Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 89
Filter
1.
Curr Med Chem ; 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38988156

ABSTRACT

Neurokinin receptors are a family of G protein-coupled receptors that were first identified in the central and peripheral nervous systems. However these receptors were later found in other types of cells, therefore, new perspectives concerning their novel roles were described. Mammalian has three neurokinin receptors, among which neurokinin-1 receptors [NK1R] have been indicated to be involved in most, if not all, intracellular functions, primarily the regulation of cell proliferation. By interacting with its potent agonist, substance P [SP], NK1R can engage a variety of signaling pathways and serve as a platform for cells to proliferate by regulating the expression of the cell cycle-related genes. Furthermore, the activity of SP/NK1R is stimulated by various oncogenes, indicating the involvement of this pathway in human cancers. As a result, numerous NK1R antagonists have been investigated in oncology trials, and the promising anti-- cancer effect of these receptors has opened up new possibilities for incorporating these antagonists into cancer treatment. Considering these factors, gaining a deeper understanding of the SP/NK1R pathway could offer significant advantages for cancer patients. The more knowledge we acquire about this pathway, the greater the potential for exploiting it in the development of effective treatment strategies. Here, we present a comprehensive review of the current knowledge pertaining to the biological function of the SP/NK1R, with a specific emphasis on its recently discovered role in the regulation of cell proliferation. Moreover, we provide insights into the impact of this pathway in human cancers, along with an overview of the most significant NK1R antagonists currently utilized in cancer research studies.

2.
bioRxiv ; 2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38979288

ABSTRACT

Immune responses in the intestine are intricately balanced to prevent pathogen entry without inducing immunopathology. The nervous system is well-established to interface with the immune system to fine-tune immunity in various organ systems including the gastrointestinal tract. Specialized sensory neurons can detect bacteria, bacterial products, and the resulting inflammation, to coordinate the immune response in the gastrointestinal tract. These sensory neurons release peptide neurotransmitters such as Substance P (SP), to induce both neuronal signaling and localized responses in non-neuronal cells. With this in mind, we assessed the immunoregulatory roles of SP receptor signaling during enteric bacterial infection with the non-invasive pathogen Citrobacter rodentium. Pharmacological antagonism of the SP receptor significantly reduced bacterial burden and prevented colonic crypt hyperplasia. Mice with SP receptor signaling blockade had significantly reduced inflammation and recruitment of T-cells in the colon. Reduced colonic T-cell recruitment is due to reduced expression of adhesion molecules on colonic endothelial cells in SP receptor antagonist-treated mice. Using SP receptor T-cell conditional knockout mice, we further confirmed SP receptor signaling enhanced select aspects of T-cell responses. Our data demonstrates that SP receptor signaling can significantly reduce inflammation and prevent host-maladaptive responses without impinging upon host protection.

3.
J Cereb Blood Flow Metab ; : 271678X241241907, 2024 Mar 28.
Article in English | MEDLINE | ID: mdl-38546535

ABSTRACT

Following ischemic stroke, substance P (SP)-mediated neurogenic inflammation is associated with profound blood-brain barrier (BBB) dysfunction, cerebral edema, and elevated intracranial pressure (ICP). SP elicits its effects by binding the neurokinin 1 tachykinin receptor (NK1-R), with administration of an NK1-R antagonist shown to ameliorate BBB dysfunction and cerebral edema in rodent and permanent ovine stroke models. Given the importance of reperfusion in clinical stroke, this study examined the efficacy of NK1-R antagonist treatment in reducing cerebral edema and ICP in an ovine model of transient middle cerebral artery occlusion (tMCAo). Anesthetized sheep (n = 24) were subject to 2-hours tMCAo and randomized (n = 6/group) to receive early NK1-R treatment (days 1-3 post-stroke), delayed NK1-R treatment (day 5 post-stroke), or saline vehicle. At 6-days post-stroke animals were re-anaesthetized and ICP measured, followed by MRI to evaluate infarction, edema and BBB dysfunction. Following both early and delayed NK1-R antagonist administration, ICP was significantly reduced on day 6 compared to vehicle animals (p < 0.05), accompanied by a reduction in cerebral edema, midline shift and BBB dysfunction (p < 0.05). This study demonstrates that NK1-R antagonist treatment is an effective novel therapy for cerebral edema and elevated ICP following stroke in an ovine model, warranting future clinical evaluation.

4.
J Zhejiang Univ Sci B ; 25(2): 91-105, 2024 Feb 15.
Article in English, Chinese | MEDLINE | ID: mdl-38303494

ABSTRACT

Recently, the substance P (SP)/neurokinin-1 receptor (NK-1R) system has been found to be involved in various human pathophysiological disorders including the symptoms of coronavirus disease 2019 (COVID-19). Besides, studies in the oncological field have demonstrated an intricate correlation between the upregulation of NK-1R and the activation of SP/NK-1R system with the progression of multiple carcinoma types and poor clinical prognosis. These findings indicate that the modulation of SP/NK-1R system with NK-1R antagonists can be a potential broad-spectrum antitumor strategy. This review updates the latest potential and applications of NK-1R antagonists in the treatment of human diseases and cancers, as well as the underlying mechanisms. Furthermore, the strategies to improve the bioavailability and efficacy of NK-1R antagonist drugs are summarized, such as solid dispersion systems, nanonization, and nanoencapsulation. As a radiopharmaceutical therapeutic, the NK-1R antagonist aprepitant was originally developed as radioligand receptor to target NK-1R-overexpressing tumors. However, combining NK-1R antagonists with other drugs can produce a synergistic effect, thereby enhancing the therapeutic effect, alleviating the symptoms, and improving patients quality of life in several diseases and cancers.


Subject(s)
Neoplasms , Neurokinin-1 Receptor Antagonists , Humans , Neurokinin-1 Receptor Antagonists/pharmacology , Neurokinin-1 Receptor Antagonists/therapeutic use , Quality of Life , Substance P , Receptors, Neurokinin-1 , Neoplasms/drug therapy
5.
Eur J Med Chem ; 264: 116021, 2024 Jan 15.
Article in English | MEDLINE | ID: mdl-38086194

ABSTRACT

Different studies using Aprepitant, a NK1R antagonist currently used as a clinical drug for treating chemotherapy-related nausea and vomiting, have demonstrated that pharmacological inhibition of NK1R effectively reduces the growth of several tumor types such as neuroblastoma (NB). In a previous work, we demonstrated that a series of carbohydrate-based Aprepitant analogs, derived from either d-galactose or l-arabinose, have shown high affinity and NK1R antagonistic activity with a broad-spectrum anticancer activity and an important selectivity. In this new study, we explore the selective cytotoxic effects of these derivatives for the treatment of NB. Furthermore, we describe the design and stereoselective synthesis of a new generation of d-glucose derivatives as Aprepitant analogs, supported by docking studies. This approach showed that most of our carbohydrate-based analogs are significantly more selective than Aprepitant. The galactosyl derivative 2α, has demonstrated a marked in vitro selective cytotoxic activity against NB, with IC50 values in the same range as those of Aprepitant and its prodrug Fosaprepitant. Interestingly, the derivative 2α has shown similar apoptotic effect to that of Aprepitant. Moreover, we can select the glucosyl amino derivative 10α as an interesting hit exhibiting higher in vitro cytotoxic activity against NB than Aprepitant, being 1.2 times more selective.


Subject(s)
Antiemetics , Antineoplastic Agents , Neuroblastoma , Humans , Aprepitant/pharmacology , Neurokinin-1 Receptor Antagonists/pharmacology , Vomiting/drug therapy , Antineoplastic Agents/pharmacology , Neuroblastoma/drug therapy , Carbohydrates , Antiemetics/therapeutic use
6.
Protein Sci ; 33(2): e4866, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38088474

ABSTRACT

Antibodies have proven highly valuable for therapeutic development; however, they are typically poor candidates for applications that require activation of G protein-coupled receptors (GPCRs), the largest collection of targets for clinically approved drugs. Nanobodies (Nbs), the smallest antibody fragments retaining full antigen-binding capacity, have emerged as promising tools for pharmacologic applications, including GPCR modulation. Past work has shown that conjugation of Nbs with ligands can provide GPCR agonists that exhibit improved activity and selectivity compared to their parent ligands. The neurokinin-1 receptor (NK1R), a GPCR targeted for the treatment of pain, is activated by peptide agonists such as Substance P (SP) and neurokinin A (NKA), which induce signaling through multiple pathways (Gs , Gq and ß-arrestin). In this study, we investigated whether conjugating NK1R ligands with Nbs that bind to a separate location on the receptor would provide chimeric compounds with distinctive signaling properties. We employed sortase A-mediated ligation to generate several conjugates consisting of Nbs linked to NK1R ligands. Many of these conjugates exhibited divergent and unexpected signaling properties and transcriptional outputs. For example, some Nb-NKA conjugates showed enhanced receptor binding capacity, high potency partial agonism, prolonged cAMP production, and an increase in transcriptional output associated with Gs signaling; whereas other conjugates were virtually inactive. Nanobody conjugation caused only minor alterations in ligand-induced upstream Gq signaling with unexpected enhancements in transcriptional (downstream) responses. Our findings underscore the potential of nanobody conjugation for providing compounds with advantageous properties such as biased agonism, prolonged duration of action, and enhanced transcriptional responses. These compounds hold promise not only for facilitating fundamental research on GPCR signal transduction mechanisms but also for the development of more potent and enduring therapeutics.


Subject(s)
Receptors, G-Protein-Coupled , Signal Transduction , Ligands , Receptors, G-Protein-Coupled/metabolism , beta-Arrestins/metabolism , Peptides/metabolism
7.
Pain Rep ; 8(6): e1100, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37928204

ABSTRACT

Introduction: During the past 2 decades, basic research deciphering the underlying mechanisms of nociception and chronic pain was thought to finally step beyond opioids and nonsteroidals and provide patients with new analgesics. But apart from calcitonin gene-related peptide antagonists, nothing arrived in hands of clinicians. Objectives: To present existing evidence of 3 representative target molecules in the development of novel pain treatment that, so far, did not result in approved drugs. Methods: This Clinical Update aligns with the 2022 IASP Global Year Translating Pain Knowledge into Practice and selectively reviews best available evidence and practice. Results: We highlight 3 targets: a ion channel, a neuronal growth factor, and a neuropeptide to explore why these drug targets have been dropped in clinical phase II-III trials. Antibodies to nerve growth factor had very good effects in musculoskeletal pain but resulted into more patients requiring joint replacements. Blockers of NaV1.7 were often not effective enough-at least if patients were not stratified. Blockers of neurokinin receptor were similarly not successful enough. In general, failure was most often to the result of a lack of effect and to a lesser extend because of unexpected severe side effects. However, all studies and trials lead to an enormous move in the scientific community to better preclinical models and testing as well as revised methods to molecularly phenotype and stratify patients. Conclusion: All stakeholders in the process can help in the future: better preclinical studies, phenotyping and stratifying patients, and participation in clinical trials to move the discovery of analgesics forward.

8.
Ocul Surf ; 30: 92-103, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37690516

ABSTRACT

PURPOSE: To test long-term ocular toxicity and analgesic/anti-inflammatory efficacy of two novel ocular formulations of neurokinin 1 receptor (NK1R) antagonist Aprepitant. METHODS: for toxicity studies, two Aprepitant formulations (X and Y) were tested on C57BL/6 N mice. Gold standards were 0.4% Oxybuprocaine, 0.1% Diclofenac, or saline. For efficacy studies, C57BL/6 N mice underwent corneal alkali burn, and then received Aprepitant formulation X, Dexamethasone or saline. Eye-drops were applied 3 times/day for 90 days (toxicity) and 14 days (efficacy). Stromal opacity, corneal epithelial damage, nociception and sensitivity were assessed in vivo. The eye-wiping test and corneal sensitivity were assessed to evaluate analgesic efficacy and nerve function. At the end of the experiments mice were euthanized, and corneas were dissected for immunohistochemistry and RT-PCR analyses. RESULTS: In normal mice, formulation X was not toxic when topically administered for 90 days. Formulation Y was associated with increased leukocyte infiltration in the cornea (p < 0.001). X1 and X2 formulations significantly reduced corneal pain, as Diclofenac and Oxybuprocaine, but did not reduce corneal sensitivity. Formulation Y, instead, was not analgesic at any time point. In the alkali burn model, X1 and X2 formulation enhanced epithelial damage recovery, and reduced inflammation both at day 7 and 14. Moreover, formulation X showed a stronger analgesic effect when compared to the saline and Dexamethasone groups (p < 0.01). Finally, formulation X1 and X2 restored corneal sensitivity by promoting corneal nerve regeneration. CONCLUSIONS: Aprepitant X formulation is a promising candidate for the treatment of pain associated with inflammation of the ocular surface.


Subject(s)
Burns, Chemical , Corneal Injuries , Mice , Animals , Aprepitant , Burns, Chemical/drug therapy , Diclofenac , Disease Models, Animal , Mice, Inbred C57BL , Inflammation , Cornea , Pain , Corneal Injuries/drug therapy , Corneal Injuries/complications , Dexamethasone , Analgesics
9.
Cell Biochem Biophys ; 81(4): 787-794, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37740877

ABSTRACT

BACKGROUND: Numerous molecules have been introduced to participate in the formation of breast cancer, the most common malignancy in women. Among them, neuropeptide substance P (SP) and its related receptor neurokinin-1 receptor (NK1R) have attracted unprecedented attention in tumorigenesis processes. In this study, we investigated the effect of the SP/NK1R pathway on the induction of oxidative stress in breast cancer and examine the therapeutic potential of NK1R inhibition in this malignancy. METHODS: MCF-7 cells were treated with varying concentrations of SP and aprepitant, an FDA-approved NK1R antagonist, either as a single drug or in a combined modality. Resazurin assay was used to evaluate the anti-cancer ability of aprepitant. The alteration in the intracellular levels of reactive oxygen species (ROS) and gene expression were determined using ROS assay and the qRT-PCR analysis, respectively. RESULTS: The stimulation of the SP/NK1R axis in the MCF-7 cells was coupled with the accumulation of ROS as well as upregulation of NF-κB and its related pro-inflammatory cytokines, including tumor necrosis factor (TNF)-α and IL-6. In contrast, the suppression of NK1R by aprepitant halted the viability of MCF-7 cells, at least partly due to p53-mediated upregulation of p21. Moreover, aprepitant attenuated the oncogenic properties of SP by preventing the oxidative property of this neuropeptide. CONCLUSION: Overall, our results suggest that the SP/NK1R pathway might play a critical role in breast cancer pathogenesis, probably through inducing ROS/NF-κB-mediated inflammatory responses. Moreover, it seems that blockage of the axis has promising therapeutic value against breast cancer cells. Schematic representation proposed for the plausible mechanism by which the stimulation of the SP/NK1R might induce oxidative stress in breast cancer-derived MCF-7 cells. Once SP interacts with NK1R, this signaling axis could disturb the balance between the expression of p53 and NF-κB, an event that leads to the accumulation of ROS within MCF-7 cells. The produced ROS, in turn, elevates the expression of pro-inflammatory cytokines (TNF-α and IL-6) and downregulates the expression of p21. On the other hand, aprepitant, an antagonist of NK1R, could reduce the survival of proliferative capacity of MCF-7 cells by decreasing the intracellular levels of ROS and p53-mediated up-regulation of p21. Along with the effect on p53, aprepitant could also reduce the expression of NF-κB and its related pro-inflammatory cytokines.


Subject(s)
Breast Neoplasms , Receptors, Neurokinin-1 , Female , Humans , Receptors, Neurokinin-1/genetics , Receptors, Neurokinin-1/metabolism , Substance P/pharmacology , Substance P/metabolism , NF-kappa B/metabolism , Aprepitant/pharmacology , Breast Neoplasms/genetics , Interleukin-6/genetics , Interleukin-6/metabolism , Reactive Oxygen Species/metabolism , Tumor Suppressor Protein p53 , Cytokines/metabolism , Cell Proliferation
10.
Curr Med Chem ; 2023 Aug 18.
Article in English | MEDLINE | ID: mdl-37594106

ABSTRACT

BACKGROUND: Numerous biochemical reactions leading to altered cell proliferation cause tumorigenesis and cancer treatment resistance. The mechanisms implicated include genetic and epigenetic changes, modified intracellular signaling, and failure of control mechanisms caused by intrinsic and extrinsic factors alone or combined. No unique biochemical events are responsible; entangled molecular reactions conduct the resident cells in a tissue to display uncontrolled growth and abnormal migration. Copious experimental research supports the etiological responsibility of NK-1R (neurokinin-1 receptor) activation, alone or cooperating with other mechanisms, in cancer appearance in different tissues. Consequently, a profound study of this receptor system in the context of malignant processes is essential to design new treatments targeting NK-1R-deviated activity. METHOD: This study reviews and discusses recent literature that analyzes the main signaling pathways influenced by the activation of neurokinin 1 full and truncated receptor variants. Also, the involvement of NK-1R in cancer development is discussed. CONCLUSION: NK-1R can signal through numerous pathways and cross-talk with other receptor systems. The participation of override or malfunctioning NK-1R in malignant processes needs a more precise definition in different types of cancers to apply satisfactory and effective treatments. A long way has already been traveled: the current disposal of selective and effective NK-1R antagonists and the capacity to develop new drugs with biased agonistic properties based on the receptor's structural states with functional significance opens immediate research action and clinical application.

11.
Cells ; 12(10)2023 05 09.
Article in English | MEDLINE | ID: mdl-37408182

ABSTRACT

Primary Sjögren's Syndrome (pSS) is a systemic autoimmune disease that primarily attacks the lacrimal and salivary glands, resulting in impaired secretory function characterized by xerostomia and xerophthalmia. Patients with pSS have been shown to have impaired salivary gland innervation and altered circulating levels of neuropeptides thought to be a cause of decreased salivation, including substance P (SP). Using Western blot analysis and immunofluorescence studies, we examined the expression levels of SP and its preferred G protein-coupled TK Receptor 1 (NK1R) and apoptosis markers in biopsies of the minor salivary gland (MSG) from pSS patients compared with patients with idiopathic sicca syndrome. We confirmed a quantitative decrease in the amount of SP in the MSG of pSS patients and demonstrated a significant increase in NK1R levels compared with sicca subjects, indicating the involvement of SP fibers and NK1R in the impaired salivary secretion observed in pSS patients. Moreover, the increase in apoptosis (PARP-1 cleavage) in pSS patients was shown to be related to JNK phosphorylation. Since there is no satisfactory therapy for the treatment of secretory hypofunction in pSS patients, the SP pathway may be a new potential diagnostic tool or therapeutic target.


Subject(s)
Sjogren's Syndrome , Humans , Substance P/metabolism , Receptors, Neurokinin-1/metabolism , Salivary Glands/metabolism
12.
BMC Cancer ; 23(1): 471, 2023 May 23.
Article in English | MEDLINE | ID: mdl-37221457

ABSTRACT

BACKGROUND: Aprepitant, as a neurokinin-1 receptor (NK-1R) antagonist, originally applied for curing chemotherapy-induced nausea and vomiting, has been reported to have significant antitumor effect on several malignant tumors. However, the effect of aprepitant on gallbladder cancer (GBC) is not clear yet. This study aimed to investigate the anti-tumor activity of aprepitant on GBC and the potential mechanisms. METHODS: The NK-1R expression of gallbladder cancer cells were examined by immunofluorescence. MTT assay, wound healing and transwell migration assay were applied to detect the effect of aprepitant on cell proliferation, migration and invasion. Flow cytometry was used to detect the apoptosis rate. The effects of aprepitant on the expressions of cytokine were examined by real-time quantitative PCR and MAPK activation were detected via immunofluorescence and western blotting. Besides, xenograft model was established to investigate the effect of aprepitant in vivo. RESULTS: Our results indicated that NK-1R was markedly expressed in gallbladder cancer cells and aprepitant effectively inhibited the proliferation, migration and invasion. Furthermore, the apoptosis, ROS and inflammation response were significantly boosted by aprepitant in GBC. Aprepitant induced NF-κB p65 nuclear translocationin and increased the expressions of p-P65, p-Akt, p-JNK, p-ERK and p-P38, as well as the mRNA levels of inflammatory cytokines IL-1ß, IL-6 and TNF-α. Consistently, aprepitant suppressed the growth of GBC in xenograft mice model. CONCLUSION: Our study demonstrated that aprepitant could inhibit the development of gallbladder cancer via inducing ROS and MAPK activation, which suggested that aprepitant may become a promising therapeutic drug against GBC.


Subject(s)
Carcinoma in Situ , Gallbladder Neoplasms , Humans , Animals , Mice , Aprepitant , Reactive Oxygen Species , Neurokinin-1 Receptor Antagonists , Cytokines , Disease Models, Animal
13.
BMC Womens Health ; 23(1): 229, 2023 05 04.
Article in English | MEDLINE | ID: mdl-37142998

ABSTRACT

BACKGROUND: A potential concern has been raised regarding fertility and reproductive outcome during the Covid-19 pandemic with growing stress and anxiety. However, information on the association between tissue stress reaction and expression profiles of SARS-CoV-2 viral entry proteins, ACE2 and TMPRSS2, in endometria collected from women before (pre-pandemic) and during the Covid-19 pandemic (in-pandemic) is unknown. We aim to investigate the relationship between the expression of stress-reactive proteins and of ACE2 and TMPRSS2 in endometria collected from women during these two different time frames. METHODS: We retrospectively retrieved tissue blocks of endometrial samples from 25 women in 2019 (pre-pandemic) and 25 women in 2020 (in-pandemic) who underwent hysterectomy for different gynecological indications. Immunohistochemical analysis was performed with endometrial tissue samples that were collected before and during the pandemic, using respective antibodies targeting ACE2/TMPRSS2, ADRB2 and NK1R (stress and anxiety receptor markers, respectively). The quantification of immunoreactive cells for each marker was calculated by the immunoreactive score (IRS) analysis. This retrospective cohort study was limited to small sample size. RESULTS: No significant differences in the IRS of ACE2 and TMPRSS2 were found between the endometria that were collected before and during the pandemic with a lack of correlation between ACE2 and TMPRSS2 expression in respective endometria (r = 0.11, pre-pandemic; r = 0.04, in-pandemic). The immunostaining levels of stress marker, ADRB2 were significantly higher in the endometria of in-pandemic group (p = 0.015) comparing to that of pre-pandemic group. Pearson's correlation coefficient analysis showed a significant correlation in the expression between ADRB2 and TMPRSS2 (r = 0.41, p = 0.042) in the endometria of in-pandemic group but not in the pre-pandemic group. CONCLUSION: The rise in stress and anxiety among women during current pandemic may elicit substantial amount of tissue stress reaction with consequent increase in the expression of SARS-CoV-2 viral entry proteins in their endometria. A lack of correlation between ACE2 and TMPRSS2 expression in endometria may reassure women in their reproductive age that they are not more susceptible to infection by SARS-CoV-2 and suggest that stressful women during this pandemic can safely decide to conceive naturally or by artificial reproductive technology.


Subject(s)
COVID-19 , Humans , Female , Adult , COVID-19/epidemiology , SARS-CoV-2/metabolism , Pandemics , Angiotensin-Converting Enzyme 2 , Retrospective Studies , Endometrium/metabolism , Serine Endopeptidases
14.
Front Immunol ; 14: 1142240, 2023.
Article in English | MEDLINE | ID: mdl-37033943

ABSTRACT

Background: Renal fibrosis is the final common pathway of chronic kidney disease (CKD), which is clinically irreversible and without effective therapy. Renal tubules are vulnerable to various insults, and tubular injury is involving in the initiation and evolution of renal inflammation and fibrosis. Neurokinin-1 receptor (NK-1R) functions by interacting with proinflammatory neuropeptide substance P (SP), exerting crucial roles in various neurological and non-neurological diseases. However, its roles in renal inflammation and fibrosis are still unknown. Methods: We collected renal biopsy specimens and serum samples of individuals with or without CKD. Additionally, knockout mice lacking NK-1R expression, SP addition and NK-1R pharmacological antagonist treatment in the unilateral ureteral obstruction (UUO) model, and NK-1R-overexpressed HK-2 cells were employed. Results: Renal SP/NK-1R and serum SP were increased in patients with CKD and mice experiencing UUO and correlated with renal fibrosis and function. SP addition enhanced UUO-induced progressive inflammatory responses and renal fibrosis, whereas genetically or pharmacologically targeting NK-1R attenuated these effects. Mechanistically, TFAP4 promoted NK-1R transcription by binding to its promoter, which was abolished by mutation of the binding site between TFAP4 and NK-1R promoter. Furthermore, SP acted through the NK-1R to activate the JNK/p38 pathways to modulate cell fate of tubular epithelial cells including growth arrest, apoptosis, and expression of profibrogenic genes. Conclusion: Our data reveals that SP/NK-1R signaling promotes renal inflammatory responses and fibrosis, suggesting NK-1R could be a potential therapeutic target for the patients with CKD.


Subject(s)
Renal Insufficiency, Chronic , Ureteral Obstruction , Mice , Animals , Receptors, Neurokinin-1/genetics , Receptors, Neurokinin-1/metabolism , Kidney/pathology , Fibrosis , Renal Insufficiency, Chronic/pathology , Substance P/metabolism , Ureteral Obstruction/pathology , Inflammation/metabolism
15.
Int J Mol Sci ; 24(7)2023 Mar 24.
Article in English | MEDLINE | ID: mdl-37047113

ABSTRACT

Tightly controlled inflammation is an indispensable mechanism in the maintenance of cellular and organismal homeostasis in living organisms. However, aberrant inflammation is detrimental and has been suggested as a key contributor to organ injury with different etiologies. Substance P (SP) is a neuropeptide with a robust effect on inflammation. The proinflammatory effects of SP are achieved by activating its functional receptors, namely the neurokinin 1 receptor (NK1R) receptor and mas-related G protein-coupled receptors X member 2 (MRGPRX2) and its murine homolog MRGPRB2. Upon activation, the receptors further signal to several cellular signaling pathways involved in the onset, development, and progression of inflammation. Therefore, excessive SP-NK1R or SP-MRGPRX2/B2 signals have been implicated in the pathogenesis of inflammation-associated organ injury. In this review, we summarize our current knowledge of SP and its receptors and the emerging roles of the SP-NK1R system and the SP-MRGPRX2/B2 system in inflammation and injury in multiple organs resulting from different pathologies. We also briefly discuss the prospect of developing a therapeutic strategy for inflammatory organ injury by disrupting the proinflammatory actions of SP via pharmacological intervention.


Subject(s)
Receptors, Neurokinin-1 , Substance P , Mice , Animals , Substance P/metabolism , Receptors, Neurokinin-1/metabolism , Inflammation/metabolism , Receptors, G-Protein-Coupled/metabolism , Receptors, Neuropeptide/metabolism
16.
Clin Exp Immunol ; 210(1): 39-52, 2022 10 21.
Article in English | MEDLINE | ID: mdl-36001730

ABSTRACT

Increased expression of substance P (SP) and neurokinin-1 receptor (NK1R) has been noticed in patients with allergic rhinitis (AR) and allergic asthma (AA). However, little is known of the expression of SP and NK1R in monocytes and B cells of AR and AA. In the present study, the expression levels of SP and NK1R were determined by flow cytometry and mouse AR and AA models. The results showed that both percentages of SP+ monocytes and SP+ B cells, and mean fluorescence intensity (MFI) of SP in monocytes were elevated in the blood of AA and AR combined with AA (ARA) patients. Similarly, the percentages of NK1R+ monocytes were elevated in the blood of AR, AA, and ARA patients. Allergens Artemisia sieversiana wild allergen extract (ASWE), house dust mite extract (HDME), and Platanus pollen allergen extract (PPE) increased the expression density of SP molecules (determined by MFI) in an individual monocyte of AR patients. HDME and PPE appeared to enhance SP and NK1R expression in the B cells of ARA and AR patients. In the mouse AR and AA models, the percentages of NK1R+ monocytes and B cells were elevated in blood following OVA (ovalbumin) sensitization and challenge. Knocking out the FcεRI molecule completely abolished the OVA-induced upregulation of expression of NK1R in monocytes and B cells of AA mice. In conclusion, upregulated expressions of SP and NK1R may contribute to the pathogenesis of airway allergy.


Subject(s)
Asthma , Rhinitis, Allergic , Animals , Mice , Allergens , Monocytes/metabolism , Ovalbumin , Receptors, Neurokinin-1/genetics , Receptors, Neurokinin-1/metabolism , Substance P/metabolism , Substance P/pharmacology
17.
Pharmacol Res Perspect ; 10(4): e00990, 2022 08.
Article in English | MEDLINE | ID: mdl-35904495

ABSTRACT

The tachykinin neuropeptide substance P (SP) is the canonical agonist peptide for the neurokinin 1 receptor (NK1 R). More recently, it has also been shown to activate the Mas-related G protein-coupled receptor X2 (MRGPRX2) receptor on mast cells (MCs), triggering degranulation and release of inflammatory mediators. SP undergoes rapid C-terminal truncation in vivo by a number of proteases to generate the metabolites SP(1-9)-COOH and in particular SP(1-7)-COOH. While the C terminus of SP is critical for NK1 R activation, studies have shown that the peptide polycationic N terminus is key for MRGPRX2 and mast cell activation. The study thus aimed to determine if the C-terminally truncated metabolites of SP, SP(1-9)-COOH, and SP(1-7)-COOH retained stimulatory activity at MRGPRX2. SP, SP(1-9)-COOH, and SP(1-7)-COOH were synthesized and tested on HEK293 cells expressing NK1 R or MRGPRX2, and LAD2 human mast cells, to determine the activity of SP and its metabolites in Ca2+ mobilization, degranulation, and cytokine assays. As expected from prior studies, both C-terminally truncated SP metabolites had essentially no activity at NK1 R, even at very high concentrations. In contrast, the in vivo metabolite of SP, SP(1-9)-COOH retained ability to activate MRGPRX2 across all parameters tested, albeit with reduced potency compared to intact SP. SP(1-7)-COOH did not produce any significant MRGRPX2 activation. Our results suggest that the SP metabolite, SP(1-9)-COOH, may play a regulatory role through the activation of MRGPRX2. However, given the relatively low potency of both SP and SP(1-9)-COOH at MRGPRX2, additional work is needed to better understand the biological importance of this expanded SP/MRGPRX2 pathway.


Subject(s)
Mast Cells , Receptors, Neuropeptide , Cell Degranulation , HEK293 Cells , Humans , Nerve Tissue Proteins/metabolism , Receptors, G-Protein-Coupled/metabolism , Receptors, Neuropeptide/metabolism , Substance P/metabolism , Substance P/pharmacology
18.
Curr Res Toxicol ; 3: 100078, 2022.
Article in English | MEDLINE | ID: mdl-35734228

ABSTRACT

Respiratory depression (RD) is the primary cause of death due to opioids. Opioids bind to mu (µ)-opioid receptors (MORs) encoded by the MOR gene Oprm1, widely expressed in the central and peripheral nervous systems including centers that modulate breathing. Respiratory centers are located throughout the brainstem. Experiments with Oprm1-deleted knockout (KO) mice undertaken to determine which sites are necessary for the induction of opioid-induced respiratory depression (OIRD) showed that the pre-Bötzinger complex (preBötC) and the pontine Kölliker-Fuse nucleus (KF) contribute equally to OIRD but RD was not totally eliminated. Morphine showed a differential influence on preBötC and KF neurons - low doses attenuated RD following deletion of MORs from preBötC neurons and an increase in apneas after high doses whereas deletion of MORs from KF neurons but not the preBötC attenuated RD at both high and low doses. In other KO mice studies, morphine administration after deletion of Oprm1 from both the preBötC and the KF/PBN neurons, led to the conclusion that both respiratory centres contribute to OIRD but the preBötC predominates. MOR-mediated post-synaptic activation of GIRK potassium channels has been implicated as a cause of OIRD. A complementary mechanism in the preBötC involving KCNQ potassium channels independent of MOR signaling has been described. Recent experiments in rats showing that morphine depresses normal, but not gasping breathing, cast doubt on the belief that eupnea, sighs, and gasps, are under the control of preBötC neurons. Methadone, administered to alleviate symptoms of neonatal opioid withdrawal syndrome (NOWES), desensitized rats to OIRD. Protection lost between postnatal days 1 and 2 coincides with the preBötC becoming the dominant generator of respiratory rhythm. Neonatal antidepressant exposure syndrome (NADES) and serotonin toxicity (ST) show similarities including RD. Enzyme CYP2D6 involved in opioid detoxification is polymorphic. Individuals of different CYP2D6 genotype may show increased, decreased, or no enzyme activity, contributing to the variability of patient responses to different opioids and OIRD.

19.
Cancers (Basel) ; 14(9)2022 Apr 30.
Article in English | MEDLINE | ID: mdl-35565383

ABSTRACT

Nowadays, the identification of new therapeutic targets that allow for the development of treatments, which as monotherapy, or in combination with other existing treatments can contribute to improve response rates, prognosis and survival of oncologic patients, is a priority to optimize healthcare within sustainable health systems. Recent studies have demonstrated the role of Substance P (SP) and its preferred receptor, Neurokinin 1 Receptor (NK-1R), in human cancer and the potential antitumor activity of NK-1R antagonists as an anticancer treatment. In this review, we outline the relevant studies published to date regarding the SP/NK-1R complex as a key player in human cancer and also evaluate if the repurposing of already marketed NK-1R antagonists may be useful in the development of new treatment strategies to overcome cancer resistance.

20.
Front Med (Lausanne) ; 9: 820817, 2022.
Article in English | MEDLINE | ID: mdl-35308522

ABSTRACT

Background: Hypertrophic scar formation may be related to cutaneous neurogenic inflammation (CNI) through the substance P-neurokinin 1 receptor (SP-NK1R) signaling pathway. As a widely used drug in aesthetic clinical work, botulinum toxin type A (BTX-A) has a therapeutic effect on scars, but the actual mechanism remains unclear. This study aimed to clarify the potential mechanism by which BTX-A inhibits CNI in hypertrophic scars both in vitro and in vivo. Methods: Tissue samples were obtained from surgical excisions. Immunohistological analysis was used to locate SP in human hypertrophic scars and normal skin. RT-PCR and western blot analysis were used to evaluate the expression of collagens after SP/BTX-A treatment. A rabbit ear scar model was used to explore the in vivo effect of BTX-A on scar treatment. Results: SP and NK-1R were overexpressed in hypertrophic scars compared to normal skin tissues. Collagen secretion of hypertrophic scar-derived fibroblasts increased with increasing doses of SP. However, BTX-A may downregulate collagen expression through SP-NK1R pathway with or without the presence of SP inducing agent capsaicin. Meanwhile, SP inhibited the expression of NK-1R, and this inhibition was blocked by pretreatment with BTX-A. In vivo, intralesional BTX-A injection can also reduce the volume of scars and inhibit collagen secretion. Capsaicin may cause more severe scar manifestations, while the therapeutic effect of BTX-A remains. Conclusion: Our research confirms that CNI stimulates fibroblasts during scar formation, while BTX-A can reduce collagen secretion by inhibiting the SP-NK1R signaling pathway, thus identifying a novel therapeutic target for this benign solid skin tumor.

SELECTION OF CITATIONS
SEARCH DETAIL
...