Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 20.075
Filter
1.
Protein Sci ; 33(8): e5107, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38989549

ABSTRACT

Interactions between proteins and osmolytes are ubiquitous within cells, assisting in response to environmental stresses. However, our understanding of protein-osmolyte interactions underlying desiccation tolerance is limited. Here, we employ solid-state NMR (ssNMR) to derive information about protein conformation and site-specific interactions between the model protein, SH3, and the osmolyte trimethylamine N-oxide (TMAO). The data show that SH3-TMAO interactions maintain key structured regions during desiccation and facilitate reversion to the protein's native state once desiccation stress is even slightly relieved. We identify 10 types of residues at 28 sites involved in the SH3-TMAO interactions. These sites comprise hydrophobic, positively charged, and aromatic amino acids located in SH3's hydrophobic core and surface clusters. TMAO locks both the hydrophobic core and surface clusters through its zwitterionic and trimethyl ends. This double locking is responsible for desiccation tolerance and differs from ideas based on exclusion, vitrification, and water replacement. ssNMR is a powerful tool for deepening our understanding of extremely weak protein-osmolyte interactions and providing insight into the evolutionary mechanism of environmental tolerance.


Subject(s)
Desiccation , Hydrophobic and Hydrophilic Interactions , Methylamines , Methylamines/chemistry , Nuclear Magnetic Resonance, Biomolecular , Models, Molecular , Protein Conformation
2.
Chemistry ; : e202402260, 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-38989892

ABSTRACT

We present a comprehensive study on the conformational behavior of diversely substituted 4-fluorotetrahydrothiopyran derivatives. Through quantum chemical simulations including DFT as well as NBO and NPA analysis, we elucidate the pivotal role of electrostatic interactions, occasionally complemented by hyperconjugative interactions, in stabilizing axial fluorine conformers. Less polar conformers were occasionally obtained, attributed to the interplay of electrostatic and hyperconjugative interactions. Experimental validation through NMR spectroscopy aligns with the computational analysis, thus providing a coherent understanding of the structural dynamics of these compounds.

3.
Future Med Chem ; 16(12): 1255-1266, 2024.
Article in English | MEDLINE | ID: mdl-38989987

ABSTRACT

Aim: To synthesize novel more potent anti-diabetic agents. Methodology: A simple cost effective Hantzsch's synthetic strategy was used to synthesize 2-(2-arylidenehydrazinyl)thiazol-4(5H)-ones. Results: Fifteen new 2-(2-arylidenehydrazinyl)thiazol-4(5H)-ones were established to check their anti-diabetic potential. From alpha(α)-amylase inhibition, anti-glycation and anti-oxidant activities it is revealed that most of the compounds possess good anti-diabetic potential. All tested compounds were found to be more potent anti-diabetic agents via anti-glycation mode. The results of α-amylase and anti-oxidant inhibition revealed that compounds are less active against α-amylase and anti-oxidant assays. Conclusion: This study concludes that introduction of various electron withdrawing groups at the aryl ring and substitution of different functionalities around thiazolone nucleus could help to find out better anti-diabetic drug.


Diabetes is a most spreading chronicle disease effecting millions of peoples across the globe every year and this number increases day by day. To cure the human population from this dilemma, we had synthesized, characterized and evaluated the anti-diabetic behavior of our synthesized compounds. α-Amylase, in vitro anti-glycation and anti-oxidant assays were performed to find out good lead for Diabetes Mellitus. All tested compounds were found to be excellent anti-glycating agents with IC50 values far better than standard amino-guanidine (IC50 = 3.582 ± 0.002 µM). Compound 4m was most efficient glycation inhibitor (IC50 = 1.095 ± 0.002 µM). Cytotoxicity of all compounds was determined with in vitro hemolytic assay and found all compounds safe and bio-compatible to humans at all tested concentrations. The inhibition potential was also examined with theoretical docking studies to support our experimental results against human pancreatic alpha-amylase (HPA) and human serum albumin (HSA) proteins. All compounds showed excellent binding affinity with HSA active pockets however, only compound 4h and 4k binding affinity was good with HPA.


Subject(s)
Hypoglycemic Agents , Molecular Docking Simulation , Thiazoles , alpha-Amylases , Hypoglycemic Agents/chemistry , Hypoglycemic Agents/pharmacology , Hypoglycemic Agents/chemical synthesis , Thiazoles/chemistry , Thiazoles/pharmacology , Thiazoles/chemical synthesis , alpha-Amylases/antagonists & inhibitors , alpha-Amylases/metabolism , Antioxidants/pharmacology , Antioxidants/chemistry , Antioxidants/chemical synthesis , Humans , Structure-Activity Relationship , Molecular Structure
4.
Plant Biol (Stuttg) ; 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38985650

ABSTRACT

The recent biological invasion of box tree moth Cydalima perspectalis on Buxus trees has a major impact on European boxwood stands through severe defoliation. This can hinder further regrowth and threaten survival of populations. In a mesocosm approach and controlled larval density over a 2-month period, responses of B. sempervirens essential and specialized metabolites were characterized using metabolomics, combining 1H-NMR and LC-MS/MS approaches. This is the first metabolome depiction of major Buxus responses to boxwood moth invasion. Under severe predation, remaining green leaves accumulate free amino acids (with the noticeable exception of proline). The leaf trans-4-hydroxystachydrine and stachydrine reached 10-13% and 2-3% (DW), while root content was lower but also modulated by predation level. Larval predation promoted triterpenoid and (steroidal) alkaloid synthesis and diversification, while flavonoids did not seem to have a relevant role in Buxus resistance. Our results reveal the concomitant responses of central and specialized metabolism, in relation to severity of predation. They also confirm the potential of metabolic profiling using 1H-NMR and LC-MS to detect re-orchestration of metabolism of native boxwood after severe herbivorous predation by the invasive box-tree moth, and thus their relevance for plant-insect relationships and ecometabolomics.

5.
Proc Natl Acad Sci U S A ; 121(29): e2407744121, 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-38985766

ABSTRACT

G protein-coupled receptors (GPCRs) control intracellular signaling cascades via agonist-dependent coupling to intracellular transducers including heterotrimeric G proteins, GPCR kinases (GRKs), and arrestins. In addition to their critical interactions with the transmembrane core of active GPCRs, all three classes of transducers have also been reported to interact with receptor C-terminal domains (CTDs). An underexplored aspect of GPCR CTDs is their possible role as lipid sensors given their proximity to the membrane. CTD-membrane interactions have the potential to control the accessibility of key regulatory CTD residues to downstream effectors and transducers. Here, we report that the CTDs of two closely related family C GPCRs, metabotropic glutamate receptor 2 (mGluR2) and mGluR3, bind to membranes and that this interaction can regulate receptor function. We first characterize CTD structure with NMR spectroscopy, revealing lipid composition-dependent modes of membrane binding. Using molecular dynamics simulations and structure-guided mutagenesis, we then identify key conserved residues and cancer-associated mutations that modulate CTD-membrane binding. Finally, we provide evidence that mGluR3 transducer coupling is controlled by CTD-membrane interactions in live cells, which may be subject to regulation by CTD phosphorylation and changes in membrane composition. This work reveals an additional mechanism of GPCR modulation, suggesting that CTD-membrane binding may be a general regulatory mode throughout the broad GPCR superfamily.


Subject(s)
Cell Membrane , Molecular Dynamics Simulation , Receptors, Metabotropic Glutamate , Humans , Receptors, Metabotropic Glutamate/metabolism , Receptors, Metabotropic Glutamate/chemistry , Receptors, Metabotropic Glutamate/genetics , Cell Membrane/metabolism , Protein Domains , Receptors, G-Protein-Coupled/metabolism , Receptors, G-Protein-Coupled/chemistry , Protein Binding , HEK293 Cells , Intrinsically Disordered Proteins/metabolism , Intrinsically Disordered Proteins/chemistry , Intrinsically Disordered Proteins/genetics , Signal Transduction
6.
Proc Natl Acad Sci U S A ; 121(29): e2404060121, 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-38985770

ABSTRACT

DNA aptamers have emerged as novel molecular tools in disease theranostics owing to their high binding affinity and specificity for protein targets, which rely on their ability to fold into distinctive three-dimensional (3D) structures. However, delicate atomic interactions that shape the 3D structures are often ignored when designing and modeling aptamers, leading to inefficient functional optimization. Challenges persist in determining high-resolution aptamer-protein complex structures. Moreover, the experimentally determined 3D structures of DNA molecules with exquisite functions remain scarce. These factors impede our comprehension and optimization of some important DNA aptamers. Here, we performed a streamlined solution NMR-based structural investigation on the 41-nt sgc8c, a prominent DNA aptamer used to target membrane protein tyrosine kinase 7, for cancer theranostics. We show that sgc8c prefolds into an intricate three-way junction (3WJ) structure stabilized by long-range tertiary interactions and extensive base-base stackings. Delineated by NMR chemical shift perturbations, site-directed mutagenesis, and 3D structural information, we identified essential nucleotides constituting the key functional elements of sgc8c that are centralized at the core of 3WJ. Leveraging the well-established structure-function relationship, we efficiently engineered two sgc8c variants by modifying the apical loop and introducing L-DNA base pairs to simultaneously enhance thermostability, biostability, and binding affinity for both protein and cell targets, a feat not previously attained despite extensive efforts. This work showcases a simplified NMR-based approach to comprehend and optimize sgc8c without acquiring the complex structure, and offers principles for the sophisticated structure-function organization of DNA molecules.


Subject(s)
Aptamers, Nucleotide , Nucleic Acid Conformation , Receptor Protein-Tyrosine Kinases , Aptamers, Nucleotide/chemistry , Aptamers, Nucleotide/metabolism , Aptamers, Nucleotide/genetics , Humans , Receptor Protein-Tyrosine Kinases/metabolism , Receptor Protein-Tyrosine Kinases/chemistry , Receptor Protein-Tyrosine Kinases/genetics , Models, Molecular , Magnetic Resonance Spectroscopy/methods , Protein Binding , Cell Adhesion Molecules
7.
Arch Biochem Biophys ; 758: 110080, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38960345

ABSTRACT

Glycyrrhizinic acid (GA) is one of the active substances in licorice root. It exhibits antiviral activity against various enveloped viruses, for example, SARS-CoV-2. GA derivatives are promising biologically active compounds from perspective of developing broad-spectrum antiviral agents. Given that GA nicotinate derivatives (Glycyvir) demonstrate activity against various DNA- and RNA-viruses, a search for a possible mechanism of action of these compounds is required. In the present paper, the interaction of Glycyvir with the transmembrane domain of the SARS-CoV-2 E-protein (ETM) in a model lipid membrane was investigated by NMR spectroscopy and molecular dynamics simulation. The lipid-mediated influence on localization of the SARS-CoV-2 E-protein by Glycyvir was observed. The presence of Glycyvir leads to deeper immersion of the ETM in lipid bilayer. Taking into account that E-protein plays a significant role in virus production and takes part in virion assembly and budding, the data on the effect of potential antiviral agents on ETM localization and structure in the lipid environment may provide a basis for further studies of potential coronavirus E-protein inhibitors.

8.
Spectrochim Acta A Mol Biomol Spectrosc ; 321: 124737, 2024 Jun 30.
Article in English | MEDLINE | ID: mdl-38963946

ABSTRACT

The molecule of 2-Biphenyl Carboxylic Acid (2BCA), which contains peculiar features, was explored making use of density functional theory (DFT) and experimental approaches in the area of quantum computational research. The optimised structure, atomic charges, vibrational frequencies, electrical properties, electrostatic potential surface (ESP), natural bond orbital analysis and potential energy surface (PES) were obtained applying the B3LYP approach with the 6-311++ G (d,p) basis set.. The 2BCA molecule was examined for possible conformers using a PES scan. The methods applied for spectral analyses included FT-IR, FT-RAMAN, NMR, and UV-Vis results. Vibrational frequencies for all typical modes of vibration were found using the Potential Energy Distribution (PED) data. The UV-Vis spectrum was simulated using the TD-DFT technique, which is also seen empirically. The Gauge-Invariant Atomic Orbital (GIAO) approach was employed to model and study the 13C and 1H NMR spectra of the 2BCA molecule in a CDCL3 solution. The spectra were then exploited experimentally to establish their chemical shifts. To predict the donor and acceptor interaction, the NBO analysis was used. The electrostatic potential surface was employed to anticipate the locations of nucleophilic and electrophilic sites. Hirshfeld surfaces and their related fingerprint plots are exploited for the investigation of intermolecular interactions. Reduced Density Gradient (RDG) helps to measure and illustrate electron correlation effects, offering precise insights into chemical bonding, reactivity, and the electronic structure of 2BCA. According to Lipinski and Veber's drug similarity criteria, 2BCA exhibits the typical physicochemical and pharmacokinetic properties that make it a potential oral pharmaceutical candidate. According to the findings of a molecular docking study, the 2BCA molecule has promise as a treatment agent for the Nipah virus (PDB ID: 6 EB9), which causes severe respiratory and neurological symptoms in humans.

9.
J Agric Food Chem ; 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38965162

ABSTRACT

Maillard reaction products (MRPs) of xylose with phenylalanine and xylose with proline exhibit high antibacterial activity. However, the active antibacterial compounds in MRPs have not yet been identified or isolated. This study aimed to isolate the active compounds in the two antibacterial MRPs. The organic layer of the MRP solution was separated and purified using silica gel chromatography and high-performance liquid chromatography. The chemical structures of the isolated compounds were determined by mass spectrometry and nuclear magnetic resonance spectroscopy. The compounds inhibited the growth of Bacillus cereus and Salmonella Typhimurium at 25 °C for 7 days at a concentration of 0.25 mM. Furthermore, the isolated compounds inhibited the growth of naturally occurring microflora of lettuce and chicken thighs at 25 °C for 2 days at a concentration of 0.5-1.0 mM. The antibacterial compounds found in MRPs demonstrated a wide range of effectiveness and indicated their potential as alternative preservatives.

10.
J Pharm Biomed Anal ; 248: 116329, 2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38959759

ABSTRACT

A protocol for efficiently identifying ligands directly interacting with a target protein in complex extracts of medicinal herbs was proposed by combining an adapted 2D perfect-echo Carr-Purcell-Meiboom-Gill heteronuclear single quantum correlation (PE-CPMG HSQC) spectrum with metabolomic analysis. PE-CPMG HSQC can suppress the signal interference from the target protein, allowing more accurate peak quantification than conventional HSQC. Inspired from untargeted metabolomics, regions of interest (ROIs) are constructed and quantified for the mixture or complex extract samples with and without a target protein, and then a binding index (BI) of each ROI is determined. ROIs or corresponding peaks significantly perturbed by the presence of the target protein (BI ≥1.5) are detected as differential features, and potential binding ligands identified from the differential features can be equated with bioactive markers associated with the 'treatment' of the target protein. Quantifying ROI can inclusively report the ligand bindings to a target protein in fast, intermediate and slow exchange regimes on nuclear magnetic resonance (NMR) time scale. The approach was successfully implemented and identified Angoroside C, Cinnamic acid and Harpagoside from the extract of Scrophularia ningpoensis Hemsl. as ligands binding to peroxisome proliferator-activated receptor γ. The proposed 2D NMR-based approach saves excess steps for sample processing and has a higher chance of detecting the weaker ligands in the complex extracts of medicinal herbs. We expect that this approach can be applied as an alternative to mining the potential ligands binding to a variety of target proteins from traditional Chinese medicines and herbal extracts.

11.
Food Chem ; 458: 140236, 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38959805

ABSTRACT

Coffee, a globally consumed beverage, has raised concerns in Islamic jurisprudence due to the possible presence of alcohol compounds. This research aims to utilise the sensitivity and reliability of 1H NMR spectroscopy in the quantification of alcohol compounds such as ethanol, furfuryl alcohol, and 5-(hydroxymethyl) furfural (HMF) in commercial instant coffee. Analysis of seven products was performed using advanced 1H Nuclear Magnetic Resonance (NMR) spectroscopy together with Statistical Total Correlation Spectroscopy (STOCSY) and Resolution-Enhanced (RED)-STORM. The analysis of the 100 mg sample revealed the absence of ethanol. The amount of furfuryl alcohol and HMF in the selected commercial instant coffee samples was 0.817 µg and 0.0553 µg, respectively. This study demonstrates the utility of 1H NMR spectroscopy in accurate quantification of trace components for various applications.

12.
Eur J Pharm Biopharm ; : 114380, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38960290

ABSTRACT

We have used pulsed field gradient (PFG)-NMR diffusion experiments, also known as DOSY, in combination with small angle X-ray scattering measurements to investigate structure and molecular exchange dynamics between pharmaceutical lipid nanoparticles and the bulk phase. Using liposomes and lipoplexes formed after complexation of the liposomes with messenger mRNA as test systems, information on dynamics of encapsulated water molecules, lipids and excipients was obtained. The encapsulated fraction, having a diffusivity similar to that of the liposomes, could be clearly identified and quantified by the NMR diffusion measurements. The unilamellar liposome membranes allowed a fast exchange of water molecules, while sucrose, used as an osmolyte and model solute, showed very slow exchange. Upon interactions with mRNA a topological transition from a vesicular to a lamellar organization took place, where the mRNA was inserted in repeating lipid bilayer stacks. In the lipoplexes, a small fraction of tightly bound water molecules was present, with a diffusivity that was influenced by the additional presence of sucrose. This extended information on dynamic coherencies inside pharmaceutical nanoparticle products, provided by the combined application of SAXS and PFG-NMR diffusion measurements, can be valuable for evaluation of quality and comparability of nanoscaled pharmaceuticals.

13.
Angew Chem Int Ed Engl ; : e202409593, 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38963036

ABSTRACT

The research for wurtzite-type ternary nitride semiconductors containing earth abundant elements with a stoichiometry of 1:1:2 was focused on metals like Mg or Zn, so far. The vast majority of these Grimm-Sommerfeld analogous compounds crystallize in the ß-NaFeO2 structure, although a second arrangement in space group Pmc21 is predicted to be a viable alternative. Despite extensive theoretical and experimental studies, this structure has so far remained undiscovered. Herein, we report on BeGeN2 in a Pmc21 structure, synthesized from Be3N2 and Ge3N4 using a high-pressure high-temperature approach at 6 GPa and 800 °C. The compound was characterized by powder X-ray diffraction (PXRD), solid state nuclear magnetic resonance (NMR), Raman and energy dispersive X-ray (EDX) spectroscopy, temperature-dependent PXRD, second harmonic generation (SHG) and UV/VIS measurements and in addition also compared to its lighter homologue BeSiN2 in all mentioned analytic techniques. The synthesis and investigation of both the first beryllium germanium nitride and the first ternary wurtzite-type nitride crystallizing in space group Pmc21 open the door to a new field of research on wurtzite-type related structures.

14.
Biomol NMR Assign ; 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38963588

ABSTRACT

Synucleinopathies are neurodegenerative diseases characterized by the accumulation of α-synuclein protein aggregates in the neurons and glial cells. Both ex vivo and in vitro α-synuclein fibrils tend to show polymorphism. Polymorphism results in structure variations among fibrils originating from a single polypeptide/protein. The polymorphs usually have different biophysical, biochemical and pathogenic properties. The various pathologies of a single disease might be associated with distinct polymorphs. Similarly, in the case of different synucleinopathies, each condition might be associated with a different polymorph. Fibril formation is a nucleation-dependent process involving the formation of transient and heterogeneous intermediates from monomers. Polymorphs are believed to arise from heterogeneous oligomer populations because of distinct selection mechanisms in different conditions. To test this hypothesis, we isolated and incubated different intermediates during in vitro fibrillization of α-synuclein to form different polymorphs. Here, we report 13C and 15N chemical shifts and the secondary structure of fibrils prepared from the helical intermediate using solid-state nuclear magnetic spectroscopy.

15.
J Agric Food Chem ; 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38963614

ABSTRACT

The eggshell is a composite and highly ordered structure formed by biomineralization. Besides other functions, it has a vital and intricate role in the protection of an embryo from various potentially harsh environmental conditions. Solid-state nuclear magnetic resonance (SSNMR) has been used for detailed structural investigations of the chicken, tinamou, and flamingo eggshell materials. 31P NMR spectra reveal that hydroxyapatite and ß-tricalcium phosphate in the ratio 3:2 represent major constituents of phosphate species in the eggshells. All three eggshells exhibit similar spectra, except for the line widths, which implies different structural order of phosphate species in the chicken, tinamou, and flamingo eggshells. 1H NMR spectra for these materials are comparable, differentiating overlapped peaks in three spectral regions at around 7, 4-5, and 1-2 ppm. These spectral regions have been attributed to protons from NH or CaHCO3, water, and possibly isolated monomeric water molecules or hydroxyl groups in calcium-deficient hydroxyapatite. 1H-13C CP MAS NMR revealed the presence of organic matter in the form of lipids and proteins. Two overlapped resonances in the carbonyl region at around 173 and 169 ppm are assigned to the carbonyls of the peptide bonds and the bicarbonate unit in calcite, respectively. Fourier-transform infrared spectroscopy (FTIR) spectra confirmed the presence of structural units detected in the NMR spectra.

16.
NMR Biomed ; : e5202, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38953779

ABSTRACT

Transmembrane water permeability changes occur after initialization of necrosis and are a mechanism for early detection of cell death. Filter-exchange spectroscopy (FEXSY) is sensitive to transmembrane water permeability and enables its quantification by magnetic resonance via the apparent exchange rate (AXR). In this study, we investigate AXR changes during necrotic cell death. FEXSY measurements of yeast cells in different necrotic stages were performed and compared with established fluorescence cell death markers and pulsed gradient spin echo measurements. Furthermore, the influence of T2 relaxation on AXR was examined in a two-compartment system. The AXR of yeast cells increased slightly after incubation with 20% isopropanol, whereas it peaked sharply after incubation with 25% isopropanol. At this point, almost all the yeast cells were vital but showed compromised membranes. After incubation with 30% isopropanol, AXR measurements showed high variability, at a point corresponding to a majority of the yeast cells being in late-stage necrosis with disrupted cell membranes. Simulations revealed that, for FEXSY measurements in a two-compartment system, a long filter echo time (TEf), compared with the T2 of the slow-diffusing compartment, filters out a fraction of the slow-diffusing compartment signal and leads to overestimation of apparent diffusion coefficient (ADC) and underestimation of AXR. Our results demonstrate that AXR is sensitive to gradual permeabilization of the cell membrane of living cells in different permeabilization stages without exogenous contrast agents. AXR measurements were sensitive to permeability changes induced by relatively low concentrations of isopropanol, at levels for which no measurable effect was detectable by ADC measurements. TEf may act as a signal filter that affects the estimated AXR value of a system consisting of a variety of local diffusivities and a range of T2 that includes T2 values shorter or comparable with the TEf.

17.
Glycoconj J ; 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38954268

ABSTRACT

A glucosyl-rich pectin, JMMP-3 (Mw, 2.572 × 104 g/mol, O-methyl % = 3.62%), was isolated and purified from the pericarp of the immature fruit of Juglans mandshurica Maxim. (QingLongYi). The structure of JMMP-3 was studied systematically by infrared spectroscopy, monosaccharide compositions, methylation analysis, partial acid hydrolysis, and 1/2D-NMR. The backbone of JMMP-3 possessed a smooth region (→ 4GalA1 →) and a hairy region (→ 4GalA1 → 2Rha1 →) with a molar ratio of 2: 5. The substitution of four characteristic side chains (R1-R4) occurs at C-4 of → 2,4)-α-Rhap-(1→, where R1 is composed of → 5)-α-Araf-(1→, R2 is composed of → 4)-ß-Galp-(1 → and ß-Galp-(1→, R3 is composed of α-Glcp-(1→, →4)-α-Glcp-(1 → and → 4,6)-α-Glcp-(1→, and R4 is composed of → 5)-α-Araf-(1→, ß-Galp-(1→, → 4)-ß-Galp-(1→, → 3,4)-ß-Galp-(1→, → 4,6)-ß-Galp-(1 → and → 2,4)-ß-Galp-(1 → . In addition, the antitumor activity of JMMP-3 on HepG2 cells was preliminarily investigated.

18.
Food Chem ; 458: 140245, 2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38954957

ABSTRACT

The present study proposes the development of new wine recognition models based on Artificial Intelligence (AI) applied to the mid-level data fusion of 1H NMR and Raman data. In this regard, a supervised machine learning method, namely Support Vector Machines (SVMs), was applied for classifying wine samples with respect to the cultivar, vintage, and geographical origin. Because the association between the two data sources generated an input space with a high dimensionality, a feature selection algorithm was employed to identify the most relevant discriminant markers for each wine classification criterion, before SVM modeling. The proposed data processing strategy allowed the classification of the wine sample set with accuracies up to 100% in both cross-validation and on an independent test set and highlighted the efficiency of 1H NMR and Raman data fusion as opposed to the use of a single-source data for differentiating wine concerning the cultivar and vintage.

19.
Food Chem ; 457: 140089, 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38955122

ABSTRACT

Ice fractions and water states in partially frozen muscle foods greatly affect their quality. In the study, a variable temperature nuclear magnetic resonance (VT-NMR) with a liquid nitrogen temperature control system was employed to in situ investigate the relationship between ice fractions and temperatures and changes in water states during partial freezing and thawing of pork and shrimp. Results indicated that changes in ice fractions ranging from -2 âˆ¼ -20 °C could be divided into 3 stages including slow increase, random leap and remarkable leap. More serious damages to the structures related to immobile water occurred in shrimp than in pork, and partial freezing also caused deterioration in muscle fibres related to free water. Additionally, -2 âˆ¼ -3 °C and - 3.5 °C were the appropriate partial freezing temperatures for pork and shrimp, respectively. Therefore, the VT-NMR method possessed great potential for fundamental studies and applications of partial freezing of muscle foods.

20.
Chemistry ; : e202402254, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38958873

ABSTRACT

Chalcogen bonds (ChB) are moderately strong, directional, and specific non-covalent interactions that have garnered substantial interest over the last decades. However, ChB applications are currently hampered by a lack of methods to characterize and control chalcogen bonds. We report on the influence of various substituents (halogens, cyano, and methyl groups) on the observed self-complementary ChB networks of 2,1,3-benzoselenadiazoles. From molecular electrostatic potential calculations, we show that the electrostatic surface potentials (ESP) of the σ-holes on selenium are largely influenced by the electron-withdrawing character of these substituents. Structural analyses via X-ray diffraction reveal a variety of ChB geometries and binding modes that are rationalized via the computed ESP maps, although the structure of 5,6-dimethyl-2,1,3-benzoselenadiazole also demonstrates the influence of steric interactions. 77Se solid-state magic-angle spinning NMR spectroscopy, in particular the analysis of the selenium chemical shift tensors, is found to be an effective probe able to characterize both structural and electrostatic features of these self-complementary ChB systems. We find a positive correlation between the value of the ESP maxima at the σ-holes and the experimentally measured 77Se isotropic chemical shift, while the skew of the chemical shift tensor is established as a metric which is reflective of the ChB binding motif.

SELECTION OF CITATIONS
SEARCH DETAIL
...