Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 47
Filter
1.
Heliyon ; 10(11): e32483, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38933967

ABSTRACT

Ginsenoside Rd is a tetracyclic triterpenoid derivative, widely existing in Panax ginseng, Panax notoginseng and other traditional Chinese medicines. Many studies have proved that ginsenoside Rd have a variety of significant biological activities on certain types of cancer. However, the mechanism of ginsenoside Rd remains unclear in lung cancer. The findings of this study reveal that GS-Rd inhibits the proliferation of NSCLC cells, induces apoptosis, and suppresses migration and invasion. The results showed Ginsenoside Rd inhibited the cell proliferation (∼99.52 %) by S phase arrest in cell cycle and promoted the apoptosis (∼54.85 %) of NSCLC cells. It also inhibited the migration and invasion of cells (p < 0.001). The expression levels of related mitochondrial apoptosis proteins (Bax/Bcl-2/Cytochrome C) and matrix metalloproteinases (MMP-2/-9) were significantly changed. The results showed that ginsenoside Rd inhibited the proliferation of tumor cells by activating p53/bax-mediated mitochondrial apoptosis and the expression of key enzymes for cell apoptosis caspase-3/cleaved-caspase-3 were significantly increased. This research contributes to a better understanding of the anti-tumor effects and molecular mechanisms of GS-Rd, paving the way for its potential development and clinical application in NSCLC therapy.

2.
Anticancer Agents Med Chem ; 24(12): 928-941, 2024.
Article in English | MEDLINE | ID: mdl-38465430

ABSTRACT

BACKGROUND: Lung cancer is one of the more common malignant tumors posing a great threat to human life, and it is very urgent to find safe and effective therapeutic drugs. The antitumor effect of ginsenosides has been reported to be a treatment with a strong effect and a high safety profile. OBJECTIVE: This paper aimed to investigate the inhibitory effect of ginsenoside Rb1 on 95D and NCI-H460 lung cancer cells and its pathway to promote apoptosis. METHODS: We performed the CCK-8 assay, fluorescence staining assay, flow cytometry, scratch healing assay, and Transwell assay to detect the effects of different concentrations of ginsenoside Rb1 on the antitumor activity of 95D and NCI-H460 cells and Western Blot detected the mechanism of antitumor effect. RESULTS: Ginsenoside Rb1 treatment significantly increased the inhibition and apoptosis rates of 95D and NCIH460 cells and inhibited the cell cycle transition from S phase to G2/M. Rb1 induces apoptosis by altering the levels of P53, Bax, Cyto-c, Caspase-8, Caspase-3, Cleaved Caspase-3, Bcl-2, MMP-2, and MMP-9 proteins and activating the external apoptotic pathway. CONCLUSION: Ginsenoside Rb1 inhibits proliferation and migration and induces apoptosis of 95D and NCI-H460 lung cancer cells by regulating the mitochondrial apoptotic pathway to achieve antitumor activity.


Subject(s)
Apoptosis , Cell Proliferation , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Ginsenosides , Lung Neoplasms , Mitochondria , Ginsenosides/pharmacology , Ginsenosides/chemistry , Humans , Apoptosis/drug effects , Cell Proliferation/drug effects , Lung Neoplasms/drug therapy , Lung Neoplasms/pathology , Lung Neoplasms/metabolism , Mitochondria/drug effects , Mitochondria/metabolism , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Structure-Activity Relationship , Molecular Structure , Tumor Cells, Cultured , Cell Line, Tumor
3.
Int J Cancer ; 154(6): 1029-1042, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-37947765

ABSTRACT

Non-small cell lung cancer (NSCLC) patients are often elderly or unfit and thus cannot tolerate standard aggressive therapy regimes. In our study, we test the efficacy of the DNA-hypomethylating agent decitabine (DAC) in combination with all-trans retinoic acid (ATRA), which has been shown to possess little systemic adverse effects. Screening a broad panel of 56 NSCLC cell lines uncovered a decrease in cell viability after the combination treatment in 77% of the cell lines. Transcriptomics, proteomics, proliferation and migration profiling revealed that fast proliferating and slowly migrating cell lines were more sensitive to the drug combination. The comparison of mutational profiles found oncogenic KRAS mutations only in sensitive cells. Additionally, different cell lines showed a heterogeneous gene expression response to the treatment pointing to diverse mechanisms of action. Silencing KRAS, RIG-I or RARB partially reversed the sensitivity of KRAS-mutant NCI-H460 cells. To study resistance, we generated two NCI-H460 cell populations resistant to ATRA and DAC, which migrated faster and proliferated slower than the parental sensitive cells and showed signs of senescence. In summary, this comprehensive dataset uncovers a broad sensitivity of NSCLC cells to the combinatorial treatment with DAC and ATRA and indicates that migration and proliferation capacities correlate with and could thus serve as determinants for drug sensitivity in NSCLC.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Humans , Aged , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/metabolism , Tretinoin/pharmacology , Tretinoin/therapeutic use , Decitabine/pharmacology , Decitabine/therapeutic use , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics , Lung Neoplasms/metabolism , Proto-Oncogene Proteins p21(ras)/genetics , Proto-Oncogene Proteins p21(ras)/metabolism , Cell Line, Tumor , Cell Proliferation
4.
Pharmaceuticals (Basel) ; 16(5)2023 May 10.
Article in English | MEDLINE | ID: mdl-37242510

ABSTRACT

α-Viniferin, a natural stilbene compound found in plants and a polymer of resveratrol, had demonstrated potential anti-cancer and anti-inflammatory effects. However, the specific mechanisms underlying its anti-cancer activity were not yet fully understood and required further investigation. This study evaluated the effectiveness of α-viniferin and ε-viniferin using MTT assay. Results showed that α-viniferin was more effective than ε-viniferin in reducing the viability of NCI-H460 cells, a type of non-small cell lung cancer. Annexin V/7AAD assay results provided further evidence that the decrease in cell viability observed in response to α-viniferin treatment was due to the induction of apoptosis in NCI-H460 cells. The present findings indicated that treatment with α-viniferin could stimulate apoptosis in cells by cleaving caspase 3 and PARP. Moreover, the treatment reduced the expression of SIRT1, vimentin, and phosphorylated AKT, and also induced AIF nuclear translocation. Furthermore, this research provided additional evidence for the effectiveness of α-viniferin as an anti-tumor agent in nude mice with NCI-H460 cell xenografts. As demonstrated by the TUNEL assay results, α-viniferin promoted apoptosis in NCI-H460 cells in nude mice.

5.
Acta Pharm ; 73(1): 145-155, 2023 Mar 01.
Article in English | MEDLINE | ID: mdl-36692462

ABSTRACT

Voltage-gated K+ (Kv) channels play a role in the cellular processes of various cancer cells, including lung cancer cells. We previously identified and reported a salivary protein from the Xenopsylla cheopis, FS48, which exhibited inhibitory activity against Kv1.1-1.3 channels when assayed in HEK 293T cells. However, whether FS48 has an inhibitory effect on cancer cells expressing Kv channels is unclear. The present study aims to reveal the effects of FS48 on the Kv channels and the NCI-H460 human lung cancer cells through patch clamp, MTT, wound healing, transwell, gelatinase zymography, qRT-PCR and WB assays. The results demonstrated that FS48 can be effective in suppressing the Kv currents, migration, and invasion of NCI-H460 cells in a dose-dependent manner, despite the failure to inhibit the proliferation. Moreover, the expression of Kv1.1 and Kv1.3 mRNA and protein were found to be significantly reduced. Finally, FS48 decreases the mRNA level of MMP-9 while increasing TIMP-1 mRNA level. The present study highlights for the first time that blood-sucking arthropod saliva-derived protein can inhibit the physiological activities of tumour cells via the Kv channels. Furthermore, FS48 can be taken as a hit compound against the tumour cells expressing Kv channels.


Subject(s)
Neoplasms , Potassium Channels, Voltage-Gated , Xenopsylla , Animals , Humans , Potassium Channels, Voltage-Gated/genetics , Potassium Channels, Voltage-Gated/metabolism , Xenopsylla/genetics , Xenopsylla/metabolism , Salivary Glands/metabolism , RNA, Messenger/metabolism
6.
FEBS Open Bio ; 13(1): 51-59, 2023 01.
Article in English | MEDLINE | ID: mdl-36102619

ABSTRACT

The pathologies and lethality of lung cancers are associated with smoking, lifestyle, and genomic factors. Several experimental mouse models of lung cancer, including those induced via intrapulmonary injection and intratracheal injection, have been reported for evaluating the pharmacological effect of drugs. However, these models are not sufficient for evaluating the efficacy of drugs during screening, as these direct injection models ignore the native processes of cancer progression in vivo, resulting in the inadequate pathological formation of lung cancer. In the present study, we developed a novel intranasal injection model of lung cancer simulating the native lung cancer pathology for anticancer drug screening. A mouse lung cancer cell line (Lewis lung carcinoma; LCC) was intranasally injected into mouse lungs, and injected cell number-dependent cancer proliferation was apparent in both the left and right lungs. Human non-small-cell lung cancer (NCI-H460) cells were also intranasally injected into nude mice and similarly showed injected cell number-dependent cancer growth. For the pharmacological evaluation of cisplatin, two different treatment frequencies were tested four times per month and twice a month. The intranasal injection model confirmed that cisplatin suppressed lung cancer progression to a greater extent under the more frequent treatment condition. In conclusion, these results indicated that our intranasal injection model is a powerful tool for investigating lung cancer pathology and may aid in the development of new anti-lung cancer agents.


Subject(s)
Antineoplastic Agents , Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Mice , Humans , Animals , Lung Neoplasms/metabolism , Carcinoma, Non-Small-Cell Lung/metabolism , Cisplatin/pharmacology , Cisplatin/therapeutic use , Mice, Nude , Early Detection of Cancer , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use
7.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-996812

ABSTRACT

ObjectiveTo study the effect and underlying mechanism of Stemona tuberosa alkaloids on the proliferation and apoptosis of human non-small cell lung cancer NCI-H460 cells. MethodNon-small cell lung cancer NCI-H460 cells were divided into a blank group and S. tuberosa alkaloids groups (50, 100, 150, 200, and 250 mg·L-1). The effect of S. tuberosa alkaloids on the proliferation of human NCI-H460 cells was observed by thiazolyl blue tetrazolium bromide (MTT) assay and colony formation assay. Cell apoptosis was observed by Hoechst 33258 staining and flow cytometry. Real-time fluorescence-based polymerase chain reaction (Real-time PCR) was used to detect the effect of S. tuberosa alkaloids on the mRNA expression of cysteinyl aspartate-specific protease 3 (Caspase-3), B-cell lymphoma-2 (Bcl-2), Bcl-2-associated X protein (Bax), and epidermal growth factor receptor (EGFR). The protein expression levels of Caspase-3, Bax, Bcl-2, protein kinase B (Akt), phosphorylated (p-)Akt, EGFR, c-Jun N-terminal kinase (JNK), p-JNK, p38 mitogen-activated protein kinase (p38 MAPK), and p-p38 MAPK were measured by Western blot. ResultCompared with the blank group, the S. tuberosa alkaloids groups showed increased inhibition rate on cell proliferation (P<0.01), reduced number of cell clones formed and the rate of cell clonal formation (P<0.05, P<0.01), and increased karyopyknosis, cytoplasmic aggregation, and cell apoptosis rate (P<0.01). The S. tuberosa alkaloids groups at 100, 150, 200, and 250 mg·L-1 showed increased Caspase-3 mRNA expression (P<0.05), decreased EGFR mRNA expression (P<0.05, P<0.01), up-regulated protein expression of Caspase-3 and p-JNK (P<0.01), and down-regulated protein expression of EGFR and p-Akt (P<0.05, P<0.01). Additionally, compared with the blank group, the S. tuberosa alkaloids groups showed increased expression of Bax mRNA (P<0.01), decreased expression of Bcl-2 mRNA (P<0.01), up-regulated protein expression of Bax and p-p38 MAPK (P<0.01), and down-regulated protein expression of Bcl-2 (P<0.01). ConclusionsS. tuberosa alkaloids can inhibit proliferation and induce apoptosis of human non-small cell lung cancer NCI-H460 cells, and the mechanism may be related to the inhibition of EGFR protein expression and phosphorylation of Akt protein, as well as the activation of the JNK/p38 MAPK signaling pathway.

8.
J Int Med Res ; 50(4): 3000605211066300, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35477254

ABSTRACT

OBJECTIVE: To synthesize a novel chalcone-1,3,4-thiadiazole hybrid and investigate its anticancer effects against NCI-H460 cells. METHODS: (E)-3-(4-bromophenyl)-1-(4-hydroxyphenyl)prop-2-en-1-one, 1,3-dibromopropane and 1,3,4-thiadiazole-2-thiol were used as chemical materials to synthesize compound ZW97. The NCI-H460 lung cancer cell line was selected to explore the antitumor effects of compound ZW97 in vitro and in vivo. RESULTS: Compound ZW97 selectively inhibited cell proliferation against lung cancer cell lines NCI-H460, HCC-44 and NCI-H3122 with IC50 values of 0.15 µM, 2.06 µM and 1.17 µM, respectively. ZW97 suppressed migration and the epithelial-mesenchymal transition process in NCI-H460 cells in a concentration-dependent manner. Based on the kinase activity results and docking analysis, compound ZW97 is a novel tyrosine-protein kinase Met (c-Met kinase) inhibitor. It also inhibited NCI-H460 cell growth in xenograft models without obvious toxicity to normal tissues. CONCLUSIONS: Compound ZW97 is a potential c-Met inhibitor that might be a promising agent to treat lung cancer by inhibiting the epithelial-mesenchymal transition process.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Lung Neoplasms , Cell Line, Tumor , Cell Proliferation , Epithelial-Mesenchymal Transition , Humans , Lung Neoplasms/pathology
9.
Pharmaceutics ; 15(1)2022 Dec 20.
Article in English | MEDLINE | ID: mdl-36678632

ABSTRACT

The present study reports the successful synthesis of biocompatible magnetic iron oxide nanoparticles (MNPs) by an ecofriendly single step method, using two ethanolic extracts based on leaves of Camellia sinensis L. and Ocimum basilicum L. The effect of both green raw materials as reducing and capping agents was taken into account for the development of MNPs, as well as the reaction synthesis temperature (25 °C and 80 °C). The biological effect of the MNPs obtained from Camellia sinensis L. ethanolic extract (Cs 25, Cs 80) was compared with that of the MNPs obtained from Ocimum basilicum L. ethanolic extract (Ob 25, Ob 80), by using two morphologically different lung cancer cell lines (A549 and NCI-H460); the results showed that the higher cell viability impairment was manifested by A549 cells after exposure to MNPs obtained from Ocimum basilicum L. ethanolic extract (Ob 25, Ob 80). Regarding the biosafety profile of the MNPs, it was shown that the EpiAirwayTM models did not elicit important viability decrease or significant histopathological changes after treatment with none of the MNPs (Cs 25, Cs 80 and Ob 25, Ob 80), at concentrations up to 500 µg/mL.

10.
Bioorg Chem ; 115: 105237, 2021 10.
Article in English | MEDLINE | ID: mdl-34388486

ABSTRACT

In the ongoing research on potent antitumor agents from the rhizomes of Asparagus cochinchinensis, seven undescribed steroidal saponins asparagusoside A-G (1-7), along with twenty known ones (8-27), were isolated and elucidated via analyzing their 1D, 2D NMR, mass spectroscopic data and chemical methods. All isolated compounds were evaluated for their cytotoxic effects against human large cell lung carcinoma cells (NCI-H460) in vitro. Among them, compounds 7, 9 and 27 showed more significant antitumor activities than the positive control cisplatin (11.56 µM) with IC50 values of 1.39, 3.04, and 2.25 µM, respectively. Further research about asparagusoside G (7) showed G0/G1 arrest in NCI-H460 cell line cycle and induced cell death by apoptosis in a dose­dependent way.


Subject(s)
Antineoplastic Agents, Phytogenic/pharmacology , Asparagus Plant/chemistry , Rhizome/chemistry , Saponins/pharmacology , Steroids/pharmacology , Antineoplastic Agents, Phytogenic/chemistry , Antineoplastic Agents, Phytogenic/isolation & purification , Apoptosis/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Humans , Molecular Structure , Saponins/chemistry , Saponins/isolation & purification , Steroids/chemistry , Steroids/isolation & purification , Structure-Activity Relationship
11.
Medicines (Basel) ; 8(6)2021 Jun 02.
Article in English | MEDLINE | ID: mdl-34199423

ABSTRACT

Background: ß-thujaplicin, a natural tropolone derivative, has anticancer effects on various cancer cells via apoptosis. However, the apoptosis regulatory proteins involved in this process have yet to be revealed. Methods: Trypan blue staining, a WST-8 assay, and a caspase-3/7 activity assay were used to investigate whether ß-thujaplicin sensitizes cancer cells to TNF-related apoptosis-inducing ligand (TRAIL)-mediated apoptosis. Additionally, western blotting was performed to clarify the effects of ß-thujaplicin on X-linked inhibitor of apoptosis protein (XIAP) in NCI-H460 cells and a fluorescence polarization binding assay was used to evaluate the binding-inhibitory activity of ß-thujaplicin against XIAP-BIR3. Results: ß- and γ-thujaplicins decreased the viability of NCI-H460 cells in a dose-dependent manner; they also sensitized the cells to TRAIL-induced cell growth inhibition and apoptosis. ß-thujaplicin significantly potentiated the apoptosis induction effect of TRAIL on NCI-H460 cells, which was accompanied by enhanced caspase-3/7 activity. Interestingly, ß-thujaplicin treatment in NCI-H460 cells decreased XIAP levels. Furthermore, ß-thujaplicin was able to bind XIAP-BIR3 at the Smac binding site. Conclusions: These findings indicate that ß-thujaplicin could enhance TRAIL-induced apoptosis in NCI-H460 cells via XIAP inhibition and degradation. Thus, the tropolone scaffold may be useful for designing novel nonpeptidic small-molecule inhibitors of XIAP and developing new types of anticancer drugs.

12.
Front Cell Dev Biol ; 9: 640957, 2021.
Article in English | MEDLINE | ID: mdl-33829017

ABSTRACT

Cabozantinib (CBZ) is a small molecule tyrosine kinase receptor inhibitor, which could also inhibit the ABCG2 transporter function. Therefore, CBZ could re-sensitize cancer cells that are resistant to ABCG2 substrate drugs including topotecan (TPT). However, its reversal effect against TPT resistance has not been tested in a TPT-induced resistant cancer model. In this study, a new TPT selected human non-small cell lung cancer (NSCLC)-resistant cell model NCI-H460/TPT10 with ABCG2 overexpression and its parental NCI-H460 cells were utilized to investigate the role of CBZ in drug resistance. The in vitro study showed that CBZ, at a non-toxic concentration, could re-sensitize NCI-H460/TPT10 cells to TPT by restoring intracellular TPT accumulation via inhibiting ABCG2 function. In addition, the increased cytotoxicity by co-administration of CBZ and TPT may be contributed by the synergistic effect on downregulating ABCG2 expression in NCI-H460/TPT10 cells. To further verify the applicability of the NCI-H460/TPT10 cell line to test multidrug resistance (MDR) reversal agents in vivo and to evaluate the in vivo efficacy of CBZ on reversing TPT resistance, a tumor xenograft mouse model was established by implanting NCI-H460 and NCI-H460/TPT10 into nude mice. The NCI-H460/TPT10 xenograft tumors treated with the combination of TPT and CBZ dramatically reduced in size compared to tumors treated with TPT or CBZ alone. The TPT-resistant phenotype of NCI-H460/TPT10 cell line and the reversal capability of CBZ in NCI-H460/TPT10 cells could be extended from in vitro cell model to in vivo xenograft model. Collectively, CBZ is considered to be a potential approach in overcoming ABCG2-mediated MDR in NSCLC. The established NCI-H460/TPT10 xenograft model could be a sound clinically relevant resource for future drug screening to eradicate ABCG2-mediated MDR in NSCLC.

13.
J Microencapsul ; 37(8): 543-556, 2020 Dec.
Article in English | MEDLINE | ID: mdl-32924677

ABSTRACT

AIM: To develop docetaxel (DT) and curcumin (CUR) co-loaded nanostructured lipid carriers (DTCR-NLCs) for ratiometric co-targeting to non-small cell lung carcinoma (NSCLC) cells. METHODS: The DTCR-NLCs were developed by employing a high-pressure homogenisation technique and optimised by employing a rotatable central composite design response surface methodology (RCCD-RSM) via the design of experiments (DoE) approach. RESULTS: The optimised DTCR-NLCs had a particle size (D90) of 150.2 ± 5.2 nm, Pdi of 0.263 ± 0.15, zeta potential of +26.3 ± 5.2 mv. The % drug loading (% DL) of DT and CUR was observed to be 1.38 ± 0.98 and 2.99 ± 1.24, respectively. Dissolution studies depicted a pH-independent drug release (≈98% drug release at 144 h). The DTCR-NLCs were stable and haemocompatible. MTT cell viability assay of DTCR-NLCs demonstrated considerably increased cytotoxicity towards NCI-H460 cells. CONCLUSIONS: The developed DTCR-NLCs heralds the future of an efficacious and safer Taxane therapy for NSCLC.


Subject(s)
Antineoplastic Agents/chemistry , Carcinoma, Non-Small-Cell Lung/drug therapy , Cobalt/chemistry , Curcumin/administration & dosage , Docetaxel/administration & dosage , Lipids/chemistry , Lung Neoplasms/drug therapy , Microspheres , Nanostructures/chemistry , Calorimetry, Differential Scanning , Cell Line, Tumor , Cell Survival , Drug Delivery Systems , Drug Screening Assays, Antitumor , Hemolysis , Humans , Hydrogen-Ion Concentration , In Vitro Techniques , Particle Size , Temperature , Tetrazolium Salts/chemistry , Thiazoles/chemistry , X-Ray Diffraction
14.
Molecules ; 25(17)2020 Sep 03.
Article in English | MEDLINE | ID: mdl-32899132

ABSTRACT

In the context of the cancer-inflammation relationship and the use of natural products as potential antitumor and anti-inflammatory agents, the alkaloid-enriched fraction of Boehmeriacaudata (BcAEF) aerial parts was evaluated. In vitro antiproliferative studies with human tumor cell lines showed high activity at low concentrations. Further investigation on NCI-H460 cells showed an irreversible effect on cell proliferation, with cell cycle arrest at G2/M phase and programmed cell death induction. Molecular docking studies of four alkaloids identified in BcAEF with colchicine's binding site on ß-tubulin were performed, suggesting (-)-C (15R)-hydroxycryptopleurine as the main inductor of the observed mitotic death. In vivo studies showed that BcAEF was able to reduce Ehrlich tumor volume progression by 30 to 40%. Checking myeloperoxidase activity, BcAEF reduced neutrophils migration towards the tumor. The in vivo anti-inflammatory activity was evaluated by chemically induced edema models. In croton oil-induced ear edema and carrageenan (CG)-induced paw edema models, BcAEF reduced edema around 70 to 80% together with inhibition of activation and/or migration of neutrophils to the inflammatory area. All together the results presented herein show BcAEF as a potent antitumor agent combining antiproliferative and anti-inflammatory properties, which could be further explored in (pre)clinical studies.


Subject(s)
Alkaloids/chemistry , Anti-Inflammatory Agents/pharmacology , Antineoplastic Agents/pharmacology , Boehmeria/chemistry , Computer Simulation , Plant Extracts/pharmacology , Animals , Apoptosis/drug effects , Caspases/metabolism , Cell Cycle Checkpoints/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Survival/drug effects , Clone Cells , Disease Models, Animal , Ear/pathology , Edema/pathology , Enzyme Activation/drug effects , Exocytosis , Humans , Molecular Docking Simulation , Paclitaxel/pharmacology , Peroxidase/metabolism , Phosphatidylserines/metabolism , Reference Standards , Toxicity Tests, Acute
15.
J Inorg Biochem ; 210: 111166, 2020 09.
Article in English | MEDLINE | ID: mdl-32673843

ABSTRACT

The aim of our study was to evaluate the in vitro and in vivo anti-proliferative potential of complex (2) [Cu (L1)Cl]Cl.2H2O, where L1 = 1-[2-hydroxybenzyl(2-pyridylmethyl)amino]-3-(1-naphthyloxy)-2-propanol on lung carcinoma cell NCI-H460. Cell viability assay determined by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) colorimetric assay demonstrated that the complex (2) exhibits higher activity against the NCI-H460 cell, with an IC50 value lower than cisplatin (26.5 µM ± 1.1 and 203 ± 1.2 µM respectively). Cell death by apoptosis was investigated by flow cytometer analysis of sub-G1 populations in the cell cycle and Annexin V/Propidium Iodide assay. Changes on the cell surface and ultrastructure were detected by scanning and transmission electron microscopy. Our work revealed that complex (2) induced changes associated with apoptosis, such as plasma membrane blebbing and a lower microvilli amount, fragmentation and condensation of chromatin, alterations in mitochondria, and enlargement of the endoplasmic reticulum. Mitochondrial function of NCI-H460 cells evaluated by 5,5',6,6'-tetrachloro 1,1',3,3' tetraethylbenzimidazolylcarbocyanine iodide (JC-1) probes showed high loss of mitochondrial membrane potential when treated with complex (2). Moreover, caspase-12 measurement showed an expressive activation level, which is related to endoplasmic reticulum stress. In vivo assay using the murine model of human lung cancer cell showed that complex (2) and cisplatin has similar antineoplastic activity.


Subject(s)
Antineoplastic Agents/therapeutic use , Cell Proliferation/drug effects , Coordination Complexes/therapeutic use , Neoplasms/drug therapy , Animals , Antineoplastic Agents/pharmacology , Apoptosis/drug effects , Cell Line, Tumor , Coordination Complexes/pharmacology , Copper/chemistry , Drug Screening Assays, Antitumor , Endoplasmic Reticulum/drug effects , Endoplasmic Reticulum Stress/drug effects , Female , Humans , Male , Membrane Potential, Mitochondrial/drug effects , Mice, Inbred BALB C , Mitochondria/drug effects
16.
Front Cell Dev Biol ; 8: 607275, 2020.
Article in English | MEDLINE | ID: mdl-33425914

ABSTRACT

While topotecan (TPT) is a first- and second-line chemotherapeutic drug in treating lung cancer, the development of drug resistance in tumors still reserves as a major obstacle to chemotherapeutic success. Therefore, a better understanding of the mechanisms of topotecan resistance is critical. In this study, the first topotecan-resistant human non-small cell lung cancer (NSCLC) cell line, termed NCI-H460/TPT10, was established from the parental NCI-H460 cell line. NCI-H460/TPT10 cells exhibited a 394.7-fold resistance to TPT, and cross-resistance to SN-38, mitoxantrone, and doxorubicin, compared to parental NCI-H460 cells. Overexpression of ABCG2 localized on the cell membrane, but not ABCB1 or ABCC1, was found in NCI-H460/TPT10 cells, indicating that ABCG2 was likely to be involved in topotecan-resistance. This was confirmed by the abolishment of drug resistance in NCI-H460/TPT10 cells after ABCG2 knockout. Moreover, the involvement of functional ABCG2 as a drug efflux pump conferring multidrug resistance (MDR) was indicated by low intracellular accumulation of TPT in NCI-H460/TPT10 cells, and the reversal effects by ABCG2 inhibitor Ko143. The NCI-H460/TPT10 cell line and its parental cell line can be useful for drug screening and developing targeted strategies to overcome ABCG2-mediated MDR in NSCLC.

17.
Bol. latinoam. Caribe plantas med. aromát ; 18(5): 480-491, sept. 2019. ilus, tab
Article in English | LILACS | ID: biblio-1008273

ABSTRACT

In the present study, we investigated the antiproliferative activity of essential oil from leaves of Melissa officinalis L. grown in Southern Bosnia and Herzegovina. In vitro evaluation of antiproliferative activity of the M. officinalis essential oil was carried out on three human tumor cell lines: MCF-7, NCI-H460 and MOLT-4 by MTT assay. M. officinalis essential oil was characterized by high percentage of monoterpenes (77,5%), followed by the sesquiterpene fraction (14,5%) and aliphatic compounds (2,2%). The main constituents of the essential oil of M. officinalis are citral (47,2%), caryophyllene oxide (10,2%), citronellal (5,4%), geraniol (6,6%), geranyl acetate (4,1%) and ß- caryophyllene (3,8%). The essential oil showed significant antiproliferative activity against three cancer cell lines, MOLT-4, MCF-7, and NCI-H460 cells, with GI50 values of <5, 6±2 and 31±17 µg/mL, respectively. The results revealed that M. officinalis L. essential oil has a potential as anticancer therapeutic agent.


En el presente estudio, investigamos la actividad antiproliferativa del aceite esencial de las hojas de Melissa officinalis L. cultivadas en el sur de Bosnia y Herzegovina. La evaluación in vitro de la actividad antiproliferativa del aceite esencial de M. officinalis se llevó a cabo en tres líneas celulares de tumores humanos: MCF-7, NCI-H460 y MOLT-4 utilizando el ensayo de MTT. El aceite esencial de M. officinalis se caracterizó por un alto porcentaje de monoterpenos (77,5%), seguido de la fracción sesquiterpénica (14,5%) y compuestos alifáticos (2,2%). Los principales constituyentes del aceite esencial de M. officinalis fueron citral (47,2%), óxido de cariofileno (10,2%), citronelal (5,4%), geraniol (6,6%), acetato de geranilo (4, 1%), y ß-cariofileno (3,8%). El aceite esencial mostró una actividad antiproliferativa significativa contra las líneas celulares de cáncer MOLT-4, MCF-7 y NCI-H460, con valores GI50 de <5, 6±2 y 31±17 µg/mL, respectivamente. Los resultados revelaron que el aceite esencial de M. officinalis L. tiene potencial como agente terapéutico contra el cáncer.


Subject(s)
Oils, Volatile/pharmacology , Melissa , Antineoplastic Agents/pharmacology , Sesquiterpenes/analysis , In Vitro Techniques , Oils, Volatile/chemistry , Tumor Cells, Cultured , Plant Leaves , Monoterpenes/analysis , Cell Line, Tumor/drug effects , Cell Proliferation/drug effects , Gas Chromatography-Mass Spectrometry , Antineoplastic Agents/chemistry
18.
Acta Pharmacol Sin ; 40(8): 1085-1094, 2019 Aug.
Article in English | MEDLINE | ID: mdl-30796356

ABSTRACT

Resistance to radiotherapy causes non-small cell lung cancer (NSCLC) treatment failure associated with local recurrence and metastasis. Thus, understanding the radiosensitization of NSCLC cells is crucial for developing new treatments and improving prognostics. mTORC1 has been shown to regulate tumor cell radiosensitivity, but the underlying mechanisms are unclear. Moreover, mTORC1 also regulates epithelial-mesenchymal transition (EMT) that is important to metastasis and recurrence. In this study we explored whether mTORC1 regulated NSCLC cell radiosensitivity by altering EMT. We performed immunohistichemical analysis using tumor, adjacent and normal tissues from 50 NSCLC patients, which confirmed significantly elevated mTOR protein expression in NSCLC tissue. Then we used NCI-H460 and NCI-H661 cell lines to examine the effects of the mTORC1 inhibitor RAD001 (everolimus) on in vitro radiosensitivity, protein expression and dose-survival curves. RAD001 (10 nmol/L) significantly inhibited the mTORC1 pathway in both the cell lines. Pretreatment with RAD001 (0.1 nmol/L) enhanced the radiosensitivity in NCI-H661 cells with wild-type PIK3CA and KRAS but not in NCI-H460 cells with mutant PIK3CA and KRAS; the sensitivity enhancement ratios in the two NSCLC cell lines were 1.40 and 1.03, respectively. Furthermore, pretreatment with RAD001 (0.1 nmol/L) significantly decreased the migration and invasion with altered expression of several EMT-associated proteins (significantly increased E-cadherin and decreased vimentin expression) in irradiated NCI-H661 cells. Publicly available expression data confirmed that irradiation affected mTOR and EMT-associated genes at the transcript level in NSCLC cells. These results suggest that mTORC1 inhibition enhances the in vitro radiosensitivity of NSCLC cells with wild-type PIK3CA and KRAS by affecting EMT. Our preclinical data may provide a potential new strategy for NSCLC treatment.


Subject(s)
Epithelial-Mesenchymal Transition/drug effects , Everolimus/pharmacology , Mechanistic Target of Rapamycin Complex 1/antagonists & inhibitors , Protein Kinase Inhibitors/pharmacology , Radiation Tolerance/drug effects , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/pathology , Carcinoma, Non-Small-Cell Lung/radiotherapy , Cell Line, Tumor , Class I Phosphatidylinositol 3-Kinases/genetics , Histones/metabolism , Humans , Lung/pathology , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Lung Neoplasms/radiotherapy , Proto-Oncogene Proteins p21(ras)/genetics , Signal Transduction/drug effects
19.
Turk J Pharm Sci ; 16(4): 375-379, 2019 Dec.
Article in English | MEDLINE | ID: mdl-32454739

ABSTRACT

OBJECTIVES: Cnidoscolus aconitifolius Mill. I.M.Johnst. is a medicinal plant widely used in ethnomedicine for the treatment of cancer and other diseases. MATERIALS AND METHODS: The effects of methanol extracts of the leaf, stem, and root barks were evaluated on breast (MCF-7) and lung (NCI-H460) cancer cells at 1-250 µg/mL using the SRB assay and the extracts were screened for phytochemicals using the standard method. RESULTS: The stem and root extracts showed no activity at the maximum concentration, while the leaf extract at 100 µg/mL showed remarkable cell growth inhibition against breast (-14.50±0.58) and lung cancer (+53.29±4.57) in vitro. The extracts showed the presence of saponins, terpenes, cardiac glycosides, and phenolic compounds. Partitioning of the active leaf extract further enhanced its activity as the chloroform fraction exhibited GI50, LC50, and total growth inhibition (TGI) of 22.5, 68.75, and 43.75 µg/mL against breast cancer, respectively, and GI50 and TGI of 35.4 and 55.8 µg/ mL against lung cancer cells, respectively. However, the aqueous fraction showed no cytotoxicity against either cell line. CONCLUSION: These results justified the ethnomedicinal uses of the plant against tumor-related ailments. Isolation of the constituents responsible for the observed activity needs to be carried out to further support this claim.

20.
Mol Ther Nucleic Acids ; 10: 187-198, 2018 Mar 02.
Article in English | MEDLINE | ID: mdl-29499932

ABSTRACT

Aptamers are widely used in numerous biochemical, bioanalytical, and biological studies. Most aptamers are developed through an in vitro selection process called SELEX against either purified targets or living cells expressing targets of interest. We report here an in vivo SELEX in mice using a PEGylated RNA library for the identification of a 2'-F RNA aptamer (RA16) that specifically binds to NCI-H460 non-small-cell lung cancer cells with an affinity (KD) of 9 ± 2 nM. Interestingly, RA16 potently inhibited cancer cell proliferation in a dose-dependent manner with an IC50 of 116.7 nM. When tested in vivo in xenografted mice, RA16 showed gradual migration toward tumor and accumulation at tumor site over time. An in vivo anti-cancer study showed that the average inhibition rate for mouse tumors in the RA16-treated group was 54.26% ± 5.87% on day 16 versus the control group. The aptamer RA16 adducted with epirubicin (RA16-epirubicin) showed significantly higher toxicity against targeted NCI-H460 cells and low toxicity against non-targeted tumor cells. Furthermore, RA16-epirubicin adduct exhibited in vivo anti-cancer efficacy, with an inhibition rate of 64.38% ± 7.92% when administrated in H460 xenograft mouse model. In summary, a specific bi-functional RNA aptamer RA16 was selected targeting and inhibiting toward NCI-H460 in vitro and in vivo.

SELECTION OF CITATIONS
SEARCH DETAIL
...