NBR1 in regulating NPCs senescence and degeneration. Targeting NBR1 to facilitate the clearance of detrimental substances holds the potential to provide novel insights for IDD treatment.


Subject(s)
Intervertebral Disc Degeneration , Nucleus Pulposus , Humans , Nucleus Pulposus/metabolism , Cellular Senescence/genetics , Aging , Intervertebral Disc Degeneration/genetics , Intervertebral Disc Degeneration/metabolism , Autophagy/genetics , Intracellular Signaling Peptides and Proteins/metabolism , RNA-Binding Proteins/metabolism
10.
Autophagy ; 20(3): 577-589, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37899687

ABSTRACT

Macroautophagy/autophagy receptors are essential for the recognition and clearance of specific cargos by selective autophagy, which is essential for maintaining MAPT proteostasis. Previous studies have implicated different autophagy receptors in directing distinct species of MAPT to autophagy, but the underlying mechanisms have not been fully investigated. Here we examine how the autophagy receptors NBR1 and SQSTM1 differentially associate with specific forms of MAPT. In primary neurons depletion of NBR1, unlike depletion of SQSTM1, significantly increased phosphorylated MAPT levels. The specificity of the interactions was confirmed using in vitro binding assays with purified proteins. We provide direct evidence that the co-chaperone BAG3 promotes the preferential association of NBR1 with monomeric MAPT and SQSTM1 with oligomeric MAPT. Using an in vitro affinity-isolation assay, we show that SQSTM1 only binds to monomeric MAPT when BAG3 is absent and fails to bind when BAG3 is present. The opposite is true of NBR1; its association with monomeric MAPT was dependent on the presence of BAG3. Interestingly, in Alzheimer disease brain the association of NBR1 with BAG3 was significantly decreased. In a mouse model, ablation of BAG3 in neural cells disrupted the association of NBR1 with phosphorylated MAPT and led to increased levels of phosphorylated and oligomeric MAPT. Overall, our results uncover a novel role for BAG3 in regulating the specificity of selective autophagy receptors in targeting different species of MAPT and provide compelling evidence that BAG3 plays a key role in maintaining MAPT proteostasis.Abbreviations: AD: Alzheimer disease; BAG3: BCL2-associated athanogene 3; BSA: bovine serum albumin; CERAD: Consortium to Establish a Registry for Alzheimer's Disease; ESCRT: endosomal sorting complexes required for transport; GST: glutathione S-transferases; MAPT: microtubule-associated protein tau; NBR1: NBR1, autophagy cargo receptor; NFT: neurofibrillary tangles; PMI: postmortem interval; SQSTM1: sequestosome 1.


Subject(s)
Adaptor Proteins, Signal Transducing , Alzheimer Disease , Mice , Animals , Sequestosome-1 Protein/metabolism , Adaptor Proteins, Signal Transducing/metabolism , Autophagy , Carrier Proteins/metabolism
11.
Autophagy ; 20(1): 205-206, 2024 01.
Article in English | MEDLINE | ID: mdl-37635361

ABSTRACT

Macroautophagy/autophagy is a conserved process in eukaryotes responsible for degrading unwanted or damaged macromolecules and organelles through the lysosome or vacuole for recycling and reutilization. Our previous studies revealed the degradation of chloroplast proteins through a pathway dependent on the ubiquitin proteasome system, known as CHLORAD. Recently, we demonstrated a role for selective autophagy in regulating chloroplast protein import and enhancing stress tolerance in plants. Specifically, we found that K63-ubiquitination of TOC components at the chloroplast outer envelope membrane is recognized by the selective autophagy adaptor NBR1, leading to the degradation of TOC proteins under UV-B irradiation and heat stresses in Arabidopsis. This process was shown to control chloroplast protein import and influence photosynthetic activity. Based on our results, we have, for the first time, demonstrated that selective autophagy plays a vital role in chloroplast protein degradation, specifically in response to certain abiotic stresses.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Macroautophagy , Autophagy , Proteins/metabolism , Chloroplasts/metabolism , Plants/metabolism , Arabidopsis/metabolism , Vacuoles/metabolism , Carrier Proteins/metabolism , Arabidopsis Proteins/metabolism
12.
Autophagy ; 20(2): 441-442, 2024 02.
Article in English | MEDLINE | ID: mdl-37815214

ABSTRACT

SQSTM1/p62 bodies are phase-separated condensates that play a fundamental role in intracellular quality control and stress responses. Despite extensive studies investigating the mechanism of formation and degradation of SQSTM1/p62 bodies, the constituents of SQSTM1/p62 bodies remain elusive. We recently developed a purification method for intracellular SQSTM1/p62 bodies using a cell sorter and identified their constituents by mass spectrometry. Combined with mass spectrometry of tissues from selective autophagy-deficient mice, we identified vault, a ubiquitous non-membranous organelle composed of proteins and non-coding RNA, as a novel substrate for selective autophagy. Vault directly binds to NBR1, an SQSTM1/p62 binding partner recruited to SQSTM1/p62 bodies, and is subsequently degraded by selective autophagy dependent on the phase separation of SQSTM1/p62. We named this process "vault-phagy" and found that defects in vault-phagy are related to nonalcoholic steatohepatitis (NASH)-derived hepatocellular carcinoma. Our method for purifying SQSTM1/p62 bodies will contribute to elucidating the mechanisms of several stress responses and diseases mediated by SQSTM1/p62 bodies.


Subject(s)
Adaptor Proteins, Signal Transducing , Liver Neoplasms , Animals , Mice , Adaptor Proteins, Signal Transducing/metabolism , Sequestosome-1 Protein/metabolism , Autophagy , Organelles/metabolism
13.
Behav Brain Res ; 458: 114685, 2024 02 26.
Article in English | MEDLINE | ID: mdl-37776955

ABSTRACT

Post-stroke depression (PSD) is a serious neuropsychiatric complication post stroke and leads to cognitive deficits. This study was conducted to explore the molecular mechanism of hypoxia-inducible factor-1α (HIF-1A) in cognitive dysfunction in rats with PSD. The rat model of PSD was established by middle cerebral artery occlusion, followed by 3 weeks of treatment with chronic unpredictable mild stress. The levels of miR-582-5p, HIF-1A, and neighbor of Brca1 gene (NBR1) in brain tissues were determined using RT-qPCR. The behaviors and cognitive capacity of rats were evaluated by various behavioral tests. PSD rats were injected with HIF-1A/miR-582-5p lowexpression vectors or NBR1 overexpression vectors via stereotactic method. The binding of HIF-1A to NBR1 or miR-582-5p was analyzed by chromatin immunoprecipitation and dual-luciferase assay. HIF-1A and NBR1 were highly expressed while miR-582-5p was poorly expressed in the brain of PSD rats. HIF-1A inhibition alleviated cognitive dysfunction of PSD rats. miR-582-5p was the upstream miRNA of HIF-1A, and HIF-1A specifically interacted with the NBR1 promoter to enhance NBR1 expression. miR-582-5p downregulation and NBR1 upregulation reversed the alleviative role of HIF-1A inhibition in cognitive dysfunction of PSD rats. In summary, HIF-1A inhibition may be a therapeutic target for cognitive dysfunction post PSD.


Subject(s)
Cognitive Dysfunction , MicroRNAs , Stroke , Animals , Rats , Cognition , Cognitive Dysfunction/complications , Hypoxia-Inducible Factor 1, alpha Subunit , MicroRNAs/metabolism , Stroke/complications
14.
J Exp Clin Cancer Res ; 42(1): 289, 2023 Nov 02.
Article in English | MEDLINE | ID: mdl-37915049

ABSTRACT

BACKGROUND: TAMs (tumor-associated macrophages) infiltration promotes the progression of esophageal cancer (EC). However, the underlying mechanisms remain unclear. METHODS: Abnormal expression of LINC01592 from EC microarrays of the TCGA database was analyzed. LINC01592 expression level was validated in both EC cell lines and tissues. Stable LINC01592 knockdown and overexpression of EC cell lines were established. In vitro and in vivo trials were conducted to test the impact of LINC01592 knockdown and overexpression on EC cells. RNA binding protein immunoprecipitation (RIP), RNA pulldown assays, and Immunofluorescence (IF) were used to verify the combination of E2F6 and LINC01592. The combination of E2F6 and NBR1 was verified through the utilization of ChIP and dual luciferase reporter assays. RESULTS: LINC01592 is carried and transferred by exosomes secreted by M2-TAMs to tumor cells. The molecular mechanism underlying the promotion of NBR1 transcription involves the direct binding of LINC01592 to E2F6, which facilitates the nuclear entry of E2F6. The collaborative action of LINC01592 and E2F6 results in improved NBR1 transcription. The elevation of NBR1 binding to the ubiquitinated protein MHC-I via the ubiquitin domain caused a higher degradation of MHC-I in autophagolysosomes and a reduction in MHC-I expression on the exterior of cancerous cell. Consequently, this caused cancerous cells to escape from CD8+ CTL immune attack. The tumor-promoting impacts of LINC01592, as well as the growth of M2-type macrophage-driven tumors, were significantly suppressed by the interruption of E2F6/NBR1/MHC-I signaling through the effect of siRNA or the corresponding antibody blockade. Significantly, the suppression of LINC01592 resulted in an upregulation of MHC-I expression on the tumor cell membrane, thereby enhancing the efficacy of CD8+ T cell reinfusion therapy. CONCLUSIONS: The investigation conducted has revealed a significant molecular interaction between TAMs and EC via the LINC01592/E2F6/NBR1/MHC-I axis, which facilitates the progression of malignant tumors. This suggests that a therapeutic intervention targeting this axis may hold promise for the treatment of the disease.


Subject(s)
Esophageal Neoplasms , Exosomes , Humans , Tumor-Associated Macrophages , Exosomes/genetics , Esophageal Neoplasms/pathology , RNA, Small Interfering/genetics , Macrophages/metabolism , Cell Line, Tumor
15.
Proc Natl Acad Sci U S A ; 120(43): e2311282120, 2023 10 24.
Article in English | MEDLINE | ID: mdl-37847732

ABSTRACT

Liquid droplet has emerged as a flexible intracellular compartment that modulates various cellular processes. Here, we uncover an antimetastatic mechanism governed by the liquid droplets formed through liquid-liquid phase separation (LLPS) of SQSTM1/p62 and neighbor of BRCA1 gene 1 (NBR1). Some of the tyrosine kinase inhibitors (TKIs) initiated lysosomal stress response that promotes the LLPS of p62 and NBR1, resulting in the spreading of p62/NBR1 liquid droplets. Interestingly, in the p62/NBR1 liquid droplet, degradation of RAS-related C3 botulinum toxin substrate 1 was accelerated by cellular inhibitor of apoptosis protein 1, which limits cancer cell motility. Moreover, the antimetastatic activity of the TKIs was completely overridden in p62/NBR1 double knockout cells both in vitro and in vivo. Thus, our results demonstrate a function of the p62/NBR1 liquid droplet as a critical determinant of cancer cell behavior, which may provide insight into both the clinical and biological significance of LLPS.


Subject(s)
Intracellular Signaling Peptides and Proteins , Neoplasms , Sequestosome-1 Protein/genetics , Lysosomes , Autophagy , Neoplasms/drug therapy , Neoplasms/genetics
16.
bioRxiv ; 2023 Oct 20.
Article in English | MEDLINE | ID: mdl-37905089

ABSTRACT

Ubiquitination of mitochondrial proteins provides a basis for the downstream recruitment of mitophagy machinery, yet whether ubiquitination of the machinery itself contributes to mitophagy is unknown. Here, we show that K63-linked polyubiquitination of the key mitophagy regulator TBK1 is essential for its mitophagy functions. This modification is catalyzed by the ubiquitin ligase TRIM5α. Mitochondrial damage triggers TRIM5α's auto-ubiquitination and its interaction with ubiquitin-binding autophagy adaptors including NDP52, optineurin, and NBR1. Autophagy adaptors, along with TRIM27, enable TRIM5α to engage with TBK1. TRIM5α with intact ubiquitination function is required for the proper accumulation of active TBK1 on damaged mitochondria in Parkin-dependent and Parkin-independent mitophagy pathways. Additionally, we show that TRIM5α can directly recruit autophagy initiation machinery to damaged mitochondria. Our data support a model in which TRIM5α provides a self-amplifying, mitochondria-localized, ubiquitin-based, assembly platform for TBK1 and mitophagy adaptors that is ultimately required to recruit the core autophagy machinery.

18.
Dev Cell ; 58(13): 1189-1205.e11, 2023 07 10.
Article in English | MEDLINE | ID: mdl-37192622

ABSTRACT

In addition to membranous organelles, autophagy selectively degrades biomolecular condensates, in particular p62/SQSTM1 bodies, to prevent diseases including cancer. Evidence is growing regarding the mechanisms by which autophagy degrades p62 bodies, but little is known about their constituents. Here, we established a fluorescence-activated-particle-sorting-based purification method for p62 bodies using human cell lines and determined their constituents by mass spectrometry. Combined with mass spectrometry of selective-autophagy-defective mouse tissues, we identified vault, a large supramolecular complex, as a cargo within p62 bodies. Mechanistically, major vault protein directly interacts with NBR1, a p62-interacting protein, to recruit vault into p62 bodies for efficient degradation. This process, named vault-phagy, regulates homeostatic vault levels in vivo, and its impairment may be associated with non-alcoholic-steatohepatitis-derived hepatocellular carcinoma. Our study provides an approach to identifying phase-separation-mediated selective autophagy cargoes, expanding our understanding of the role of phase separation in proteostasis.


Subject(s)
Liver Neoplasms , Proteomics , Animals , Humans , Mice , Sequestosome-1 Protein/metabolism , Autophagy , Organelles/metabolism
19.
EMBO J ; 42(14): e112534, 2023 07 17.
Article in English | MEDLINE | ID: mdl-37248861

ABSTRACT

Chloroplasts are plant organelles responsible for photosynthesis and environmental sensing. Most chloroplast proteins are imported from the cytosol through the translocon at the outer envelope membrane of chloroplasts (TOC). Previous work has shown that TOC components are regulated by the ubiquitin-proteasome system (UPS) to control the chloroplast proteome, which is crucial for the organelle's function and plant development. Here, we demonstrate that the TOC apparatus is also subject to K63-linked polyubiquitination and regulation by selective autophagy, potentially promoting plant stress tolerance. We identify NBR1 as a selective autophagy adaptor targeting TOC components, and mediating their relocation into vacuoles for autophagic degradation. Such selective autophagy is shown to control TOC protein levels and chloroplast protein import and to influence photosynthetic activity as well as tolerance to UV-B irradiation and heat stress in Arabidopsis plants. These findings uncover the vital role of selective autophagy in the proteolytic regulation of specific chloroplast proteins, and how dynamic control of chloroplast protein import is critically important for plants to cope with challenging environments.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Chloroplasts/metabolism , Plants/metabolism , Organelles/metabolism , Protein Transport , Chloroplast Proteins/genetics , Chloroplast Proteins/metabolism , Arabidopsis/genetics , Arabidopsis/metabolism , Autophagy , Plant Proteins/genetics , Plant Proteins/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Carrier Proteins/metabolism
20.
Adv Sci (Weinh) ; 10(17): e2207067, 2023 06.
Article in English | MEDLINE | ID: mdl-37097629

ABSTRACT

Tumor-associated macrophage (TAM) infiltration facilitates glioma malignancy, but the underlying mechanisms remain unclear. Herein, it is reported that TAMs secrete exosomal LINC01232 to induce tumor immune escape. Mechanistically, LINC01232 is found to directly bind E2F2 and promote E2F2 entry into the nucleus; the two synergistically promots the transcription of NBR1. The increase in binding between NBR1 binding and the ubiquitinating MHC-I protein through the ubiquitin domain causes an increase in the degradation of MHC-I in autophagolysosomes and a decrease in the expression of MHC-I on the surface of tumor cells, which in turn led to tumor cell escape from CD8+ CTL immune attack. Disruption of E2F2/NBR1/MHC-I signaling with shRNAs or blockade with the corresponding antibodies largely abolishes the tumor-supportive effects of LINC01232 and inhibits tumor growth driven by M2-type macrophages. Importantly, knockdown of LINC01232 enhances the expression of MHC-I on the surface of tumor cells and improves the response to reinfusion with CD8+ T cells. This study reveals the existence of critical molecular crosstalk between TAMs and glioma mediates through the LINC01232/E2F2/NBR1/MHC-I axis to support malignant tumor growth, indicating that targeting this axis may have therapeutic potential.


Subject(s)
Glioma , Tumor-Associated Macrophages , Humans , CD8-Positive T-Lymphocytes , Glioma/metabolism , Macrophages/metabolism , Signal Transduction , RNA, Long Noncoding
SELECTION OF CITATIONS
SEARCH DETAIL