Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 8.011
Filter
1.
Phytomedicine ; 132: 155827, 2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38955059

ABSTRACT

BACKGROUND: Atherosclerosis (AS) is the main pathological basis for the development of cardiovascular diseases. Vascular inflammation is an important factor in the formation of AS, and macrophage pyroptosis plays a key role in AS due to its unique inflammatory response. Guizhitongluo Tablet (GZTLT) has shown clinically effective in treating patients with AS, but its mechanism is elusive. PURPOSE: This study was to determine the effects of GZTLT on atherosclerotic vascular inflammation and pyroptosis and to understand its underlying mechanism. MATERIALS AND METHODS: The active constituents of GZTLT were analysed by means of UPLC-HRMS. In vivo experiments were performed using ApoE-/- mice fed a high fat diet for 8 weeks, followed by treatment with varying concentrations of GZTLT orally by gavage and GsMTx4 (GS) intraperitoneally and followed for another 8 weeks. Oil red O, Haematoxylin-eosin (HE) and Masson staining were employed to examine the lipid content, plaque size, and collagen fibre content of the mouse aorta. Immunofluorescence staining was utilised to identify macrophage infiltration, as well as the expression of Piezo1 and NLRP3 proteins in aortic plaques. The levels of aortic inflammatory factors were determined using RT-PCR and ELISA. In vitro, foam cell formation in bone marrow-derived macrophages (BMDMs) was observed using Oil Red O staining. Intracellular Ca2+ measurements were performed to detect the calcium influx in BMDMs, and the expression of NLRP3 and its related proteins were detected by Western blot. RESULTS: The UPLC-HRMS analysis revealed 31 major components of GZTLT. Our data showed that GZTLT inhibited aortic plaque formation in mice and increased plaque collagen fibre content to stabilise plaques. In addition, GZTLT could restrain the expression of serum lipid levels and suppress macrophage foam cell formation. Further studies found that GZTLT inhibited macrophage infiltration in aortic plaques and suppressed the expression of inflammatory factors. It is noteworthy that GZTLT can restrain Piezo1 expression and reduce Ca2+ influx in BMDMs. Additionally, we found that GZTLT could regulate NLRP3 activation and pyroptosis by inhibiting Piezo1. CONCLUSION: The present study suggests that GZTLT inhibits vascular inflammation and macrophage pyroptosis through the Piezo1/NLRP3 signaling pathway, thereby delaying AS development. Our finding provides a potential target for AS treatment and drug discovery.

2.
Photochem Photobiol ; 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38958000

ABSTRACT

The thermodynamic characteristics, antioxidant potential, and photoprotective benefits of full-spectrum cannabidiol (FS-CBD) against UVB-induced cellular death were examined in this study. In silico analysis of CBD showed antioxidant capacity via proton donation and UV absorption at 209.09, 254.73, and 276.95 nm, according to the HAT and SPLET methodologies. FS-CBD protected against UVB-induced bacterial death for 30 min. FS-CBD protected against UVB-induced cell death by 42% (1.5 µg/mL) and 35% (3.5 µg/mL) in an in vitro keratinocyte cell model. An in vivo acute irradiated CD-1et/et mouse model (UVB-irradiated for 5 min) presented very low photoprotection when FS-CBD was applied cutaneously, as determined by histological analyses. In vivo skin samples showed that FS-CBD regulated inflammatory responses by inhibiting the inflammatory markers TGF-ß1 and NLRP3. The docking analysis showed that the CBD molecule had a high affinity for TGF-ß1 and NLRP3, indicating that protection against inflammation might be mediated by blocking these proinflammatory molecules. This result was corroborated by the docking interactions between CBD and TGF-ß1 and NLRP3, which resulted in a high affinity and inhibition of both proteins The present work suggested a FS-CBD moderate photoprotective agent against UVB light-induced skin damage and that this effect is partially mediated by its anti-inflammatory activity.

3.
Am J Reprod Immunol ; 92(1): e13893, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38958245

ABSTRACT

PROBLEM: Vulvovaginal candidiasis (VVC) is a common mucosal fungal infection, and Candida albicans is the main causative agent. The NLRP3 inflammasome plays an important role in VVC, but the underlying mechanism is unknown. METHOD OF STUDY: Vaginal epithelial cells were divided into three groups: control, C. albicans strain SC5314 (wild-type, WT), and WT+ Matt Cooper Compound 950 (MCC950, a specific NLRP3 inhibitor). After human vaginal epithelial cells were pretreated with 1 µmol/L MCC950 for 2 h, C. albicans (MOI = 1) was cocultured with the human vaginal epithelial cells for 12 h. The cell supernatants were collected, LDH was detected, and the IL-1ß and IL-18 levels were determined by ELISA. The expression of the pyroptosis-related proteins NLRP3, Caspase-1 p20 and GSDMD was measured by Western blotting analysis. The protein expression of the pyroptosis-related N-terminus of GSDMD (GSDMD-N) was detected by immunofluorescence. RESULTS: In this study, we showed that the WT C. albicans strain induced pyroptosis in vaginal epithelial cells, as indicated by the LDH and proinflammatory cytokine levels and the upregulated levels of the pyroptosis-related proteins NLRP3, Caspase-1 p20, and GSDMD-N. MCC950 reversed the changes in the expression of these proteins and proinflammatory cytokines in vaginal epithelial cells. CONCLUSION: C. albicans activated the NLRP3 inflammasome to induce vaginal epithelial cell pyroptosis. MCC950 inhibited the NLRP3 inflammasome, reduced vaginal epithelial cell pyroptosis, and decreased the release of inflammatory cytokines.


Subject(s)
Candida albicans , Candidiasis, Vulvovaginal , Epithelial Cells , Inflammasomes , NLR Family, Pyrin Domain-Containing 3 Protein , Pyroptosis , Vagina , Female , Humans , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Candidiasis, Vulvovaginal/immunology , Candidiasis, Vulvovaginal/microbiology , Candidiasis, Vulvovaginal/metabolism , Epithelial Cells/immunology , Epithelial Cells/metabolism , Inflammasomes/metabolism , Inflammasomes/immunology , Candida albicans/immunology , Vagina/microbiology , Vagina/immunology , Vagina/pathology , Interleukin-18/metabolism , Interleukin-1beta/metabolism , Indenes , Furans/pharmacology , Caspase 1/metabolism , Heterocyclic Compounds, 4 or More Rings/pharmacology , Phosphate-Binding Proteins/metabolism , Cells, Cultured , Sulfonamides
4.
Int Immunopharmacol ; 138: 112527, 2024 Jun 30.
Article in English | MEDLINE | ID: mdl-38950457

ABSTRACT

BACKGROUND: Sepsis-associated acute kidney injury (SA-AKI) represents a frequent complication of in critically ill patients. The objective of this study is to illuminate the potential protective activity of Micheliolide (MCL) and its behind mechanism against SA-AKI. METHODS: The protective potential of MCL on SA-AKI was investigated in lipopolysaccharide (LPS) treated HK2 cells and SA-AKI mice model. The mitochondrial damage was determined by detection of reactive oxygen species and membrane potential. The Nrf2 silencing was achieved by transfection of Nrf2-shRNA in HK2 cells, and Nrf2 inhibitor, ML385 was employed in SA-AKI mice. The mechanism of MCL against SA-AKI was evaluated through detecting hallmarks related to inflammation, mitophagy and Nrf2 pathway via western blotting, immunohistochemistry, and enzyme linked immunosorbent assay. RESULTS: MCL enhanced viability, suppressed apoptosis, decreased inflammatory cytokine levels and improved mitochondrial damage in LPS-treated HK2 cells, and ameliorated renal injury in SA-AKI mice. Moreover, MCL could reduce the activation of NLRP3 inflammasome via enhancing mitophagy. Additionally, Nrf2 deficiency reduced the suppression effect of MCL on NLRP3 inflammasome activation and blocked the facilitation effect of MCL on mitophagy in LPS-treated HK2 cells, the consistent is true for ML385 treatment in SA-AKI mice. CONCLUSIONS: MCL might target Nrf2 and further reduce the NLRP3 inflammasome activation via enhancing mitophagy, which alleviated SA-AKI.

5.
Eur J Pharm Biopharm ; : 114384, 2024 Jun 29.
Article in English | MEDLINE | ID: mdl-38950718

ABSTRACT

Peripheral vascular condition, known as deep vein thrombosis (DVT), is a common ailment that may lead to deadly pulmonary embolism. Inflammation is closely connected to venous thrombosis, which results in blood stasis, leading to ischemia and hypoxia, as indicated by research. The objective of this research was to investigate the mechanism by which exosomes derived from adipose stem cells (ADSCs) prevent deep vein thrombosis. Our data showed that Exo-483 effectively reduced the thrombus weight in DVT rats by intravenous injection. Exo-483 decreased the expression of tissue factor (TF) protein, the influx of inflammatory cells into the thrombosed vein wall, and the levels of cytokines in the serum. Furthermore, Exo-483 suppressed the expression of Mitogen-activated protein kinase 1 (MAPK1) and decreased the expression of NLRP3 inflammasomes. In an oxygen-glucose deprivation (OGD) cell model, the tube-forming and migratory abilities of primary human umbilical vein endothelial cells (HUVEC) and EA.hy926 cells were suppressed by Exo-483 pretreatment.Exo-483 is also linked to regulating Dynamin-related protein 1 (DRP1) production downstream of MAPK1.By decreasing the mitochondrial localization and phosphorylation at the S616 site of DRP1, it diminishes the expression of NLRP3 inflammasomes. Moreover, according to Bioinformatics analysis, miR-483-5p was anticipated to target MAPK1. The research conducted by our team revealed that the miR-483-5p exosome derived from ADSCs exhibited anti-inflammatory properties through the modulation of downstream DRP1-NLRP3 expression by targeting MAPK1.The findings of this research propose that miR-483-5p may be regarded as an innovative treatment target for DVT.

6.
Br J Pharmacol ; 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38952037

ABSTRACT

The vascular endothelium dynamically responds to environmental cues and plays a pivotal role in maintaining vascular homeostasis by regulating vasomotor tone, blood cell trafficking, permeability and immune responses. However, endothelial dysfunction results in various pathological conditions. Inflammasomes are large intracellular multimeric complexes activated by pathogens or cellular damage. Inflammasomes in vascular endothelial cells (ECs) initiate innate immune responses, which have emerged as significant mediators in endothelial dysfunction, contributing to the pathophysiology of an array of diseases. This review summarizes the mechanisms and ramifications of inflammasomes in ECs and related vascular diseases such as atherosclerosis, abdominal aortic aneurysm, stroke, and lung and kidney diseases. We also discuss potential drugs targeting EC inflammasomes and their applications in treating vascular diseases.

7.
Burns Trauma ; 12: tkae020, 2024.
Article in English | MEDLINE | ID: mdl-38957662

ABSTRACT

Burns are an underestimated serious injury negatively impacting survivors physically, psychologically and economically, and thus are a considerable public health burden. Despite significant advancements in burn treatment, many burns still do not heal or develop serious complications/sequelae. The nucleotide-binding oligomerization domain-like receptors (NLRs) family pyrin domain-containing 3 (NLRP3) inflammasome is a critical regulator of wound healing, including burn wound healing. A better understanding of the pathophysiological mechanism underlying the healing of burn wounds may help find optimal therapeutic targets to promote the healing of burn wounds, reduce complications/sequelae following burn, and maximize the restoration of structure and function of burn skin. This review aimed to summarize current understanding of the roles and regulatory mechanisms of the NLRP3 inflammasome in burn wound healing, as well as the preclinical studies of the involvement of NLRP3 inhibitors in burn treatment, highlighting the potential application of NLRP3-targeted therapy in burn wounds.

8.
Pregnancy Hypertens ; 37: 101142, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38959653

ABSTRACT

INTRODUCTION: Abnormalities in the maternal immune system and insufficient gestational immune tolerance may significantly contribute to the development of preeclampsia (PE). The NLR family pyrin domain containing 3 (NLRP3) functions as a pattern recognition receptor that identifies pathogen-associated molecular patterns. Interleukin-4 (IL-4) is a potent anti-inflammatory cytokine that modulates the immune response. Therefore, this study aims to elucidate the impact of NLRP3 and IL-4 variable number of tandem repeats (VNTR) polymorphisms on susceptibility to PE. MATERIALS AND METHODS: A total of 1,018 patients with PE and 1,007 normal pregnant women were recruited as the case group and the control group, respectively. Peripheral blood DNA was extracted, and NLRP3 and IL-4 VNTR polymorphisms were genotyped using polymerase chain reaction and gel electrophoresis. Genotypes and allele frequencies of pregnant women were assessed in both cohorts. RESULTS: The NLRP3 VNTR 9-7 genotype in the PE group was significantly lower than that in the control group, but 9 and 14 allele frequencies were significantly higher in patients with PE. Individuals with IL-4 VNTR genotypes 1-2 had a lower risk of PE than controls, and the IL-4 VNTR 2 allele frequency was significantly lower in patients with PE. CONCLUSIONS: This study, the first of its kind in the literature, evaluates the impact of NLRP3 VNTR and IL-4 VNTR polymorphisms on PE, revealing a significant correlation with PE susceptibility. This investigation contributes to understanding the pathogenesis of PE and provides a reference point for developing strategies to prevent and treat the disease in the future.

9.
Biomed Pharmacother ; 177: 117087, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38964178

ABSTRACT

Thirteen previously undescribed lindenane sesquiterpenoid dimers (LSDs), named chlorahololides G-S (1-13), were isolated from the whole plants of Chloranthus holostegius var. shimianensis, along with ten known analogues (14-23). The structures and absolute configurations of compounds 1-13 were elucidated through comprehensive spectroscopic analysis, NMR and electronic circular dichroism (ECD) calculations, and X-ray single-crystal diffraction. Chlorahololide G (1) represents the first instance of LSDs formed via a C-15-C-9' carbon-carbon single bond, whose plausible biosynthetic pathway was also proposed. Chlorahololides I and J (3 and 4) were deduced to be rare 8,9-seco and 9-deoxy LSDs with C-11-C-7' carbon-carbon bond, respectively. The inhibitory activity against NLRP3 inflammasome activation was evaluated for all isolates, with six compounds (5, 7, 8, 17, 22, and 23) exhibiting significant effects, and IC50 values ranging from 2.99 to 8.73 µM. Additionally, a preliminary structure-activity relationship analysis regarding their inhibition of NLRP3 inflammasome activation was summarized. Compound 17 exhibited dose-dependent inhibition of nigericin-induced pyroptosis in J774A.1 cells. Molecular docking studies suggested a strong interaction between compound 17 and NLRP3.

10.
BMC Immunol ; 25(1): 40, 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38965465

ABSTRACT

BACKGROUND: Psoriasis has a global prevalence of 1-3%, with variations observed across different ethnic groups and geographical areas. Disease susceptibility and response to anti-tumor necrosis factor-α (TNFα) drugs suggest different genetic regulatory mechanisms which may include NLR family pyrin domain containing 3 (NLRP3) polymorphism. Evaluation of the NLRP3 gene polymorphism, the serum level of CRP and TNFα in psoriasis patients and assessment of the NLRP3 (rs10754558) gene polymorphism, CRP and TNFα with disease severity and their role as biomarkers for response to Methotrexate and Adalimumab in psoriasis. The study had a total of 75 patients diagnosed with psoriasis vulgaris, who were compared to a control group of 75 healthy individuals. RESULTS: There was a highly significant difference in NLRP3 genotypes and alleles distribution between psoriasis patients and controls (P = 0.002,0.004). The heterozygote genotype GC (OR = 3.67,95%CI:1.75-7.68, P = 0.0006), was linked with increased risk of psoriasis. Additionally, The GC genotype was significantly associated with nonresponse to psoriasis therapy (OR = 11.7,95%CI:3.24-42.28, P = 0.0002). Regarding serum CRP and TNFα levels, there was a highly statistically significant difference between psoriasis patients and controls (P < 0.0001), and there was also a highly statistically significant difference between responders and non-responders in psoriasis patients regarding PASI 50 (P < 0.0001). CONCLUSIONS: The NLRP3 (rs10754558) genotypes GC was associated with the severe form of psoriasis and with nonresponse to psoriasis medication. Therefore, NLRP3 (rs10754558) gene polymorphism is an important prognostic biomarker in psoriasis patients. The serum TNFα can be used as a predictor for response to therapy in psoriasis patients. More research for evaluation of role of the NLRP3 gene polymorphism in the genetic risks and treatment outcomes associated with psoriasis is still required.


Subject(s)
Adalimumab , Methotrexate , NLR Family, Pyrin Domain-Containing 3 Protein , Polymorphism, Single Nucleotide , Psoriasis , Tumor Necrosis Factor-alpha , Humans , Psoriasis/genetics , Psoriasis/drug therapy , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , Adalimumab/therapeutic use , Methotrexate/therapeutic use , Female , Tumor Necrosis Factor-alpha/genetics , Male , Adult , Middle Aged , Genotype , Genetic Predisposition to Disease , Treatment Outcome , C-Reactive Protein/metabolism , Biomarkers/blood , Alleles , Severity of Illness Index , Gene Frequency
11.
BJU Int ; 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38967108

ABSTRACT

The mitochondrion serves as a critical intracellular organelle, engaging in essential roles in the regulation of energy production, oxidative stress management, calcium homeostasis, and apoptosis. One such disease that has been particularly associated with these functions is kidney stone disease (KSD), specifically calcium oxalate (CaOx). It is underpinned by oxidative stress and tissue inflammation. Recent studies have shed light on the vital involvement of mitochondrial dysfunction, the nucleotide-binding domain and leucine-rich repeat containing protein 3 (NLRP3) inflammasome, endoplasmic reticulum stress and subsequent cell death in CaOx crystal retention and aggregation. These processes are pivotal in the pathogenesis of kidney stone formation. This review focuses on the pivotal roles of mitochondria in renal cell functions and provides an overview of the intricate interconnectedness between mitochondrial dysfunction and NLRP3 inflammasome activation in the context of KSD. It is essential to recognise the utmost significance of gaining a comprehensive understanding of the mechanisms that safeguard mitochondrial function and regulate the NLRP3 inflammasome. Such knowledge carries significant scientific implications and opens up promising avenues for the development of innovative strategies to prevent the formation of kidney stones.

12.
Int Immunopharmacol ; 138: 112591, 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38981220

ABSTRACT

Tripartite motif (Trim) 31 is important for numerous inflammatory diseases. However, whether Trim31 regulates airway inflammation in asthma remains undetermined. The present work explored the role of Trim31 in airway inflammation in asthmatic mice established by ovalbumin (OVA) stimulation. Trim31 expression was markedly downregulated in the lungs of asthmatic mice. Compared with wild-type (WT) mice, Trim31-/- mice showed more severe pathological changes accompanied by increased inflammatory cell infiltration after OVA induction. House dust mite (HDM) stimulation evoked airway epithelial cell injury and inflammation, which were exacerbated by Trim31 silencing or attenuated by Trim31 overexpression. Further examination revealed that Trim31 deficiency exacerbated the activation of the NLRP3 inflammasome in OVA-induced asthmatic mice and HDM-stimulated airway epithelial cells. The inhibition of NLRP3 markedly diminished the Trim31 silencing-mediated enhancement of HDM-induced injury and inflammation in airway epithelial cells. In conclusion, this work demonstrates that Trim31 acts as a crucial mediator of airway inflammation in asthma. Trim31 deficiency may contribute to the progression of asthma by increasing NLRP3 inflammasome activation, suggesting that Trim31 is a potential therapeutic target for asthma.

13.
Int Immunopharmacol ; 138: 112598, 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38981223

ABSTRACT

Euphorbia L. is a traditionally used herb and contains many newly identified compounds with novel chemical structures. Euphorbia factor L2 (EFL2), a diterpenoid derived from Euphorbia seeds, is reported to alleviate acute lung injury and arthritis by exerting anti-inflammatory effects. In this study, we aimed to test the therapeutic benefit and mechanisms of EFL2 in NLRP3 inflammasome-mediated gouty models and identified the potential molecular mechanism. A cell-based system was used to test the specific inhibitory effect of EFL2 on NLRP3-related inflammation. The gouty arthritis model and an air pouch inflammation model induced by monosodium urate monohydrate (MSU) crystals were used for in vivo experiments. Nlrp3-/- mice and in vitro studies were used for mechanistic exploration. Virtual molecular docking and biophysical assays were performed to identify the direct binding and regulatory target of EFL2. The inhibitory effect of EFL2 on inflammatory cell infiltration was determined by flow cytometry in vivo. The mechanism by which EFL2 activates the NLRP3 inflammasome signaling pathway was evaluated by immunological experiment and transmission electron microscopy. In vitro, EFL2 specifically reduced NLRP3 inflammasome-mediated IL-1ß production and alleviated MSU crystal-induced arthritis, as well as inflammatory cell infiltration. EFL2 downregulated NF-κB phosphorylation and NLRP3 inflammasome expression by binding to glucocorticoid receptors. Moreover, EFL2 could specifically suppress the lysosome damage-mediated NLRP3 inflammasome activation process. It is expected that this work may be useful to accelerate the development of anti-inflammatory drugs originated from traditional herbs and improve therapeutics in gout and its complications.

14.
Article in English | MEDLINE | ID: mdl-38981775

ABSTRACT

Almost 16 % of the global population is affected by neurological disorders, including neurodegenerative and cerebral neuroimmune diseases, triggered by acute or chronic inflammation. Neuroinflammation is recognized as a common pathogenic mechanism in a wide array of neurological conditions including Alzheimer's disease, Parkinson's disease, postoperative cognitive dysfunction, stroke, traumatic brain injury, and multiple sclerosis. Inflammatory process in the central nervous system (CNS) can lead to neuronal damage and neuronal apoptosis, consequently exacerbating these diseases. Itaconate, an immunomodulatory metabolite from the tricarboxylic acid cycle, suppresses neuroinflammation and modulates the CNS immune response. Emerging human studies suggest that itaconate levels in plasma and cerebrospinal fluid may serve as biomarkers associated with inflammatory responses in neurological disorders. Preclinical studies have shown that itaconate and its highly cell-permeable derivatives are promising candidates for preventing and treating neuroinflammation-related neurological disorders. The underlying mechanism may involve the regulation of immune cells in the CNS and neuroinflammation-related signaling pathways and molecules including Nrf2/KEAP1 signaling pathway, reactive oxygen species, and NLRP3 inflammasome. Here, we introduce the metabolism and function of itaconate and the synthesis and development of its derivatives. We summarize the potential impact and therapeutic potential of itaconate and its derivatives on brain immune cells and the associated signaling pathways and molecules, based on preclinical evidence via various neurological disorder models. We also discuss the challenges and potential solutions for clinical translation to promote further research on itaconate and its derivatives for neuroinflammation-related neurological disorders.

15.
Acta Pharmacol Sin ; 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-38992121

ABSTRACT

Macrophage polarization is vital to mounting a host defense or repairing tissue in various liver diseases. Excessive activation of the NLR family pyrin domain containing 3 (NLRP3) inflammasome is related to the orchestration of inflammation and alcohol-associated liver disease (ALD) pathology. Rab GTPases play critical roles in regulating vesicular transport. In this study we investigated the role of Rab11b in ALD, aiming to identify effective therapeutic targets. Here, we first demonstrated a decreased expression of Rab11b in macrophages from ALD mice. Knockdown of Rab11b by macrophage-specific adeno-associated virus can alleviate alcohol induced liver inflammation, injury and steatosis. We found that LPS and alcohol stimulation promoted Rab11b transferring from the nucleus to the cytoplasm in bone marrow-derived macrophages (BMDM) cells. Rab11b specifically activated the NLRP3 inflammasome in BMDMs and RAW264.7 cells to induce M1 macrophage polarization. Rab11b overexpression in BMDMs inhibited autophagic flux, leading to the suppression of LC3B-mediated NLRP3 degradation. We conclude that impaired Rab11b could alleviate alcohol-induced liver injury via autophagy-mediated NLRP3 degradation.

16.
Cell Commun Signal ; 22(1): 351, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38970061

ABSTRACT

BACKGROUND: Accompanied by activation of the NOD-like receptor protein 3 (NLRP3) inflammasome, aberrant connexin 43 (Cx43) hemichannel-mediated ATP release is situated upstream of inflammasome assembly and inflammation and contributes to multiple secondary complications of diabetes and associated cardiometabolic comorbidities. Evidence suggests there may be a link between Cx43 hemichannel activity and inflammation in the diabetic kidney. The consequences of blocking tubular Cx43 hemichannel-mediated ATP release in priming/activation of the NLRP3 inflammasome in a model of diabetic kidney disease (DKD) was investigated. We examined downstream markers of inflammation and the proinflammatory and chemoattractant role of the tubular secretome on macrophage recruitment and activation. METHODS: Analysis of human transcriptomic data from the Nephroseq repository correlated gene expression to renal function in DKD. Primary human renal proximal tubule epithelial cells (RPTECs) and monocyte-derived macrophages (MDMs) were cultured in high glucose and inflammatory cytokines as a model of DKD to assess Cx43 hemichannel activity, NLRP3 inflammasome activation and epithelial-to-macrophage paracrine-mediated crosstalk. Tonabersat assessed a role for Cx43 hemichannels. RESULTS: Transcriptomic analysis from renal biopsies of patients with DKD showed that increased Cx43 and NLRP3 expression correlated with declining glomerular filtration rate (GFR) and increased proteinuria. In vitro, Tonabersat blocked glucose/cytokine-dependant increases in Cx43 hemichannel-mediated ATP release and reduced expression of inflammatory markers and NLRP3 inflammasome activation in RPTECs. We observed a reciprocal relationship in which NLRP3 activity exacerbated increased Cx43 expression and hemichannel-mediated ATP release, events driven by nuclear factor kappa-B (NFκB)-mediated priming and Cx43 hemichannel opening, changes blocked by Tonabersat. Conditioned media (CM) from RPTECs treated with high glucose/cytokines increased expression of inflammatory markers in MDMs, an effect reduced when macrophages were pre-treated with Tonabersat. Co-culture using conditioned media from Tonabersat-treated RPTECs dampened macrophage inflammatory marker expression and reduced macrophage migration. CONCLUSION: Using a model of DKD, we report for the first time that high glucose and inflammatory cytokines trigger aberrant Cx43 hemichannel activity, events that instigate NLRP3-induced inflammation in RPTECs and epithelial-to-macrophage crosstalk. Recapitulating observations previously reported in diabetic retinopathy, these data suggest that Cx43 hemichannel blockers (i.e., Tonabersat) may dampen multi-system damage observed in secondary complications of diabetes.


Subject(s)
Diabetic Nephropathies , Inflammasomes , Macrophages , NLR Family, Pyrin Domain-Containing 3 Protein , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , Diabetic Nephropathies/metabolism , Diabetic Nephropathies/pathology , Humans , Macrophages/metabolism , Macrophages/drug effects , Inflammasomes/metabolism , Connexin 43/metabolism , Connexin 43/genetics , Epithelial Cells/metabolism , Epithelial Cells/pathology , Adenosine Triphosphate/metabolism , Kidney Tubules, Proximal/metabolism , Kidney Tubules, Proximal/pathology
17.
Brain Behav ; 14(7): e3586, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38970230

ABSTRACT

BACKGROUND: Patients with myocardial infarction (MI) frequently experience a heightened incidence of depression, thereby increasing the risk of adverse cardiovascular events. Consequently, early detection and intervention in depressive symptoms among patients with MI are imperative. Shexiang Baoxin Pills (SBP), a Chinese patent medicine employed for the treatment of MI, exhibits diverse mechanisms targeting this condition. Nevertheless, its therapeutic efficacy on postmyocardial infarction depressive symptoms remains unclear. The aim of this study is to investigate the effectiveness and mechanism of SBP in managing depression during acute myocardial infarction (AMI). METHODS: A rat model combining MI and depression was established, and the rats were randomly divided into four groups: the model (MOD) group, SBP group, Fluoxetine (FLX) group, and Sham group. After 28 days of drug intervention, cardiac function was assessed using echocardiography while behavior was evaluated through sucrose preference test (SPT), forced swimming test (FST), and open-field test (OFT). Additionally, levels of inflammatory factors in serum and hippocampus were measured along with NLRP3 inflammasome-related protein expression via Western blotting and immunofluorescence. RESULTS: SBP can enhance cardiac function in rats with AMI and depression, while significantly ameliorating depressive-like behavior. Compared to the Sham group, levels of IL-1ß, IL-18, TNF-α, and other inflammatory factors were markedly elevated in the MOD group. However, expressions of these inflammatory factors were reduced to varying degrees following treatment with SBP or FLX. Analysis of NLRP3 inflammasome-related proteins in the hippocampus revealed a significant upregulation of IL-1ß, IL-18, NLRP3, ASC, caspase-1, and GSDMD in the MOD group; conversely, these measures were significantly attenuated after SBP intervention. CONCLUSION: We have observed a significant amelioration in depression-like behavior upon SBP administration during the treatment of AMI, suggesting that this effect may be attributed to the inhibition of NLRP3-mediated pyroptosis. (The main findings are summarized in the graphical abstract in the supplementary file.).


Subject(s)
Antidepressive Agents , Depression , Drugs, Chinese Herbal , Inflammasomes , Myocardial Infarction , NLR Family, Pyrin Domain-Containing 3 Protein , Rats, Sprague-Dawley , Animals , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Myocardial Infarction/drug therapy , Myocardial Infarction/metabolism , Myocardial Infarction/complications , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/administration & dosage , Rats , Depression/drug therapy , Depression/etiology , Antidepressive Agents/pharmacology , Antidepressive Agents/administration & dosage , Male , Inflammasomes/metabolism , Inflammasomes/drug effects , Disease Models, Animal , Signal Transduction/drug effects , Hippocampus/metabolism , Hippocampus/drug effects , Behavior, Animal/drug effects
18.
J Clin Transl Hepatol ; 12(6): 539-550, 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38974954

ABSTRACT

Background and Aims: Hepatic fibrosis (HF) is a critical step in the progression of hepatocellular carcinoma (HCC). Gene associated with retinoid-IFN-induced mortality 19 (GRIM19), an essential component of mitochondrial respiratory chain complex I, is frequently attenuated in various human cancers, including HCC. Here, we aimed to investigate the potential relationship and underlying mechanism between GRIM19 loss and HF pathogenesis. Methods: GRIM19 expression was evaluated in normal liver tissues, hepatitis, hepatic cirrhosis, and HCC using human liver disease spectrum tissue microarrays. We studied hepatocyte-specific GRIM19 knockout mice and clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein-9 (Cas9) lentivirus-mediated GRIM19 gene-editing in murine hepatocyte AML12 cells in vitro and in vivo. We performed flow cytometry, immunofluorescence, immunohistochemistry, western blotting, and pharmacological intervention to uncover the potential mechanisms underlying GRIM19 loss-induced HF. Results: Mitochondrial GRIM19 was progressively downregulated in chronic liver disease tissues, including hepatitis, cirrhosis, and HCC tissues. Hepatocyte-specific GRIM19 heterozygous deletion induced spontaneous hepatitis and subsequent liver fibrogenesis in mice. In addition, GRIM19 loss caused chronic liver injury through reactive oxygen species (ROS)-mediated oxidative stress, resulting in aberrant NF-кB activation via an IKK/IкB partner in hepatocytes. Furthermore, GRIM19 loss activated NLRP3-mediated IL33 signaling via the ROS/NF-кB pathway in hepatocytes. Intraperitoneal administration of the NLRP3 inhibitor MCC950 dramatically alleviated GRIM19 loss-driven HF in vivo. Conclusions: The mitochondrial GRIM19 loss facilitates liver fibrosis through NLRP3/IL33 activation via ROS/NF-кB signaling, providing potential therapeutic approaches for earlier HF prevention.

19.
BMC Cardiovasc Disord ; 24(1): 354, 2024 Jul 12.
Article in English | MEDLINE | ID: mdl-38992615

ABSTRACT

BACKGROUND: Hyperlipidemia damages vascular wall and serves as a foundation for diseases such as atherosclerosis, hypertension and stiffness. The NOD-like receptor family pyrin domain-containing 3 (NLRP3) inflammasome is implicated in vascular dysfunction associated with hyperlipidemia-induced vascular injury. Sodium tanshinone IIA sulfonate (STS), a well-established cardiovascular protective drug with recognized anti-inflammatory, antioxidant, and vasodilatory properties, is yet to be thoroughly investigated for its impact on vascular relaxant imbalance induced by hyperlipidemia. METHODS: In this study, we treated ApoE-knockout (ApoE-/-) mouse with STS and assessed the activation of the NLRP3 inflammasome, expression of MMP2/9, integrity of elastic fibers, and vascular constriction and relaxation. RESULTS: Our findings reveal that STS intervention effectively preserves elastic fibers, significantly restores aortic relaxation function in ApoE-/- mice, and reduces their excessive constriction. Furthermore, STS inhibits the phosphorylation of spleen tyrosine kinase (SYK), suppresses NLRP3 inflammasome activation, and reduces MMP2/9 expression. CONCLUSIONS: These results demonstrate that STS protects vascular relaxation against hyperlipidemia-induced damage through modulation of the SYK-NLRP3 inflammasome-MMP2/9 pathway. This research provides novel insights into the mechanisms underlying vascular relaxation impairment in a hyperlipidemic environment and uncovers a unique mechanism by which STS preserves vascular relaxation, offering valuable foundational research evidence for its clinical application in promoting vascular health.


Subject(s)
Disease Models, Animal , Inflammasomes , Matrix Metalloproteinase 2 , Matrix Metalloproteinase 9 , Mice, Inbred C57BL , Mice, Knockout, ApoE , NLR Family, Pyrin Domain-Containing 3 Protein , Phenanthrenes , Signal Transduction , Syk Kinase , Vasodilation , Animals , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Inflammasomes/metabolism , Syk Kinase/metabolism , Matrix Metalloproteinase 2/metabolism , Phenanthrenes/pharmacology , Male , Matrix Metalloproteinase 9/metabolism , Vasodilation/drug effects , Hyperlipidemias/drug therapy , Hyperlipidemias/physiopathology , Vasodilator Agents/pharmacology , Phosphorylation , Mice , Aorta/drug effects , Aorta/physiopathology , Aorta/metabolism , Aorta/enzymology , Apolipoproteins E
20.
Heliyon ; 10(12): e33146, 2024 Jun 30.
Article in English | MEDLINE | ID: mdl-38994066

ABSTRACT

Background: Acne inversa (AI) is a refractory inflammatory skin disease, and TNF-α plays an important role in the pathogenesis of AI. By blocking TNF-α, infliximab (IFX) has been proven to be a promising method. Objectives: To explore the underlying mechanisms of IFX treatment in AI patients. Methods: In this research, we integrated transcriptome sequencing data from the samples of our patients with AI and the GEO database. Ex vivo skin culture of AI patients was conducted to evaluate the efficacy of IFX treatment. Animal studies and cell experiments were used to explore the therapeutic effect and mechanism of IFX treatment. Results: Both TNF-α and NLRP3 inflammasome-related pathways were enriched in skin lesions of AI patients and murine AI models. After IFX treatment, the NLRP3 inflammasome-related pathway was effectively blocked, and the IL-1ß level was normalized in ex vivo AI skin explants and murine AI models. Mechanistically, IFX suppressed the NF-κB signaling pathway to lower the expression of NLRP3 and IL-1ß in keratinocytes. Conclusions: IFX treatment alleviated skin lesions in murine AI models and downregulated NLRP3 and IL-1ß expression levels by inhibiting the NF-κB signaling pathway, which was helpful for understanding the mechanism of IFX therapy.

SELECTION OF CITATIONS
SEARCH DETAIL
...