Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 94
Filter
1.
Vet Microbiol ; 296: 110166, 2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38968694

ABSTRACT

Streptococcus suis (S. suis) disease is a prevalent zoonotic infectious threat that elicits a systemic inflammatory response in both swine and humans, frequently culminating in high mortality rates. The excessive inflammation triggered by S. suis infection can precipitate tissue damage and sudden death; however, a comprehensive strategy to mitigate this inflammatory response remains elusive. Our study examines the role of NLRP6 in S. suis infection, with a particular focus on its involvement in pathogen regulation. A marked upregulation of NLRP6 was observed in peritoneal macrophages post-infection with S. suis SC19 strain, consequently activating the NLRP6 inflammasome. Furthermore, SC19 infection was found to augment the secretion of pro-inflammatory cytokines IL-1ß via NLRP6 activation, while NLRP6 deficiency mitigates the invasion and adhesion of SC19 to macrophages. In vivo models revealed that NLRP6 deletion enhanced survival rates of SC19-infected mice, alongside a reduction in tissue bacterial load and inflammatory cytokine levels. NLRP6-/- mice were shown to exhibit attenuated inflammatory responses in pulmonary, hepatic, and splenic tissues post-SC19 infection, as evidenced by lower inflammation scores. Flow cytometry analyses further substantiated that NLRP6 is involved in modulating macrophage and neutrophil recruitment during infection. Our findings suggest that NLRP6 negatively regulates host resistance against S. suis infection; its absence results in reduced mortality, bacterial colonization, and a milder inflammatory response. Elucidating the mechanism of NLRP6 in S. suis-induced inflammation provides novel insights and theoretical underpinnings for the prophylaxis and therapeutics of S. suis diseases.

2.
J Cell Physiol ; 2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38934623

ABSTRACT

While NLRP3 contributes to kidney fibrosis, the function of most NOD-like receptors (NLRs) in chronic kidney disease (CKD) remains unexplored. To identify further NLR members involved in the pathogenesis of CKD, we searched for NLR genes expressed by normal kidneys and differentially expressed in human CKD transcriptomics databases. For NLRP6, lower kidney expression correlated with decreasing glomerular filtration rate. The role and molecular mechanisms of Nlrp6 in kidney fibrosis were explored in wild-type and Nlrp6-deficient mice and cell cultures. Data mining of single-cell transcriptomics databases identified proximal tubular cells as the main site of Nlrp6 expression in normal human kidneys and tubular cell Nlrp6 was lost in CKD. We confirmed kidney Nlrp6 downregulation following murine unilateral ureteral obstruction. Nlrp6-deficient mice had higher kidney p38 MAPK activation and more severe kidney inflammation and fibrosis. Similar results were obtained in adenine-induced kidney fibrosis. Mechanistically, profibrotic cytokines transforming growth factor beta 1 (TGF-ß1) and TWEAK decreased Nlrp6 expression in cultured tubular cells, and Nlrp6 downregulation resulted in increased TGF-ß1 and CTGF expression through p38 MAPK activation, as well as in downregulation of the antifibrotic factor Klotho, suggesting that loss of Nlrp6 promotes maladaptive tubular cell responses. The pattern of gene expression following Nlrp6 targeting in cultured proximal tubular cells was consistent with maladaptive transitions for proximal tubular cells described in single-cell transcriptomics datasets. In conclusion, endogenous constitutive Nlrp6 dampens sterile kidney inflammation and fibrosis. Loss of Nlrp6 expression by tubular cells may contribute to CKD progression.

3.
Front Immunol ; 15: 1248907, 2024.
Article in English | MEDLINE | ID: mdl-38720893

ABSTRACT

Introduction: Sepsis remains a major cause of death in Intensive Care Units. Sepsis is a life-threatening multi-organ dysfunction caused by a dysregulated systemic inflammatory response. Pattern recognition receptors, such as TLRs and NLRs contribute to innate immune responses. Upon activation, some NLRs form multimeric protein complexes in the cytoplasm termed "inflammasomes" which induce gasdermin d-mediated pyroptotic cell death and the release of mature forms of IL-1ß and IL-18. The NLRP6 inflammasome is documented to be both a positive and a negative regulator of host defense in distinct infectious diseases. However, the role of NLRP6 in polymicrobial sepsis remains elusive. Methods: We have used NLRP6 KO mice and human septic spleen samples to examine the role of NLRP6 in host defense in sepsis. Results: NLRP6 KO mice display enhanced survival, reduced bacterial burden in the organs, and reduced cytokine/chemokine production. Co-housed WT and KO mice following sepsis show decreased bacterial burden in the KO mice as observed in singly housed groups. NLRP6 is upregulated in CD3, CD4, and CD8 cells of septic patients and septic mice. The KO mice showed a higher number of CD3, CD4, and CD8 positive T cell subsets and reduced T cell death in the spleen following sepsis. Furthermore, administration of recombinant IL-18, but not IL-1ß, elicited excessive inflammation and reversed the survival advantages observed in NLRP6 KO mice. Conclusion: These results unveil NLRP6 as a negative regulator of host defense during sepsis and offer novel insights for the development of new treatment strategies for sepsis.


Subject(s)
Immunity, Innate , Intracellular Signaling Peptides and Proteins , Sepsis , Animals , Female , Humans , Male , Mice , Cytokines/metabolism , Disease Models, Animal , Immunity, Innate/genetics , Inflammasomes/metabolism , Inflammasomes/immunology , Intracellular Signaling Peptides and Proteins/genetics , Intracellular Signaling Peptides and Proteins/metabolism , Mice, Inbred C57BL , Mice, Knockout , Receptors, Cell Surface , Sepsis/immunology , Sepsis/microbiology , Spleen/immunology
4.
Ann Hematol ; 2024 Apr 12.
Article in English | MEDLINE | ID: mdl-38607553

ABSTRACT

NLRP6 plays a crucial role in maintaining intestinal homeostasis by regulating the interaction between the intestinal mucosa and the microbiota. However, the impact of NLRP6 deficiency on intestinal damage following hematopoietic stem cell transplantation (HSCT) remains poorly understood. In this study, we established a syngeneic HSCT mouse model using C57BL/6 mice as donors and NLRP6-/- or C57BL/6 mice as recipients. Our findings revealed that NLRP6 deficiency had minimal influence on peripheral blood cell counts and splenic immune cell proportions in transplanted mice. However, it exacerbated pathological changes in the small intestine on day 14 post-transplantation, accompanied by increased proportions of macrophages, dendritic cells, and neutrophils. Furthermore, the NLRP6 deficiency resulted in elevated expression of MPO and CD11b, while reducing the levels mature caspase-1 and mature IL-1ß in the intestine. Moreover, the NLRP6 deficiency disturbed the expression of apoptosis-related molecules and decreased the tight junction protein occludin. Notably, recipient mice with NLRP6 deficiency exhibited lower mRNA expression levels of antimicrobial genes, such as Reg3γ and Pla2g2a. The short-term increase in inflammatory cell infiltration caused by NLRP6 deficiency was associated with intestinal damage, increased apoptosis, reduced expression of antimicrobial peptides, and impaired intestinal repair. Taken together, our findings demonstrate that the loss of NLRP6 exacerbates post-transplantation intestinal damage in recipient mice.

5.
Heliyon ; 10(8): e28432, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38628724

ABSTRACT

Non-typhoidal Salmonella infection is among the most frequent foodborne diseases threatening human health worldwide. The host circadian clock orchestrates daily rhythms to adapt to environmental changes, including coordinating immune function in response to potential infections. However, the molecular mechanisms underlying the interplay between the circadian clock and the immune system in modulating infection processes are incompletely understood. Here, we demonstrate that NLRP6, a novel nucleotide-oligomerization domain (NOD)-like receptor (NLR) family member highly expressed in the intestine, is closely associated with the differential day-night response to Salmonella infection. The core clock component REV-ERBα negatively regulates NLRP6 transcription, leading to the rhythmic expression of NLRP6 and the secretion of IL-18 in intestinal epithelial cells, playing a crucial role in mediating the differential day-night response to Salmonella infection. Activating REV-ERBα with agonist SR9009 in wild-type mice attenuated the severity of infection by decreasing the NLRP6 level in intestinal epithelial cells. Our findings provide new insights into the association between the host circadian clock and the immune response to enteric infections by revealing the regulation of Salmonella infection via the inhibitory effect of REV-ERBα on NLRP6 transcription. Targeting REV-ERBα to modulate NLRP6 activation may be a potential therapeutic strategy for bacterial infections.

6.
CNS Neurosci Ther ; 30(3): e14697, 2024 03.
Article in English | MEDLINE | ID: mdl-38544474

ABSTRACT

AIMS: Neuroinflammation and pyroptosis are key mediators of cerebral ischemia/reperfusion (I/R) injury-induced pathogenic cascades. BRCC3, the human homolog of BRCC36, is implicated in neurological disorders and plays a crucial role in neuroinflammation and pyroptosis. However, its effects and potential mechanisms in cerebral I/R injury in mice are unclear. METHODS: Cellular localization of BRCC3 and the interaction between BRCC3 and NLRP6 were assessed. Middle cerebral artery occlusion/reperfusion (MCAO) and oxygen-glucose deprivation/reoxygenation (OGD/R) models were established in mice and HT22 cells, respectively, to simulate cerebral I/R injury in vivo and in vitro. RESULTS: BRCC3 protein expression peaked 24 h after MCAO and OGD/R. BRCC3 knockdown reduced the inflammation and pyroptosis caused by cerebral I/R injury and ameliorated neurological deficits in mice after MCAO. The effects of BRCC3 on inflammation and pyroptosis may be mediated by NLRP6 inflammasome activation. Moreover, both BRCC3 and its N- and C-terminals interacted with NLRP6, and both BRCC3 and its terminals reduced NLRP6 ubiquitination. Additionally, BRCC3 affected the interaction between NLRP6 and ASC, which may be related to inflammasome activation. CONCLUSION: BRCC3 shows promise as a novel target to enhance neurological recovery and attenuate the inflammatory responses and pyroptosis caused by NLRP6 activation in cerebral I/R injury.


Subject(s)
Brain Ischemia , Reperfusion Injury , Animals , Humans , Mice , Brain Ischemia/metabolism , Deubiquitinating Enzymes , Infarction, Middle Cerebral Artery/pathology , Inflammasomes/metabolism , Intracellular Signaling Peptides and Proteins , Neuroinflammatory Diseases , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Pyroptosis/physiology , Reperfusion Injury/metabolism
7.
Mol Biol Rep ; 51(1): 351, 2024 Feb 24.
Article in English | MEDLINE | ID: mdl-38400865

ABSTRACT

The nervous system possesses the remarkable ability to undergo changes in order to store information; however, it is also susceptible to damage caused by invading pathogens or neurodegenerative processes. As a member of nucleotide-binding oligomerization domain-like receptor (NLR) family, the NLRP6 inflammasome serves as a cytoplasmic innate immune sensor responsible for detecting microbe-associated molecular patterns. Upon activation, NLRP6 can recruit the adapter protein apoptosis-associated speck-like protein (ASC) and the inflammatory factors caspase-1 or caspase-11. Consequently, inflammasomes are formed, facilitating the maturation and secretion of pro-inflammatory cytokines such as inflammatory factors-18 (IL-18) and inflammatory factors-1ß (IL-1ß). Precise regulation of NLRP6 is crucial for maintaining tissue homeostasis, as dysregulated inflammasome activation can contribute to the development of various diseases. Furthermore, NLRP6 may also play a role in the regulation of extraintestinal diseases. In cells of the brain, such as astrocytes and neurons, NLRP6 inflammasome are also present. Here, the assembly and subsequent activation of caspase-1 mediated by NLRP6 contribute to disease progression. This review aims to discuss the structure and function of NLRP6, explain clearly the mechanisms that induce and activate NLRP6, and explore its role within the central and peripheral nervous system.


Subject(s)
Inflammasomes , Nervous System Diseases , Humans , Inflammasomes/metabolism , Cytokines/metabolism , Caspase 1/metabolism , Apoptosis , Nervous System Diseases/genetics , Caspases , Intracellular Signaling Peptides and Proteins
8.
Neurobiol Dis ; 192: 106434, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38341160

ABSTRACT

Innate inflammation is crucial for ischemic stroke development. NLRP6, a nucleotide-binding and oligomerization domain-like receptors (NLRs) family member, regulates innate inflammation. Whether NLRP6 regulates neurological damage and neuroinflammation during ischemic stroke remains unclear. We report that NLRP6 is abundantly expressed in microglia and significantly upregulated in the ischemic brain. The brain injury severity was alleviated in NLRP6-deficient mice after ischemic stroke, as evidenced by reduced cerebral infarct volume, decreased neurological deficit scores, improved histopathological morphological changes, ameliorated neuronal denaturation, and relief of sensorimotor dysfunction. In the co-culture OGD/R model, NLRP6 deficiency prevented neuronal death and attenuated microglial cell injury. NLRP6 deficiency blocked several NLRs inflammasomes' activation and abrogated inflammasome-related cytokine production by decreasing the expression of the common effector pro-caspase-1. NLRP6 deficiency reduced pro-caspase-1's protein level by inducing proteasomal degradation. These findings confirm the neuroprotective role of NLRP6 deficiency in ischemic stroke and its underlying regulation mechanism in neuroinflammation and provide a potential therapeutic target for ischemic stroke.


Subject(s)
Brain Injuries , Brain Ischemia , Ischemic Stroke , Animals , Mice , Caspase 1/metabolism , Inflammasomes/metabolism , Inflammation , Neuroinflammatory Diseases , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism
9.
Biochim Biophys Acta Mol Basis Dis ; 1870(3): 167035, 2024 03.
Article in English | MEDLINE | ID: mdl-38278335

ABSTRACT

Colorectal cancer liver metastasis (CRLM) a profound influence on the prognosis of patients with colorectal cancer (CRC), prompting a comprehensive inquiry into its underlying mechanisms. Amidst the multifaceted tumor microenvironment, myeloid-derived suppressor cells (MDSCs) have emerged as pivotal orchestrators of immune modulation. However, their specific contributions to the CRLM have not been explored. The role of NLRP6, a member of the NOD-like receptor family, is of interest. Employing a liver metastasis model, our investigation revealed a heightened accumulation of monocytic MDSCs (M-MDSCs) within metastatic sites, culminating in an immunosuppressive milieu characterized by depleted CD8+ T cell populations. Remarkably, the absence of NLRP6 disrupts this intricate immunosuppressive network, highlighting its nuanced role in sculpting the trajectory of CRLM. This study elucidates the interplay between NLRP6 and MDSCs, potentially guiding novel therapeutic strategies to recalibrate the immune microenvironment in CRLM and enhance patient outcomes.


Subject(s)
Colorectal Neoplasms , Liver Neoplasms , Myeloid-Derived Suppressor Cells , Humans , Liver Neoplasms/genetics , Monocytes , Colorectal Neoplasms/genetics , Tumor Microenvironment , Intracellular Signaling Peptides and Proteins
10.
Proc Natl Acad Sci U S A ; 121(6): e2321419121, 2024 Feb 06.
Article in English | MEDLINE | ID: mdl-38289959

ABSTRACT

The NOD-like receptor (NLR) family pyrin domain containing 6 (NLRP6) serves as a sensor for microbial dsRNA or lipoteichoic acid (LTA) in intestinal epithelial cells (IECs), and initiating multiple pathways including inflammasome pathway and type I interferon (IFN) pathway, or regulating nuclear factor-κB (NF-κB) and mitogen-activated protein kinase (MAPK) pathways. NLRP6 can exert its function in both inflammasome-dependent and inflammasome-independent manners. However, there is no tool to distinguish the contribution of individual NLRP6-mediated pathway to the physiology and pathology in vivo. Here, we validated that Arg39 and Trp50 residues in the pyrin domain (PYD) of murine NLRP6 are required for ASC recruitment and inflammasome activation, but are not important for the RNA binding and PYD-independent NLRP6 oligomerization. We further generated the Nlrp6R39E&W50E mutant mice, which showed reduced inflammasome activation in either steady state intestine or during viral infection. However, the type I IFN production in cells or intestine tissue from Nlrp6R39E&W50E mutant mice remain normal. Interestingly, NLRP6-mediated inflammasome activation or the IFN-I production seems to play distinct roles in the defense responses against different types of RNA viruses. Our work generated a useful tool to study the inflammasome-dependent role of NLRP6 in vivo, which might help to understand the complexity of multiple pathways mediated by NLRP6 in response to the complicated and dynamic environmental cues in the intestine.


Subject(s)
Inflammasomes , NF-kappa B , Mice , Animals , Inflammasomes/genetics , Inflammasomes/metabolism , NF-kappa B/genetics , NF-kappa B/metabolism , Intestines , Mitogen-Activated Protein Kinases , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism
11.
Int Immunopharmacol ; 127: 111414, 2024 Jan 25.
Article in English | MEDLINE | ID: mdl-38141404

ABSTRACT

5-androstenediol (ADIOL) functions as a selective estrogen receptor ß (ERß) ligand with a protective effect against many diseases. So, we conducted a novel insight into its role in acetic acid (AA)-induced colitis and investigated its effect on TLR4-Mediated PI3K/Akt and NF-κB Pathways and the potential role of ERß as contributing mechanisms. METHODS: Rats were randomized into 5 Groups; Control, Colitis, Colitis + mesalazine (MLZ), Colitis + ADIOL, and Colitis + ADIOL + PHTPP (ER-ß antagonist). The colitis was induced through a rectal enema of acetic acid (AA) on the 8th day. At the end of treatment, colons were collected for macroscopic assessment. Tissue levels of malondialdehyde (MDA), superoxide dismutase (SOD), nuclear factor kappa b (NF-κB), toll-like receptor (TLR4), and phosphorylated Protein kinase B (pAKT) were measured. Besides, Gene expression of interleukin-1beta (IL-1ß), metalloproteases 9 (Mmp9), inositol 3 phosphate kinase (PI3K), Neutrophil gelatinase-associated lipocalin (NGAL), ERß and NLRP6 were assessed. Histopathological and immunohistochemical studies were also investigated. RESULTS: Compared to the untreated AA group, the disease activity index (DAI) and macroscopic assessment indicators significantly decreased with ADIOL injections. Indeed, ADIOL significantly decreased colonic tissue levels of MDA, TLR4, pAKT, and NF-κB immunostainig while increased SOD activity and ß catenin immunostainig. ADIOL mitigated the high genetic expressions of IL1ß, NGAL, MMP9, and PI3K while increased ERß and NLRP6 gene expression. Also, the pathological changes detected in AA groups were markedly ameliorated with ADIOL. The specific ERß antagonist, PHTPP, largely diminished these protective effects of ADIOL. CONCLUSION: ADIOL could be beneficial against AA-induced colitis mostly through activating ERß.


Subject(s)
Colitis , NF-kappa B , Rats , Male , Animals , NF-kappa B/metabolism , Rats, Wistar , Estrogen Receptor beta/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Toll-Like Receptor 4/metabolism , Lipocalin-2 , Matrix Metalloproteinase 9/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Acetic Acid/adverse effects , Androstenediol/adverse effects , Colitis/chemically induced , Colitis/drug therapy , Colitis/metabolism , Superoxide Dismutase/metabolism
12.
J Drug Target ; 32(2): 200-212, 2024 12.
Article in English | MEDLINE | ID: mdl-38153328

ABSTRACT

Background: Dry eye disease (DED) is often secondary to diabetes mellitus (DM).Purpose: This study is to explore the action of Wilms tumor 1-associated protein (WTAP) in DM-DED via lncRNA NEAT1 m6A methylation.Methods: DM-DED mouse models were treated with sh-WTAP/sh-NEAT1, followed by assessment of corneal epithelial damage/histopathological changes. HCE-2 cells were exposed to hyperosmotic conditions to establish in vitro DED models and treated with oe-NEAT1/sh-NEAT1/sh-WTAP/nigericin (an NLRP3 inflammasome inducer). Cell viability/apoptosis were evaluated by CCK-8/TUNEL. Levels of WTAP/NEAT1/inflammatory factors/NLRP3 inflammasome- and apoptosis-related markers were determined. m6A modification was examined by MeRIP-qPCR and NEAT1 stability was also detected.Results: DM-DED mice exhibited up-regulated WTAP/NEAT1 expression and severe corneal damage, whereas WTAP/NEAT1 knockdown alleviated inflammation/corneal damage. In hyperosmolarity-induced HCE-2 cells, NEAT1 aggravated inflammation and apoptosis, while NEAT1 knockdown suppressed NLRP3 inflammasome activation and ameliorated cell injury. Hyperosmolarity-induced WTAP expression increased m6A modification and NEAT1 mRNA stability. WTAP mediated m6A methylation of NEAT1 and NLRP3 inflammasome activation in DM-DED mice.


Subject(s)
Adenine , Corneal Injuries , Diabetes Mellitus , Dieldrin , Dry Eye Syndromes , RNA, Long Noncoding , Animals , Mice , Adenine/analogs & derivatives , Dieldrin/analogs & derivatives , Inflammasomes , Inflammation , Methylation , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , RNA, Long Noncoding/genetics , WT1 Proteins
13.
Front Immunol ; 14: 1224383, 2023.
Article in English | MEDLINE | ID: mdl-38146368

ABSTRACT

Chronic obstructive pulmonary disease (COPD) is a major health issue primarily caused by cigarette smoke (CS) and characterized by breathlessness and repeated airway inflammation. NLRP6 is a cytosolic innate receptor controlling intestinal inflammation and orchestrating the colonic host-microbial interface. However, its roles in the lungs remain largely unexplored. Using CS exposure models, our data show that airway inflammation is strongly impaired in Nlrp6-deficient mice with drastically fewer recruited neutrophils, a key cell subset in inflammation and COPD. We found that NLRP6 expression in lung epithelial cells is important to control airway and lung tissue inflammation in an inflammasome-dependent manner. Since gut-derived metabolites regulate NLRP6 inflammasome activation in intestinal epithelial cells, we investigated the link between NLRP6, CS-driven lung inflammation, and gut microbiota composition. We report that acute CS exposure alters gut microbiota in both wild-type (WT) and Nlrp6-deficient mice and that antibiotic treatment decreases CS-induced lung inflammation. In addition, gut microbiota transfer from dysbiotic Nlrp6-deficient mice to WT mice decreased airway lung inflammation in WT mice, highlighting an NLRP6-dependent gut-to-lung axis controlling pulmonary inflammation.


Subject(s)
Gastrointestinal Microbiome , Pneumonia , Receptors, Cell Surface , Tobacco Smoke Pollution , Receptors, Cell Surface/deficiency , Receptors, Cell Surface/genetics , Receptors, Cell Surface/metabolism , Pneumonia/chemically induced , Pneumonia/genetics , Pneumonia/microbiology , Animals , Mice , Mice, Inbred C57BL , Cells, Cultured , Epithelial Cells/cytology , Epithelial Cells/pathology , Feces/microbiology , Bacteria/classification , Bacteria/metabolism , Biodiversity , Gene Expression
14.
J Pharm Anal ; 13(9): 999-1012, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37842661

ABSTRACT

Heavy alcohol consumption results in alcoholic liver disease (ALD) with inadequate therapeutic options. Here, we first report the potential beneficial effects of ginsenoside Rk2 (Rk2), a rare dehydroprotopanaxadiol saponin isolated from streamed ginseng, against alcoholic liver injury in mice. Chronic-plus-single-binge ethanol feeding caused severe liver injury, as manifested by significantly elevated serum aminotransferase levels, hepatic histological changes, increased lipid accumulation, oxidative stress, and inflammation in the liver. These deleterious effects were alleviated by the treatment with Rk2 (5 and 30 mg/kg). Acting as an nucleotide-binding oligomerization domain-like receptor family pyrin domain-containing 3 (NLRP3) inhibitor, Rk2 ameliorates alcohol-induced liver inflammation by inhibiting NLRP3 inflammasome signaling in the liver. Meanwhile, the treatment with Rk2 alleviated the alcohol-induced intestinal barrier dysfunction via enhancing NLRP6 inflammasome in the intestine. Our findings indicate that Rk2 is a promising agent for the prevention and treatment of ALD and other NLPR3-driven diseases.

15.
Cell ; 186(11): 2288-2312, 2023 05 25.
Article in English | MEDLINE | ID: mdl-37236155

ABSTRACT

Inflammasomes are critical sentinels of the innate immune system that respond to threats to the host through recognition of distinct molecules, known as pathogen- or damage-associated molecular patterns (PAMPs/DAMPs), or disruptions of cellular homeostasis, referred to as homeostasis-altering molecular processes (HAMPs) or effector-triggered immunity (ETI). Several distinct proteins nucleate inflammasomes, including NLRP1, CARD8, NLRP3, NLRP6, NLRC4/NAIP, AIM2, pyrin, and caspases-4/-5/-11. This diverse array of sensors strengthens the inflammasome response through redundancy and plasticity. Here, we present an overview of these pathways, outlining the mechanisms of inflammasome formation, subcellular regulation, and pyroptosis, and discuss the wide-reaching effects of inflammasomes in human disease.


Subject(s)
Inflammasomes , Humans , Apoptosis Regulatory Proteins/metabolism , CARD Signaling Adaptor Proteins/metabolism , Caspases/metabolism , Cell Death , Inflammasomes/metabolism , Neoplasm Proteins/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Pyroptosis
16.
Int J Mol Sci ; 24(9)2023 May 05.
Article in English | MEDLINE | ID: mdl-37176030

ABSTRACT

Intracerebral hemorrhage (ICH) is a severe cerebrovascular disease with a high disability rate and high mortality, and pyroptosis is a type of programmed cell death in the acute phase of ICH. Neuronal Per-Arnt-Sim domain protein 4 (Npas4) is a specific transcription factor highly expressed in the nervous system, yet the role of NPAS4 in ICH-induced pyroptosis is not fully understood. NLR family Pyrin-domain-containing 6 (NLRP6), a new member of the Nod-like receptor family, aggravates pyroptosis via activating cysteine protease-1 (Caspase-1) and Caspase-11. In this study, we found that NPAS4 was upregulated in human and mouse peri-hematoma brain tissues and peaked at approximately 24 h after ICH modeling. Additionally, NPAS4 knockdown improved neurologic dysfunction and brain damage induced by ICH in mice after 24 h. Meanwhile, inhibiting NPAS4 expression reduced the levels of myeloperoxidase (MPO)-positive cells and Caspase-1/TUNEL-double-positive cells and decreased cleaved Caspase-1, cleaved Caspase-11, and N-terminal GSDMD levels. Consistently, NPAS4 overexpression reversed the above alternations after ICH in the mice. Moreover, NPAS4 could interact with the Nlrp6 promoter region (-400--391 bp and -33--24 bp) and activate the transcription of Nlrp6. Altogether, our study demonstrated that NPAS4, as a transcription factor, can exacerbate pyroptosis and transcriptionally activate NLRP6 in the acute phase of intracerebral hemorrhage in mice.


Subject(s)
NLR Family, Pyrin Domain-Containing 3 Protein , Pyroptosis , Mice , Humans , Animals , Pyroptosis/genetics , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Cerebral Hemorrhage/genetics , Cerebral Hemorrhage/metabolism , Caspase 1/genetics , Caspase 1/metabolism , Transcription Factors , Inflammasomes/metabolism , Intracellular Signaling Peptides and Proteins/genetics , Basic Helix-Loop-Helix Transcription Factors/genetics
17.
Acta Pharm Sin B ; 13(5): 2017-2038, 2023 May.
Article in English | MEDLINE | ID: mdl-37250149

ABSTRACT

Neurogenesis decline in hippocampal dentate gyrus (DG) participates in stress-induced depressive-like behaviors, but the underlying mechanism remains poorly understood. Here, we observed low-expression of NOD-like receptor family pyrin domain containing 6 (NLRP6) in hippocampus of stress-stimulated mice, being consistent with high corticosterone level. NLRP6 was found to be abundantly expressed in neural stem cells (NSCs) of DG. Both Nlrp6 knockout (Nlrp6-/-) and NSC-conditional Nlrp6 knockout (Nlrp6CKO) mice were susceptible to stress, being more likely to develop depressive-like behaviors. Interestingly, NLRP6 was required for NSC proliferation in sustaining hippocampal neurogenesis and reinforcing stress resilience during growing up. Nlrp6 deficiency promoted esophageal cancer-related gene 4 (ECRG4) expression and caused mitochondrial dysfunction. Corticosterone as a stress factor significantly down-regulated NLRP6 expression, damaged mitochondrial function and suppressed cell proliferation in NSCs, which were blocked by Nlrp6 overexpression. ECRG4 knockdown reversed corticosterone-induced NSC mitochondrial function and cell proliferation disorders. Pioglitazone, a well-known clinical drug, up-regulated NLRP6 expression to inhibit ECRG4 expression in its protection against corticosterone-induced NSC mitochondrial dysfunction and proliferation restriction. In conclusion, this study demonstrates that NLRP6 is essential to maintain mitochondrial homeostasis and proliferation in NSCs, and identifies NLRP6 as a promising therapeutic target for hippocampal neurogenesis decline linked to depression.

18.
J Dent Sci ; 18(2): 510-516, 2023 Apr.
Article in English | MEDLINE | ID: mdl-37021264

ABSTRACT

Background/purpose: Porphyromonas gingivalis (P. gingivalis) could induce the activation of vascular endothelial cells and promote the formation of atherosclerosis. Nucleotide-binding oligomerization domain-like receptor family pyrin domain containing (NLRP) 6 could recognize P. gingivalis, but its role in atherosclerosis was unknown. The purpose of this study is to investigate the role of NLRP6 in the activation of inflammation in human umbilical vein endothelial cells (HUVECs) stimulated by P. gingivalis. Materials and methods: The expression level of NLRP6 in HUVECs with or without P. gingivalis-challenge was observed. Down-regulating the expression of NLRP6 in HUVECs, the expression levels of interleukin (IL)-1ß, IL-6, IL-8, tumor necrosis factor-α (TNF-α) and monocyte chemoattractant protein (MCP)-1 were detected. Then, the HUVECs with NLRP6-overexpressed were stimulated by P. gingivalis, the levels of inflammatory cytokines above were examined and compared with those in HUVECs triggered by P. gingivalis only. To evaluate the effect of NLRP6 on bacterial immune escape, the NLRP6 was overexpressed, and the colonies of P. gingivalis that survived in HUVECs were calculated. Results: NLRP6 was expressed in HUVECs and decreased after P. gingivalis stimulation. Downregulation of NLRP6 decreased the expression levels of IL-1ß, IL-6, IL-8, TNF-α and MCP-1 in HUVECs. Those cytokines above in NLRP6-overexpressed HUVECs with P. gingivalis-stimulation significantly increased than in the cells with P. gingivalis-stimulation only. Furthermore, over-expression of NLRP6 decreased the colonies of P. gingivalis survival in HUVECs. Conclusion: NLRP6 regulated the activation of inflammation in HUVECs triggered by P. gingivalis and played an important role in P. gingivalis survival in endothelial cells.

19.
Front Immunol ; 14: 1147925, 2023.
Article in English | MEDLINE | ID: mdl-36911699

ABSTRACT

Introduction: Gut microbiota have been linked to modulating susceptibility to Type 1 diabetes; however, there are many ways in which the microbiota interact with host cells, including through microbial ligand binding to intracellular inflammasomes (large multi-subunit proteins) to initiate immune responses. NLRP6, a microbe-recognizing inflammasome protein, is highly expressed by intestinal epithelial cells and can alter susceptibility to cancer, obesity and Crohn's disease; however, the role of NLRP6 in modulating susceptibility to autoimmune diabetes, was previously unknown. Methods: We generated NLRP6-deficient Non-obese diabetic (NOD) mice to study the effect of NLRP6-deficiency on the immune cells and susceptibility to Type 1 diabetes development. Results: NLRP6-deficient mice exhibited an expansion of CD103+ B cells and were protected from type 1 diabetes. Moreover, NLRP6-deficient CD103+ B cells express regulatory markers, secreted higher concentrations of IL-10 and TGFb1 cytokines and suppressed diabetogenic T cell proliferation, compared to NLRP6-sufficient CD103+ B cells. Microarray analysis of NLRP6-sufficient and -deficient CD103+ B cells identified 79 significantly different genes including genes regulated by lipopolysaccharide (LPS), tretinoin, IL-10 and TGFb, which was confirmed in vitro following LPS stimulation. Furthermore, microbiota from NLRP6-deficient mice induced CD103+ B cells in colonized NLRP6-sufficient germ-free mice; however, the long-term maintenance of the CD103+ B cells required the absence of NLRP6 in the hosts, or continued exposure to microbiota from NLRP6-deficient mice. Discussion: Together, our data indicate that NLRP6 deficiency promotes expansion and maintenance of a novel TGF -dependent CD103+ Breg population. Thus, targeting NLRP6 therapeutically may prove clinically useful.


Subject(s)
Diabetes Mellitus, Type 1 , Interleukin-10 , Animals , Mice , Immune Tolerance , Inflammasomes/metabolism , Lipopolysaccharides , Mice, Inbred NOD
20.
Front Immunol ; 14: 1135930, 2023.
Article in English | MEDLINE | ID: mdl-36845152

ABSTRACT

Inflammation is a key factor in the development of ulcerative colitis (UC). 1,25-dihydroxyvitamin D3 (1,25(OH)2D3, VD3), as the major active ingredient of vitamin D and an anti-inflammatory activator, is closely related to the initiation and development of UC, but its regulatory mechanism remains unclear. In this study, we carried out histological and physiological analyses in UC patients and UC mice. RNA sequencing (RNA-seq), assays for transposase-accessible chromatin with high-throughput sequencing (ATAC-seq), chromatin immunoprecipitation (ChIP) assays and protein and mRNA expression were performed to analyze and identify the potential molecular mechanism in UC mice and lipopolysaccharide (LPS)-induced mouse intestinal epithelial cells (MIECs). Moreover, we established nucleotide-binding oligomerization domain (NOD)-like receptor protein nlrp6 -/- mice and siRNA-NLRP6 MIECs to further characterize the role of NLRP6 in anti-inflammation of VD3. Our study revealed that VD3 abolished NOD-like receptor protein 6 (NLRP6) inflammasome activation, suppressing NLRP6, apoptosis-associated speck-like protein (ASC) and Caspase-1 levels via the vitamin D receptor (VDR). ChIP and ATAC-seq showed that VDR transcriptionally repressed NLRP6 by binding to vitamin D response elements (VDREs) in the promoter of NLRP6, impairing UC development. Importantly, VD3 had both preventive and therapeutic effects on the UC mouse model via inhibition of NLRP6 inflammasome activation. Our results demonstrated that VD3 substantially represses inflammation and the development of UC in vivo. These findings reveal a new mechanism by which VD3 affects inflammation in UC by regulating the expression of NLRP6 and show the potential clinical use of VD3 in autoimmune syndromes or other NLRP6 inflammasome-driven inflammatory diseases.


Subject(s)
Cholecalciferol , Colitis, Ulcerative , Animals , Mice , Cholecalciferol/pharmacology , Colitis, Ulcerative/chemically induced , Colitis, Ulcerative/drug therapy , Inflammasomes/metabolism , Inflammation/drug therapy , Signal Transduction , Vitamin D/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...