Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 90
Filter
1.
Int J Mol Sci ; 25(15)2024 Jul 28.
Article in English | MEDLINE | ID: mdl-39125811

ABSTRACT

Advanced glycated end products (AGEs) are cytotoxic compounds that are mainly increased in diabetes mellitus (DM), kidney failure, inflammation, and in response to the ingestion of AGE-rich diets. AGEs can also impair glycemic homeostasis by decreasing the expression of the Slc2a4 (solute carrier family 2 member 4) gene and its GLUT4 (solute carrier family 2, facilitated glucose transporter member 4) protein in muscle. However, the mechanisms underlying AGE's effect on adipocytes have not been demonstrated yet. This study investigated the effects of AGEs upon Slc2a4/GLUT4 expression in 3T3-L1 adipocytes, as well as the potential role of NFKB (nuclear factor NF-kappa-B) activity in the effects observed. Adipocytes were cultured in the presence of control albumin (CA) or advanced glycated albumin (GA) at concentrations of 0.4, 3.6, and 5.4 mg/mL for 24 h or 72 h. Slc2a4, Rela, and Nfkb1mRNAs were measured by RT-qPCR, GLUT4, IKKA/B, and p50/p65 NFKB subunits using Western blotting, and p50/p65 binding into the Slc2a4 promoter was analyzed by chromatin immunoprecipitation (ChIP) assay. GA at 0.4 mg/mL increased Slc2a4/GLUT4 expression after 24 h and 72 h (from 50% to 100%), but at 5.4 mg/mL, Slc2a4/GLUT4 expression decreased at 72 h (by 50%). Rela and Nfkb1 expression increased after 24 h at all concentrations, but this effect was not observed at 72 h. Furthermore, 5.4 mg/mL of GA increased the p50/p65 nuclear content and binding into Slc2a4 at 72 h. In summary, this study reveals AGE-induced and NFKB-mediated repression of Slc2a4/GLUT4 expression. This can compromise the adipocyte glucose utilization, contributing not only to the worsening of glycemic control in DM subjects but also the impairment of glycemic homeostasis in non-DM subjects under the high intake of AGE-rich foods.


Subject(s)
3T3-L1 Cells , Adipocytes , Glucose Transporter Type 4 , Glycation End Products, Advanced , Transcription Factor RelA , Animals , Mice , Adipocytes/metabolism , Adipocytes/drug effects , Gene Expression Regulation/drug effects , Glucose Transporter Type 4/metabolism , Glucose Transporter Type 4/genetics , Glycation End Products, Advanced/metabolism , Glycation End Products, Advanced/pharmacology , NF-kappa B/metabolism , NF-kappa B p50 Subunit/metabolism , NF-kappa B p50 Subunit/genetics , Promoter Regions, Genetic , Transcription Factor RelA/metabolism , Transcription Factor RelA/genetics
2.
Int J Mol Sci ; 25(5)2024 Feb 27.
Article in English | MEDLINE | ID: mdl-38473959

ABSTRACT

Advanced glycation end products (AGEs) prime macrophages for lipopolysaccharide (LPS)-induced inflammation. We investigated the persistence of cellular AGE-sensitization to LPS, considering the nuclear content of p50 and p65 nuclear factor kappa B (NFKB) subunits and the expression of inflammatory genes. Macrophages treated with control (C) or AGE-albumin were rested for varying intervals in medium alone before being incubated with LPS. Comparisons were made using one-way ANOVA or Student t-test (n = 6). AGE-albumin primed macrophages for increased responsiveness to LPS, resulting in elevated levels of TNF, IL-6, and IL-1beta (1.5%, 9.4%, and 5.6%, respectively), compared to C-albumin. TNF, IL-6, and IL-1 beta secretion persisted for up to 24 h even after the removal of AGE-albumin (area under the curve greater by 1.6, 16, and 5.2 times, respectively). The expressions of Il6 and RelA were higher 8 h after albumin removal, and Il6 and Abca1 were higher 24 h after albumin removal. The nuclear content of p50 remained similar, but p65 showed a sustained increase (2.9 times) for up to 24 h in AGE-albumin-treated cells. The prolonged activation of the p65 subunit of NFKB contributes to the persistent effect of AGEs on macrophage inflammatory priming, which could be targeted for therapies to prevent complications based on the AGE-RAGE-NFKB axis.


Subject(s)
Interleukin-6 , NF-kappa B , NF-kappa B/metabolism , Interleukin-6/metabolism , Lipopolysaccharides/pharmacology , Macrophages/metabolism , Glycation End Products, Advanced/metabolism , Albumins/metabolism
3.
Andrology ; 12(5): 1024-1037, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38497291

ABSTRACT

BACKGROUND: Region-specific immune environments in the epididymis influence the immune responses to uropathogenic Escherichia coli (UPEC) infection, a relevant cause of epididymitis in men. Toll-like receptors (TLRs) are essential to orchestrate immune responses against bacterial infections. The epididymis displays region-specific inflammatory responses to bacterial-derived TLR agonists, such as lipopolysaccharide (LPS; TLR4 agonist) and lipoteichoic acid (LTA; TLR2/TLR6 agonist), suggesting that TLR-associated signaling pathways could influence the magnitude of inflammatory responses in epididymitis. OBJECTIVES: To investigate the expression and regulation of key genes associated with TLR4 and TLR2/TLR6 signaling pathways during epididymitis induced by UPEC, LPS, and LTA in mice. MATERIAL AND METHODS: Epididymitis was induced in mice using UPEC, ultrapure LPS, or LTA, injected into the interstitial space of the initial segment or the lumen of the vas deferens close to the cauda epididymidis. Samples were harvested after 1, 5, and 10 days for UPEC-treated animals and 6 and 24 h for LPS-/LTA-treated animals. Ex vivo epididymitis was induced by incubating epididymal regions from naive mice with LPS or LTA. RT-qPCR and Western blot assays were conducted. RESULTS: UPEC infection up-regulated Tlr2, Tlr4, and Tlr6 transcripts and their associated signaling molecules Cd14, Ticam1, and Traf6 in the cauda epididymidis but not in the initial segment. In these epididymal regions, LPS and LTA differentially modulated Tlr2, Tlr4, Tlr6, Cd14, Myd88, Ticam1, Traf3, and Traf6 expression levels. NFKB and AP1 activation was required for LPS- and LTA-induced up-regulation of TLR-associated signaling transcripts in the cauda epididymidis and initial segment, respectively. CONCLUSION: The dynamic modulation of TLR4 and TLR2/TLR6 signaling pathways gene expression during epididymitis indicates bacterial-derived antigens elicit an increased tissue sensitivity to combat microbial infection in a spatial manner in the epididymis. Differential activation of TLR-associated signaling pathways may contribute to fine-tuning inflammatory responses along the epididymis.


Subject(s)
Epididymitis , Lipopolysaccharides , Signal Transduction , Teichoic Acids , Toll-Like Receptor 2 , Toll-Like Receptor 4 , Animals , Male , Epididymitis/genetics , Epididymitis/metabolism , Epididymitis/microbiology , Mice , Toll-Like Receptor 4/metabolism , Toll-Like Receptor 4/genetics , Toll-Like Receptor 2/genetics , Toll-Like Receptor 2/metabolism , Teichoic Acids/pharmacology , Uropathogenic Escherichia coli , Escherichia coli Infections/immunology , Escherichia coli Infections/genetics , Toll-Like Receptor 6/genetics , Toll-Like Receptor 6/metabolism , Epididymis/metabolism , TNF Receptor-Associated Factor 6/metabolism , TNF Receptor-Associated Factor 6/genetics , Myeloid Differentiation Factor 88/genetics , Myeloid Differentiation Factor 88/metabolism , Mice, Inbred C57BL , Acute Disease
4.
Clin Nutr ESPEN ; 59: 96-106, 2024 02.
Article in English | MEDLINE | ID: mdl-38220413

ABSTRACT

BACKGROUND & AIMS: Turmeric (a source of curcumin) is an excellent food to modulate oxidative stress, inflammation, and gut dysbiosis in patients with chronic kidney disease (CKD). However, no studies report the benefits of curcumin in patients undergoing peritoneal dialysis (PD). This study aims to evaluate the effects of curcuminoid supplementation on oxidative stress, inflammatory markers, and uremic toxins originating from gut microbiota in patients with CKD undergoing PD. METHODS: This longitudinal, randomized, single-blind, placebo-controlled trial evaluated 48 patients who were randomized into two groups: Curcumin (three capsules of 500 mg of Curcuma longa extract, with 98.42 % total curcuminoids) or placebo (three capsules of 500 mg of starch) for twelve weeks. In the peripheral blood mononuclear cells (PBMCs), the transcriptional expression levels of Nrf2, HOX-1 and NF-κB were evaluated by quantitative real-time PCR. Oxidative stress was evaluated by malondialdehyde (MDA) and total Thiol (T-SH). TNF-α and IL-6 plasma levels were measured by ELISA. P-cresyl sulphate plasma level, a uremic toxin, was evaluated by high-performance liquid chromatography (HPLC) with fluorescent detection. RESULTS: Twenty-four patients finished the study: 10 in the curcumin group (57.5 ± 11.6 years) and 14 in the placebo group (56.5 ± 10.0 years). The plasma levels of MDA were reduced after 12 weeks in the curcumin group (p = 0.01), while the placebo group remained unchanged. However, regarding the difference between the groups at the endpoint, no change was observed in MDA. Still, there was a trend to reduce the p-CS plasma levels in the curcumin group compared to the placebo group (p = 0.07). Likewise, the concentrations of protein thiols, mRNA expression of Nrf2, HOX-1, NF-κB, and cytokines plasma levels did not show significant changes. CONCLUSION: Curcuminoid supplementation for twelve weeks attenuates lipid peroxidation and might reduce uremic toxin in patients with CKD undergoing PD. This study was registered on Clinicaltrials.gov as NCT04413266.


Subject(s)
Curcumin , Peritoneal Dialysis , Renal Insufficiency, Chronic , Uremia , Humans , Curcumin/pharmacology , Curcumin/therapeutic use , NF-kappa B/metabolism , NF-E2-Related Factor 2/genetics , NF-E2-Related Factor 2/metabolism , Leukocytes, Mononuclear/metabolism , Single-Blind Method , Inflammation , Oxidative Stress , Renal Insufficiency, Chronic/complications , Renal Insufficiency, Chronic/therapy , Diarylheptanoids/pharmacology , Diarylheptanoids/therapeutic use , Dietary Supplements , Uremia/drug therapy
5.
J Ren Nutr ; 34(1): 68-75, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37619675

ABSTRACT

BACKGROUND: Patients with chronic kidney disease (CKD) have reduced expression of erythroid nuclear factor-related factor 2 (NRF2) and increased nuclear factor κB (NF-κB). "Food as medicine" has been proposed as an adjuvant therapeutic alternative in modulating these factors. No studies have investigated the effects of sulforaphane (SFN) in cruciferous vegetables on the expression of these genes in patients with CKD. OBJECTIVE: The study aimed to evaluate the effects of SFN on the expression of NRF2 and NF-κB in patients on hemodialysis (HD). DESIGN AND METHODS: A randomized, double-blind, crossover study was performed on 30 patients on regular HD. Fourteen patients were randomly allocated to the intervention group (1 sachet/day of 2.5 g containing 1% SFN extract with 0.5% myrosinase) and 16 patients to the placebo group (1 sachet/day of 2.5 g containing corn starch colored with chlorophyll) for 2 months. After a washout period of 2 months, the groups were switched. NRF2 and NF-κB mRNA expression was evaluated by real-time quantitative polymerase chain reaction, and tumor necrosis factor alpha and interleukin-6 levels were quantified by enzyme-linked immunosorbent assay. Malondialdehyde was evaluated as a marker of lipid peroxidation. RESULTS: Twenty-five patients (17 women, 55 [interquartile range = 19] years and 55 [interquartile range = 74] months on HD) completed the study. There was no significant difference concerning the expression of mRNA NRF2 (P = .915) and mRNA NF-κB (P = .806) after supplementation with SFN. There was no difference in pro-inflammatory and oxidative stress biomarkers. CONCLUSION: 150 µmol of SFN for 2 months had no antioxidant and anti-inflammatory effect in patients with CKD undergoing HD.


Subject(s)
Isothiocyanates , NF-kappa B , Renal Insufficiency, Chronic , Sulfoxides , Humans , Female , NF-kappa B/genetics , NF-kappa B/metabolism , NF-E2-Related Factor 2/genetics , NF-E2-Related Factor 2/metabolism , Cross-Over Studies , Oxidative Stress , Renal Dialysis/adverse effects , Renal Insufficiency, Chronic/drug therapy , Renal Insufficiency, Chronic/etiology , RNA, Messenger/metabolism , RNA, Messenger/pharmacology , Dietary Supplements
6.
J Cell Physiol ; 239(2): e31164, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38149816

ABSTRACT

Tumor resistance remains an obstacle to successfully treating oral squamous cell carcinoma (OSCC). Cisplatin is widely used as a cytotoxic drug to treat solid tumors, including advanced OSCC, but with low efficacy due to chemoresistance. Therefore, identifying the pathways that contribute to chemoresistance may show new possibilities for improving the treatment. This work explored the role of the tumor necrosis factor-alpha (TNF-alpha)/NFkB signaling in driving the cisplatin resistance of OSCC and its potential as a pharmacological target to overcome chemoresistance. Differential accessibility analysis demonstrated the enrichment of opened chromatin regions in members of the TNF-alpha/NFkB signaling pathway, and RNA-Seq confirmed the upregulation of TNF-alpha/NFkB signaling in cisplatin-resistant cell lines. NFkB was accumulated in cisplatin-resistant cell lines and in cancer stem cells (CSC), and the administration of TNF-alpha increased the CSC, suggesting that TNF-alpha/NFkB signaling is involved in the accumulation of CSC. TNF-alpha stimulation also increased the histone deacetylases HDAC1 and SIRT1. Cisplatin-resistant cell lines were sensitive to the pharmacological inhibition of NFkB, and low doses of the NFkB inhibitors, CBL0137, and emetine, efficiently reduced the CSC and the levels of SIRT1, increasing histone acetylation. The NFkB inhibitors decreased stemness potential, clonogenicity, migration, and invasion of cisplatin-resistant cell lines. The administration of the emetine significantly reduced the tumor growth of cisplatin-resistant xenograft models, decreasing NFkB and SIRT1, increasing histone acetylation, and decreasing CSC. TNF-alpha/NFkB/SIRT1 signaling regulates the epigenetic machinery by modulating histone acetylation, CSC, and aggressiveness of cisplatin-resistant OSCC and the NFkB inhibition is a potential strategy to treat chemoresistant OSCC.


Subject(s)
Carcinoma, Squamous Cell , Head and Neck Neoplasms , Mouth Neoplasms , Humans , Carcinoma, Squamous Cell/drug therapy , Carcinoma, Squamous Cell/genetics , Carcinoma, Squamous Cell/metabolism , Cell Line, Tumor , Cisplatin/pharmacology , Cisplatin/therapeutic use , Drug Resistance, Neoplasm , Emetine/metabolism , Emetine/therapeutic use , Head and Neck Neoplasms/drug therapy , Histones/metabolism , Mouth Neoplasms/drug therapy , Mouth Neoplasms/genetics , Mouth Neoplasms/metabolism , Neoplastic Stem Cells/pathology , Sirtuin 1/metabolism , Squamous Cell Carcinoma of Head and Neck/metabolism , Tumor Necrosis Factor-alpha/metabolism , Up-Regulation
7.
Front Mol Neurosci ; 16: 1214061, 2023.
Article in English | MEDLINE | ID: mdl-37415833

ABSTRACT

Memory acquisition, formation and maintenance depend on synaptic post-translational machinery and regulation of gene expression triggered by several transduction pathways. In turns, these processes lead to stabilization of synaptic modifications in neurons in the activated circuits. In order to study the molecular mechanisms involved in acquisition and memory, we have taken advantage of the context-signal associative learning and, more recently, the place preference task, of the crab Neohelice granulata. In this model organism, we studied several molecular processes, including activation of extracellular signal-regulated kinase (ERK) and the nuclear factor kappa light chain enhancer of activated B cells (NF-κB) transcription factor, involvement of synaptic proteins such as NMDA receptors and neuroepigenetic regulation of gene expression. All these studies allowed description of key plasticity mechanisms involved in memory, including consolidation, reconsolidation and extinction. This article is aimed at review the most salient findings obtained over decades of research in this memory model.

8.
Int J Mol Sci ; 24(13)2023 Jun 27.
Article in English | MEDLINE | ID: mdl-37445894

ABSTRACT

The enzymatic hydrolysis of the extract of Sophora japonica by two glycosyl hydrolases (hesperidinase and galactosidase) was performed in order to obtain kaempferol (KPF)-enriched extract with an enhanced anticancer activity. The current study examined the effectiveness of both Sophora japonica extracts (before (KPF-BBR) and after (KPF-ABR) bioconversion reactions) in reducing cell viability and inducing apoptosis in human high-degree gliomas in vitro. Cytotoxicity was determined using an MTT assay. The effects of both compounds on the proliferation of glioma cell lines were measured using trypan blue exclusion, flow cytometry for cell cycle, wound healing (WH), and neurosphere formation assays. Cellular apoptosis was detected by DNA fragmentation and phosphatidylserine exposure. qPCR and luciferase assays evaluated NF-kB pathway inhibition. The survival rate of NG-97 and U-251 cells significantly decreased in a time- and dose-dependent manner after the addition of KPF-BBR or KPF-ABR. Thus, a 50% reduction was observed in NG-97 cells at 800 µM (KPF-BBR) and 600 µM (KPF-ABR) after 72 h. Both compounds presented an IC50 of 1800 µM for U251 after 72 h. The above IC50 values were used in all of the following analyses. Neither of the KPF presented significant inhibitory effects on the non-tumoral cells (HDFa). However, after 24 h, both extracts (KPF-BBR and KPF-ABR) significantly inhibited the migration and proliferation of NG-97 and U-251 cells. In addition, MMP-9 was downregulated in glioma cells stimulated by 12-O-tetradecanoylphorbol-13-acetate (TPA) plus KPF-BBR and TPA+KPF-ABR compared with the TPA-treated cells. Both KPF-BBR and KPF-ABR significantly inhibited the proliferation of glioma stem cells (neurospheres) after 24 h. DNA fragmentation assays demonstrated that the apoptotic ratio of KPF-ABR-treated cell lines was significantly higher than in the control groups, especially NG-97, which is not TMZ resistant. In fact, the flow cytometric analysis indicated that KPF-BBR and KPF-ABR induced significant apoptosis in both glioma cells. In addition, both KPF induced S and G2/M cell cycle arrest in the U251 cells. The qPCR and luciferase assays showed that both KPFs downregulated TRAF6, IRAK2, IL-1ß, and TNF-α, indicating an inhibitory effect on the NF-kB pathway. Our findings suggest that both KPF-BBR and KPF-ABR can confer anti-tumoral effects on human cell glioma cells by inhibiting proliferation and inducing apoptosis, which is related to the NF-κB-mediated pathway. The KPF-enriched extract (KPF-ABR) showed an increased inhibitory effect on the cell migration and invasion, characterizing it as the best antitumor candidate.


Subject(s)
Glioma , Sophora japonica , Humans , NF-kappa B/metabolism , Kaempferols/pharmacology , Cell Line, Tumor , Glioma/metabolism , Apoptosis , Cell Proliferation , Cell Movement
9.
Hemodial Int ; 27(3): 301-307, 2023 07.
Article in English | MEDLINE | ID: mdl-37010133

ABSTRACT

INTRODUCTION: BTB and CNC homology 1 (Bach1) is a protein that antagonizes some actions of nuclear factor erythroid 2-related factor-2 (Nrf2), the master regulator of cytoprotective responses. Bach1 binds to genomic DNA and inhibits the synthesis of antioxidant enzymes, thereby increasing inflammation. Bach1 may be a therapeutic target for mitigating inflammation in chronic kidney disease (CKD) patients. However, no clinical study has been reported on Bach1 in this population. This study aimed to evaluate Bach1 mRNA expression with different treatments for CKD, including conservative treatment (nondialysis), hemodialysis (HD), and peritoneal dialysis (PD). METHODS: Twenty patients undergoing HD (56.5 [19] years), 15 on PD (54 [24] years) and 13 nondialysis patients (63 [10] years, with an estimated glomerular filtration rate of 41 [14] mL/min/1.73 m2 ) were enrolled in the study. The mRNA expression of Nrf2, NF-kB, heme oxygenase 1 (HO-1), and Bach1 was evaluated in peripheral blood mononuclear cells using quantitative real-time polymerase chain reaction. Malondialdehyde (MDA) was evaluated as a lipid peroxidation marker. Routine biochemical parameters were also evaluated. FINDINGS: As expected, patients on dialysis were more inflamed. Bach1 mRNA expression was significantly higher in patients undergoing HD than in PD and nondialysis patients (p < 0.007). The mRNA expression of HO-1, NF-kB, and Nrf2 was not different in the groups. CONCLUSION: In conclusion, CKD patients on HD exhibited an upregulation of Bach1 mRNA expression compared to patients on PD treatment and nondialysis CKD patients. The association between Nrf2 and Bach1 expression in these patients warrants further investigation.


Subject(s)
NF-E2-Related Factor 2 , Renal Insufficiency, Chronic , Humans , NF-E2-Related Factor 2/genetics , NF-E2-Related Factor 2/metabolism , Basic-Leucine Zipper Transcription Factors/genetics , Basic-Leucine Zipper Transcription Factors/metabolism , NF-kappa B/metabolism , Leukocytes, Mononuclear/metabolism , Renal Dialysis , Heme Oxygenase-1/genetics , Heme Oxygenase-1/metabolism , Renal Insufficiency, Chronic/genetics , Renal Insufficiency, Chronic/therapy , Inflammation , RNA, Messenger/genetics , RNA, Messenger/metabolism
10.
Bol. latinoam. Caribe plantas med. aromát ; 22(2): 214-223, mar. 2023. graf, ilus
Article in English | LILACS | ID: biblio-1555381

ABSTRACT

The current study was conducted to determine the neuroprotective role and mechanism of action of Linalool (LIN) in SCI. The SCI in Sprague-Dawley (SD) rats was induced by weight-drop contusion model. Results of the suggested that LIN showed improvement in the locomotor function of SCI rats in a BBB scoring analysis. It was found in agreement with histopathological analysis of spinal cord tissue where LIN improves the neuronal architecture of spinal cord tissues, and protect neurons from degeneration. It also reduces oxidative stress via modulating endogenous antioxidants (MDA, SOD, and GSH) and inhibits the generation of pro-inflammatory cytokines (TNF-α, IL-1ß, and IL-6). In western blot analysis, LIN showed dose-dependent reduction of expression of toll-like receptor (TLR-4) and nuclear factor-kappa B (NF-ĸB). Our study demonstrated that administration of Linalool alleviated spinal cord injury via anti-inflammatory and antioxidant activities in spinal cord tissues possibly due to inhibition of TLR4/NF-κB activation.


El estudio actual se realizó para determinar el papel neuroprotector y el mecanismo de acción de Linalool (LIN) en SCI. La LIN en ratas Sprague-Dawley (SD) se indujo mediante el modelo de contusión de caída de peso. Los resultados sugirieron que LIN mostró una mejora en la función locomotora de ratas SCI en un análisis de puntuación BBB. De acuerdo con el análisis histopatológico del tejido de la médula espinal se encontró que LIN mejora la arquitectura neuronal de los tejidos de la médula espinal y protege a las neuronas de la degeneración. También reduce el estrés oxidativo mediante la modulación de antioxidantes endógenos (MDA, SOD y GSH) e inhibe la generación de citocinas proinflamatorias (TNF-α, IL-1ß e IL-6). En el análisis de Western blot, LIN mostró una reducción dependiente de la dosis de la expresión del receptor tipo toll (TLR-4) y el factor nuclear kappa B (NF-ĸB). Nuestro estudio demostró que la administración de Linalool alivió la lesión de la médula espinal a través de actividades antiinflamatorias y antioxidantes en los tejidos de la médula espinal, posiblemente debido a la inhibición de la activación de TLR4/NF-κB.


Subject(s)
Animals , Male , Rats , Spinal Cord Injuries/drug therapy , Acyclic Monoterpenes/administration & dosage , Enzyme-Linked Immunosorbent Assay , Signal Transduction/drug effects , Blotting, Western , NF-kappa B/antagonists & inhibitors , Rats, Sprague-Dawley , Oxidative Stress/drug effects , Toll-Like Receptor 4/antagonists & inhibitors , Acyclic Monoterpenes/pharmacology , Inflammation
11.
Childs Nerv Syst ; 39(6): 1519-1528, 2023 06.
Article in English | MEDLINE | ID: mdl-36807999

ABSTRACT

PURPOSE: While pediatric glioblastomas are molecularly distinct from adult counterparts, the activation of NF-kB is partially shared by both subsets, playing key roles in tumor propagation and treatment response. RESULTS: We show that, in vitro, dehydroxymethylepoxyquinomicin (DHMEQ) impairs growth and invasiveness. Xenograft response to the drug alone varied according to the model, being more effective in KNS42-derived tumors. In combination, SF188-derived tumors were more sensitive to temozolomide while KNS42-derived tumors responded better to the combination with radiotherapy, with continued tumor regression. CONCLUSION: Taken together, our results strengthen the potential usefulness of NF-kB inhibition in future therapeutic strategies to overcome this incurable disease.


Subject(s)
Glioblastoma , NF-kappa B , Child , Humans , NF-kappa B/metabolism , NF-kappa B/pharmacology , Glioblastoma/drug therapy , Apoptosis , Cell Line, Tumor
12.
Food Res Int ; 164: 112391, 2023 02.
Article in English | MEDLINE | ID: mdl-36737975

ABSTRACT

Malícia honey produced by the jandaíra bee has hypoglycaemic and hypolipidemic effects and antioxidant activity in vitro and in vivo, which makes it potential adjuvant treatment for obesity. This study aimed to evaluate the effects of malícia honey on somatic and biochemical parameters, depressive-like behaviour and anti-inflammatory activity in obese rats. A total of 40 adult male Wistar rats were initially randomized into a healthy group (HG, n = 20) that consumed a control diet, and an obese group (OG, n = 20) which consumed a cafeteria diet for eight weeks. Then, they were subdivided into four groups: healthy (HG, n = 10); healthy treated with malícia honey (HGH, n = 10); obese (OG, n = 10); and obese treated with malícia honey (OGH, n = 10), maintaining their diets for another eight weeks. The HGH and OGH groups received malícia honey (1000 mg/kg body weight) via gavage. Food intake was monitored daily and body weight was monitored weekly. Biochemical tests related to obesity and glucose and insulin tolerance test, somatic parameters, histological parameters and quantification of NF-κB in the brain were performed. Treatment with malícia honey improved depressive-like behaviour, reduced weight (14 %), body mass index (6 %), and improved lipid profile, leptin, insulin, HOMA-ß, and glucose and insulin tolerance in obese rats. It also decreased NF-κB (58.08 %) in the brain. Malícia honey demonstrated anti-obesity and anti-inflammatory effects, and reversed changes in obesity-induced depressive-like behaviour.


Subject(s)
Honey , Mimosa , Bees , Rats , Male , Animals , Rats, Wistar , NF-kappa B , Obesity , Glucose , Insulin , Anti-Inflammatory Agents/pharmacology
13.
Int. j. morphol ; 41(1): 308-318, feb. 2023. ilus, tab, graf
Article in English | LILACS | ID: biblio-1430503

ABSTRACT

SUMMARY: Gastrin plays a vital role in the development and progression of gastric cancer (GC). Its expression is up-regulated in GC tissues and several GC cell lines. Yet, the underlying mechanism remains to be investigated. Here, we aim to investigate the role and mechanism of gastrin in GC proliferation. Gastrin-overexpressing GC cell model was constructed using SGC7901 cells. Then the differentially expressed proteins were identified by iTRAQ analysis. Next, we use flow cytometry and immunofluorescence to study the effect of gastrin on the mitochondrial potential and mitochondria-derived ROS production. Finally, we studied the underlying mechanism of gastrin regulating mitochondrial function using Co-IP, mass spectrometry and immunofluorescence. Overexpression of gastrin promoted GC cell proliferation in vitro and in vivo. A total of 173 proteins were expressed differently between the controls and gastrin- overexpression cells and most of these proteins were involved in tumorigenesis and cell proliferation. Among them, Cox17, Cox5B and ATP5J that were all localized to the mitochondrial respiratory chain were down-regulated in gastrin-overexpression cells. Furthermore, gastrin overexpression led to mitochondrial potential decrease and mitochondria-derived ROS increase. Additionally, gastrin-induced ROS generation resulted in the inhibition of cell apoptosis via activating NF-kB, inhibiting Bax expression and promoting Bcl-2 expression. Finally, we found gastrin interacted with mitochondrial membrane protein Annexin A2 using Co-IP and mass spectrometry. Overexpr ession of gastrin inhibits GC cell apoptosis by inducing mitochondrial dysfunction through interacting with mitochondrial protein Annexin A2, then up-regulating ROS production to activate NF-kB and further leading to Bax/Bcl-2 ratio decrease.


La gastrina juega un papel vital en el desarrollo y progresión del cáncer gástrico (CG). Su expresión está regulada al alza en tejidos de CG y en varias líneas celulares de CG. Sin embargo, el mecanismo subyacente aun no se ha investigado. El objetivo de este estudio fue investigar el papel y el mecanismo de la gastrina en la proliferación de CG. El modelo de células CG que sobre expresan gastrina se construyó usando células SGC7901. Luego, las proteínas expresadas diferencialmente se identificaron mediante análisis iTRAQ. A continuación, utilizamos la citometría de flujo y la inmunofluorescencia para estudiar el efecto de la gastrina en el potencial mitocondrial y la producción de ROS derivada de las mitocondrias. Finalmente, estudiamos el mecanismo subyacente de la gastrina que regula la función mitocondrial utilizando Co-IP, espectrometría de masas e inmunofluorescencia. La sobreexpresión de gastrina promovió la proliferación de células CG in vitro e in vivo. Un total de 173 proteínas se expresaron de manera diferente entre los controles y las células con sobreexpresión de gastrina y la mayoría de estas proteínas estaban implicadas en la tumorigenesis y la proliferación celular. Entre estas, Cox17, Cox5B y ATP5J, todas localizadas en la cadena respiratoria mitocondrial, estaban reguladas a la baja en las células con sobreexpresión de gastrina. Además, la sobreexpresión de gastrina provocó una disminución del potencial mitocondrial y un aumento de las ROS derivadas de las mitocondrias. Por otra parte, la generación de ROS inducida por gastrina resultó en la inhibición de la apoptosis celular mediante la activación de NF-kB, inhibiendo la expresión de Bax y promoviendo la expresión de Bcl-2. Finalmente, encontramos que la gastrina interactuaba con la proteína de membrana mitocondrial Anexina A2 usando Co-IP y espectrometría de masas. La sobreexpresión de gastrina inhibe la apoptosis de las células CG al inducir la disfunción mitocondrial a través de la interacción con la proteína mitocondrial Anexina A2, luego regula el aumento de la producción de ROS para activar NF-kB y conduce aún más a la disminución de la relación Bax/Bcl-2.


Subject(s)
Animals , Mice , Stomach Neoplasms/metabolism , Stomach Neoplasms/pathology , Gastrins/metabolism , Annexin A2/metabolism , Mitochondria/pathology , Mass Spectrometry , NF-kappa B , Fluorescent Antibody Technique , Reactive Oxygen Species , Apoptosis , Cell Line, Tumor , Immunoprecipitation , Cell Proliferation , Carcinogenesis , Flow Cytometry
14.
Int. j. morphol ; 41(1): 79-84, feb. 2023. ilus, graf
Article in English | LILACS | ID: biblio-1430536

ABSTRACT

SUMMARY: Paracetamol (known as acetaminophen, or APAP) poisoning causes acute liver damage that can lead to organ failure and death. We sought to determine that APAP overdose can augment tumor necrosis factor-alpha (TNF-α)/ nuclear factor kappa B (NF-kB)/induced nitic oxide synthase (iNOS) axis-mediated hepatotoxicity in rats, and the anti-inflammatory polyphenolic compounds, quercetin (QUR) plus resveratrol (RES) can ameliorate these parameters. Therefore, we induced acute hepatotoxicity in rats using APAP overdose (2 g/kg, orally) and the protective group of rats were treated with 50 mg/kg QUR plus 30 mg/kg RES for one week before APAP ingestion. Animals were killed at day 8. APAP poisoning caused the induction of hepatic tissue levels of TNF-α, NF-kB, and iNOS, which were significantly (p<0.05) decreased by QUR+RES. QUR+RES, also inhibited liver injury biomarkers, alanine aminotransferase (ALT) and aspartate aminotransferase (AST). Additionally, a link between liver injury and TNF-α /NF-kB / iNOS axis mediated hepatotoxicity was observed. Thus, the presented data backing the conclusion that intoxication by paracetamol increases TNF-α / NF-kB / iNOS axis -mediated hepatotoxicity, and is protected by a combination of quercetin and resveratrol.


El envenenamiento por paracetamol (conocido como acetaminofeno o APAP) causa daño hepático agudo que puede provocar una insuficiencia orgánica y la muerte. El objetivo de este trabajo fue determinar si la sobredosis de APAP puede aumentar la hepatotoxicidad mediada por el eje del factor de necrosis tumoral alfa (TNF-α)/factor nuclear kappa B (NF-kB)/óxido nítico sintasa inducida (iNOS) en ratas, y si el polifenólico antiinflamatorio compuesto por quercetina (QUR) más resveratrol (RES) pueden mejorar estos parámetros. Por lo tanto, inducimos hepatotoxicidad aguda en ratas usando una sobredosis de APAP (2 g/kg, por vía oral). El grupo protector de ratas se trató con 50 mg/ kg de QUR más 30 mg/kg de RES durante una semana antes de la ingestión de APAP. Los animales se sacrificaron el día 8. El envenenamiento con APAP en el tejido hepático provocó la inducción de niveles de TNF-α, NF-kB e iNOS, que se redujeron significativamente (p<0,05) con QUR+RES. QUR+RES, también inhibió los biomarcadores de daño hepático, la alanina aminotransferasa (ALT) y el aspartato aminotransferasa (AST). Además, se observó una relación entre la lesión hepática y la hepatotoxicidad mediada por el eje TNF-α /NF-kB/iNOS. Por lo tanto, los datos presentados respaldan la conclusión de que la intoxicación por paracetamol aumenta la hepatotoxicidad mediada por el eje TNF-α /NF-kB / iNOS, y está protegida por una combinación de quercetina y resveratrol.


Subject(s)
Animals , Rats , Quercetin/administration & dosage , Chemical and Drug Induced Liver Injury, Chronic/drug therapy , Resveratrol/administration & dosage , Acetaminophen/toxicity , Acute Disease , NF-kappa B/antagonists & inhibitors , Tumor Necrosis Factor-alpha/antagonists & inhibitors , Rats, Sprague-Dawley , Nitric Oxide Synthase/antagonists & inhibitors , Protective Agents , Drug Therapy, Combination , Drug Overdose
15.
Metabolites ; 13(1)2023 Jan 07.
Article in English | MEDLINE | ID: mdl-36677021

ABSTRACT

Inflammatory bowel diseases (IBD) are chronic relapsing idiopathic inflammatory conditions affecting the gastrointestinal tract. They are mainly represented by two forms, ulcerative colitis (UC) and Crohn's disease (CD). IBD can be associated with the activation of nuclear factors, such as nuclear factor-kB (NF-kB), leading to increased transcription of pro-inflammatory mediators that result in diarrhea, abdominal pain, bleeding, and many extra-intestinal manifestations. Phytochemicals can interfere with many inflammation targets, including NF-kB pathways. Thus, this review aimed to investigate the effects of different phytochemicals in the NF-kB pathways in vitro and in vivo models of IBD. Fifty-six phytochemicals were included in this study, such as curcumin, resveratrol, kaempferol, sesamol, pinocembrin, astragalin, oxyberberine, berberine hydrochloride, botulin, taxifolin, naringin, thymol, isobavachalcone, lancemaside A, aesculin, tetrandrine, Ginsenoside Rk3, mangiferin, diosgenin, theanine, tryptanthrin, lycopene, gyngerol, alantolactone, mangostin, ophiopogonin D, fisetin, sinomenine, piperine, oxymatrine, euphol, artesunate, galangin, and nobiletin. The main observed effects related to NF-kB pathways were reductions in tumor necrosis factor-alpha (TNF-α), interleukin (IL)-1ß, IL-6, interferon-gamma (IFN-γ), and cyclooxygenase-2 (COX-2), and augmented occludin, claudin-1, zonula occludens-1, and IL-10 expression levels. Moreover, phytochemicals can improve weight loss, stool consistency, and rectal bleeding in IBD. Therefore, phytochemicals can constitute a powerful treatment option for IBD in humans.

16.
Drug Dev Res ; 84(2): 253-261, 2023 04.
Article in English | MEDLINE | ID: mdl-36651647

ABSTRACT

Pain is one of the most frequent causes for patients to seek medical care. It interferes with daily functioning and affects the quality of life of the patient. There is a clear need to investigate nonopioid or non-nonsteroidal anti-inflammatory drug alternatives for the treatment of pain. In this study, we determined the effect of acute pre- and posttreatment with pramipexole (PPX), a dopamine D2/D3 selective agonist, on formalin 1%-induced acute and long-lasting nociceptive behavior sensitivity in rats. Moreover, we sought to investigate whether the antiallodynic and antihyperalgesic effect induced by PPX was mediated through the nuclear factor-κB (NF-kB) signaling pathway. Moreover, acute systemic pretreatment with PPX (1 and 3 mg/kg, ip) suppressed the formalin-induced nociceptive behavior during both phases of the formalin test and the development of formalin-induced secondary mechanical allodynia and hyperalgesia in both paws. Acute systemic posttreatment with PPX (3 mg/kg, ip) reverted the formalin-induced long-lasting secondary mechanical allodynia and hyperalgesia. Furthermore, PPX inhibits the protein expression of NF-κB-p65 and the levels of tumor necrosis factor-α and interleukin-1ß in the spinal cord of animals with secondary mechanical allodynia and hyperalgesia induced by formalin. These data suggest that PPX has a potential role in producing anti-inflammatory activity. Moreover, the antiallodynic and antihyperalgesic effects induced by PPX can be mediated through the NF-kB signaling pathway.


Subject(s)
Formaldehyde , NF-kappa B , Rats , Animals , Pramipexole/adverse effects , Rats, Wistar , Formaldehyde/adverse effects , Hyperalgesia/chemically induced , Quality of Life , Pain
17.
Rev. Paul. Pediatr. (Ed. Port., Online) ; 41: e2022034, 2023. tab, graf
Article in English | LILACS-Express | LILACS | ID: biblio-1431371

ABSTRACT

Abstract Objective: Given the high proliferative activity of germinal matrix and its direct correlation with hypoxemia, it is necessary to investigate the possible molecular regulation pathways, to understand the existing clinical relationship between the hypoxic-ischemic insult and the biomarkers NF-kB, AKT-3, Parkin, TRK-C and VEGFR-1. Methods: A hundred and eighteen germinal matrix samples of the central nervous system of patients who died in the first 28 days of life were submitted to histological and immunohistochemistry analysis to identify the tissue immunoexpression of those biomarkers related to asphyxia, prematurity, and death events within 24h. Results: A significantly increased tissue immunoexpression of NF-kB, AKT-3 and Parkin was observed in the germinal matrix of preterm infants. In addition, significantly decreased tissue immunoexpression of VEGFR-1 and NF-kB was observed in patients who experienced asphyxia followed by death within 24 hours. Conclusions: The results suggest a direct involvement between the hypoxic-ischemic insult and NF-kB and VEGFR-1 markers since a decreased immunoexpression of these biomarkers was observed in asphyxiated patients. Furthermore, it is suggested that there was not enough time for VEGFR-1 to be transcribed, translated and expressed on the surface of the plasma membrane. This temporality can be observed in the relationship between NF-kB expression and the survival time of individuals who died within 24 hours, suggesting that this factor is essential for the production of VEGFR-1 and, therefore, to carry out the necessary remodeling effect to neovascularize the affected region.


RESUMO Objetivo: Dada a alta atividade proliferativa da matriz germinativa e sua correlação direta com a hipoxemia, é necessário investigar as possíveis vias de regulação molecular para entender a relação clínica existente entre o insulto hipóxico-isquêmico e os biomarcadores NF-kB, AKT -3, Parkina, TRK-C e VEGFR-1. Métodos: Cento e dezoito amostras de matriz germinativa do sistema nervoso central de pacientes que faleceram nos primeiros 28 dias de vida foram submetidas a análise histológica e imuno-histoquímica para identificar a imunoexpressão tecidual desses biomarcadores relacionados a eventos de asfixia, prematuridade e óbito em 24 horas. Resultados: Observou-se uma imunoexpressão tecidual significativamente aumentada de NF-kB, AKT-3 e Parkin na matriz germinativa de prematuros. Além disso, constatou-se uma imunoexpressão tecidual significativamente diminuída de VEGFR-1 e de NF-kB em pacientes que apresentaram asfixia seguida de morte em 24 horas. Conclusões: Os resultados sugerem o envolvimento direto entre o insulto hipóxico-isquêmico e os marcadores NF-kB e VEGFR-1, visto que se observou uma imunoexpressão diminuída destes biomarcadores nos pacientes asfixiados. Além disso, sugere-se que não houve tempo suficiente para que o VEGFR-1 fosse transcrito, traduzido e expresso na superfície da membrana plasmática. Essa temporalidade pode ser observada na relação entre a expressão de NF-kB e o tempo de vida dos indivíduos que morreram em 24 horas, o que sugere que esse fator é essencial para a produção do VEGFR-1 e, portanto, para realizar o efeito remodelador necessário para neovascularizar a região afetada.

18.
Int J Mol Sci ; 23(23)2022 Nov 23.
Article in English | MEDLINE | ID: mdl-36498913

ABSTRACT

Preconditioning episodes of ischemia/reperfusion (IR) induce protection against acute kidney injury (AKI), however their long-term effect still unknown. We evaluated AKI to chronic kidney disease (CKD) transition, after three-mild or three-severe episodes of IR. AKI was induced by single bilateral IR (1IR), or three episodes of IR separated by 10-day intervals (3IR) of mild (20 min) or severe (45 min) ischemia. Sham-operated rats served as controls. During 9-months, the 1IR group (20 or 45 min) developed CKD evidenced by progressive proteinuria and renal fibrosis. In contrast, the long-term adverse effects of AKI were markedly ameliorated in the 3IR group. The acute response in 3IR, contrasted with the 1IR group, that was characterized by an increment in heme oxygenase-1 (HO-1) and an anti-inflammatory response mediated by a NFkB-p65 phosphorylation and IL-6 decrease, together with an increase in TGF-ß, and IL-10 expression, as well as in M2-macrophages. In addition, three episodes of IR downregulated endoplasmic reticulum (ER) stress markers expression, CHOP and BiP. Thus, repeated episodes of IR with 10-day intervals induced long-term renal protection accompanied with HO-1 overexpression and M2-macrophages increase.


Subject(s)
Acute Kidney Injury , Renal Insufficiency, Chronic , Reperfusion Injury , Rats , Animals , Heme Oxygenase-1 , Reperfusion Injury/metabolism , Acute Kidney Injury/etiology , Acute Kidney Injury/prevention & control , Acute Kidney Injury/metabolism , Renal Insufficiency, Chronic/metabolism , Kidney/metabolism , Ischemia/complications , Anti-Inflammatory Agents/pharmacology , Heme/pharmacology
19.
Mol Biol Rep ; 49(11): 11193-11199, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36104585

ABSTRACT

Rheumatoid arthritis (RA) is a chronic inflammatory disease of autoimmune origin with many associated genetic traits, including genes related to the control of inflammation. The A20 protein, encoded by the TNFAIP3 gene, is a negative regulator of NF-kB mediated inflammation. Several single nucleotide variants (SNVs) of TNFAIP3 are associated with susceptibility to RA in different ethnic groups, none of which has been evaluated in Mexican patients. OBJECTIVE: To examine the possible association of eight TNFAIP3 SNVs in Mexican patients with RA. MATERIALS: We studied 471 patients with RA and 500 controls, as well as eight TNFAIP3 SNVs: including, rs10499194C/T, rs6920220G/A, and rs2230926T/G, which have been associated with RA in European or Asian patients, in addition to rs373421182G/C, rs139054966T/G, rs5029924C/T, rs59693083A/G and rs61593413T/A, not previously examined in RA. All SNVs were evaluated by means of an allelic discrimination assay using TaqMan probes. RESULTS: The allelic and genotypic frequencies of all SNVs examined were similar between cases and controls, and none of them was associated with RA under the allelic, codominant, dominant, and recessive models, as well as in haplotype combinations. CONCLUSION: Our data indicate that TNFAIP3 SNVs evaluated herein are not risk factors for RA in Mexican subjects.


Subject(s)
Arthritis, Rheumatoid , Genetic Predisposition to Disease , Humans , Polymorphism, Single Nucleotide/genetics , Nuclear Proteins/genetics , Intracellular Signaling Peptides and Proteins/genetics , DNA-Binding Proteins/genetics , Case-Control Studies , Arthritis, Rheumatoid/genetics , Genotype , Inflammation , Nucleotides , Tumor Necrosis Factor alpha-Induced Protein 3/genetics
20.
Int J Mol Sci ; 23(13)2022 Jun 29.
Article in English | MEDLINE | ID: mdl-35806253

ABSTRACT

Glycyrrhizic acid (GA), a natural compound isolated from licorice (Glycyrrhiza glabra), has exhibited anti-inflammatory and anti-tumor effects in vitro. Dipotassium glycyrrhizinate (DPG), a dipotassium salt of GA, also has shown an anti-tumor effect on glioblastoma cell lines, U87MG and T98G. The study investigated the DPG effects in the melanoma cell line (SK-MEL-28). MTT assay demonstrated that the viability of the cells was significantly decreased in a time- and dose-dependent manner after DPG (IC50 = 36 mM; 24 h). DNA fragmentation suggested that DPG (IC50) induced cellular apoptosis, which was confirmed by a significant number of TUNEL-positive cells (p-value = 0.048) and by PARP-1 [0.55 vs. 1.02 arbitrary units (AUs), p-value = 0.001], BAX (1.91 vs. 1.05 AUs, p-value = 0.09), and BCL-2 (0.51 vs. 1.07 AUs, p-value = 0.0018) mRNA compared to control cells. The proliferation and wound-healing assays showed an anti-proliferative effect on DPG-IC50-treated cells, also indicating an inhibitory effect on cell migration (p-values < 0.001). Moreover, it was observed that DPG promoted a 100% reduction in melanospheres formation (p-value = 0.008). Our previous microRNAs (miRs) global analysis has revealed that DPG might increase miR-4443 and miR-3620 expression levels. Thus, qPCR showed that after DPG treatment, SK-MEL-28 cells presented significantly high miR-4443 (1.77 vs. 1.04 AUs, p-value = 0.02) and miR-3620 (2.30 vs. 1.00 AUs, p-value = 0.01) expression compared to control cells, which are predicted to target the NF-kB, CD209 and TNC genes, respectively. Both genes are responsible for cell attachment and migration, and qPCR revealed significantly decreased CD209 (1.01 vs. 0.54 AUs, p-value = 0.018) and TNC (1.00 vs. 0.31 AUs, p-value = 2.38 × 10−6) mRNA expression levels after DPG compared to untreated cells. Furthermore, the migration of SK-MEL-28 cells stimulated by 12-O-tetradecanoylphorbol-13-acetate (TPA) was attenuated by adding DPG by wound-healing assay (48 h: p-value = 0.004; 72 h: p-value = 7.0 × 10−4). In addition, the MMP-9 expression level was inhibited by DPG in melanoma cells stimulated by TPA and compared to TPA-treated cells (3.56 vs. 0.99 AUs, p-value = 0.0016) after 24 h of treatment. Our results suggested that DPG has an apoptotic, anti-proliferative, and anti-migratory effect on SK-MEL-28 cells. DPG was also able to inhibit cancer stem-like cells that may cause cerebral tumor formation.


Subject(s)
Melanoma , MicroRNAs , Apoptosis , Cell Line, Tumor , Cell Proliferation , Glycyrrhizic Acid/pharmacology , Humans , Melanoma/drug therapy , Melanoma/genetics , Melanoma/metabolism , MicroRNAs/metabolism , NF-kappa B/metabolism , RNA, Messenger
SELECTION OF CITATIONS
SEARCH DETAIL