Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 227
Filter
1.
Int J Mol Sci ; 25(12)2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38928005

ABSTRACT

The pregnane X receptor (PXR) is a nuclear hormone receptor that plays a pivotal role in regulating gene expression in response to various ligands, particularly xenobiotics. In this context, the aim of this study was to shed light on the ligand affinity and functions of four NR1J1 paralogs identified in the marine mussel Mytilus galloprovincialis, employing a dual-luciferase reporter assay. To achieve this, the activation patterns of these paralogs in response to various toxins, including freshwater cyanotoxins (Anatoxin-a, Cylindrospermopsin, and Microcystin-LR, -RR, and -YR) and marine algal toxins (Nodularin, Saxitoxin, and Tetrodotoxin), alongside natural compounds (Saint John's Wort, Ursolic Acid, and 8-Methoxypsoralene) and microalgal extracts (Tetraselmis, Isochrysis, LEGE 95046, and LEGE 91351 extracts), were studied. The investigation revealed nuanced differences in paralog response patterns, highlighting the remarkable sensitivity of MgaNR1J1γ and MgaNR1J1δ paralogs to several toxins. In conclusion, this study sheds light on the intricate mechanisms of xenobiotic metabolism and detoxification, particularly focusing on the role of marine mussel NR1J1 in responding to a diverse array of compounds. Furthermore, comparative analysis with human PXR revealed potential species-specific adaptations in detoxification mechanisms, suggesting evolutionary implications. These findings deepen our understanding of PXR-mediated metabolism mechanisms, offering insights into environmental monitoring and evolutionary biology research.


Subject(s)
Marine Toxins , Mytilus , Pregnane X Receptor , Animals , Pregnane X Receptor/metabolism , Pregnane X Receptor/genetics , Mytilus/metabolism , Mytilus/genetics , Humans , Microcystins/metabolism , Microalgae/metabolism , Microalgae/genetics , Xenobiotics/metabolism , Bacterial Toxins/metabolism , Cyanobacteria Toxins
2.
Microb Pathog ; 193: 106767, 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38945459

ABSTRACT

Bletilla striata polysaccharide (BSP) is the main component of Bletilla striata and has been revealed to enhance immune responses. Chronic obstructive pulmonary disease (COPD) results from the chronic inhalation of toxic particles and gases, which initiates innate and adaptive immune responses in the lungs. This study aimed to evaluate whether the effects of BSP on COPD were related to the abundance of gut microbiota and explored the underlying mechanism. COPD mice were induced with cigarette smoke and human bronchial epithelial cells (HBEC) were subjected to cigarette smoke extract (CSE) for in vitro studies. BSP alleviated the inflammatory response and the inflammatory cell infiltration in lung tissues and promoted the recovery of respiratory function in COPD mice. BSP mitigated CSE-induced HBEC injury by repressing inflammation and oxidative stress. 16s rRNA sequencing revealed that BSP increased the abundance of Bacteroides intestinalis. Bacteroides intestinalis colonization enhanced the therapeutic effect of BSP in COPD mice by upregulating NR1H4 and its encoded protein FXR. Reduction of NR1H4 impaired the therapeutic impact of BSP and Bacteroides intestinalis in COPD. These data demonstrate that BSP inhibits COPD by upregulating NR1H4 through Bacteroides intestinalis, which underpins the application of BSP as a therapeutic agent for COPD.

3.
Life Sci ; 351: 122800, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38880169

ABSTRACT

BACKGROUND: Aging increases the prevalence of prostate cancer. The circadian clock coordinates metabolism, cell cycle, and tumor suppressor p53. Although physical exercise has several effects on preventing prostate diseases, its effect on regulating genes and proteins of the circadian rhythm of the prostate needs to be better evaluated. The present study verified expression of REV-ERBα (Nr1d1), Bmal1, apoptosis, tumor suppressors, energetic metabolism markers, and androgen receptors in the prostatic microenvironment in 18-month-old mice submitted to combined physical training. METHODS: C57BL/6 J mice were divided into 2 groups: 6 months-old (n = 10) and 18 months-old, (n = 20). The 18-month-old animals were divided into 2 subgroups: sedentary (n = 10, 18 m Sed) and submitted to combined physical training (n = 10, 18 m TR). Combined physical training protocol was performed by running on the treadmill (40-60 % of incremental load test) and climbing strength training (40-50 % of maximum repetition test), consisting of 5×/week (3 days aerobic and 2 days strength) for 3 weeks. The prostate was prepared for Western blot and RT-qPCR analysis, and the plasm was prepared for the biochemistry analysis. RESULTS: Combined physical exercise during aging led to increased levels of Bmal1 and decreased levels of REV-ERBα in the prostate. These results were accompanied by a reduction in the AMPK/SIRT1/PGC-1α proteins and an increase in the PI3K/AKT and p53/PTEN/caspase 3 pathways, promoting apoptotic potential. CONCLUSION: These findings suggest that strength and aerobic physical exercise may be preventive in the development of preneoplastic molecular alterations and age-related features by re-synchronizes Bmal1 and REV-ERBα in prostatic tissues.


Subject(s)
ARNTL Transcription Factors , Aging , Apoptosis , Mice, Inbred C57BL , Nuclear Receptor Subfamily 1, Group D, Member 1 , Physical Conditioning, Animal , Prostate , Male , Animals , Nuclear Receptor Subfamily 1, Group D, Member 1/metabolism , Nuclear Receptor Subfamily 1, Group D, Member 1/genetics , ARNTL Transcription Factors/metabolism , ARNTL Transcription Factors/genetics , Mice , Physical Conditioning, Animal/physiology , Aging/metabolism , Prostate/metabolism , Prostate/pathology , Up-Regulation , Circadian Rhythm/physiology
4.
Mol Biol Rep ; 51(1): 657, 2024 May 13.
Article in English | MEDLINE | ID: mdl-38740636

ABSTRACT

BACKGROUND: Mycobacterium tuberculosis (MTB) is the causative organism of tuberculosis. Cholesterol is a crucial carbon source required for the survival of MTB in host cells. Transcription factor NR1H3 along with its important target genes ABCA1 and ApoE play important role in removal of extra cholesterol from cells. Changes in the gene expression of NR1H3, ABCA1 and ApoE can affect cholesterol homeostasis and thus the survival of MTB in host cells.Therefore, the present study was designed to analyze the mRNA expression of NR1H3, ABCA1 and ApoE in pulmonary TB (PTB) patients from the population of Punjab, India. METHODS AND RESULTS: In this study, mRNA expression of the transcription factor NR1H3 and its target genes ABCA1 and ApoE was analyzed in 89 subjects, including 41 PTB patients and 48 healthy controls (HCs) by real-time quantitative PCR. It was found that the mRNA expression of both NR1H3 and ABCA1 genes was significantly lower in TB patients than in HCs (p < 0.001). Even after sex-wise stratification of the subjects, mRNA expression of NR1H3 and ABCA1 was found to be down-regulated in both male and female TB patients. No significant difference was observed in expression of ApoE (p = 0.98). CONCLUSIONS: The present study found that the mRNA expression of NR1H3 and ABCA1 is down-regulated in TB patients from Punjab state of India.


Subject(s)
ATP Binding Cassette Transporter 1 , Liver X Receptors , RNA, Messenger , Tuberculosis, Pulmonary , Adult , Female , Humans , Male , Middle Aged , Apolipoproteins E/genetics , Apolipoproteins E/metabolism , ATP Binding Cassette Transporter 1/genetics , ATP Binding Cassette Transporter 1/metabolism , Case-Control Studies , India , Mycobacterium tuberculosis/genetics , Receptors, Steroid/genetics , Receptors, Steroid/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Tuberculosis, Pulmonary/genetics , Tuberculosis, Pulmonary/metabolism , Liver X Receptors/genetics , Liver X Receptors/metabolism
5.
J Cell Mol Med ; 28(10): e18360, 2024 May.
Article in English | MEDLINE | ID: mdl-38785199

ABSTRACT

Neuroblastoma (NB), a common solid tumour in young children originating from the sympathetic nervous system during embryonic development, poses challenges despite therapeutic advances like high-dose chemotherapy and immunotherapy. Some survivors still grapple with severe side effects and drug resistance. The role of lncRNA NUTM2A-AS1 has been explored in various cancers, but its function in drug-resistant NB progression is unclear. Our study found that NUTM2A-AS1 expression in cisplatin-resistant NB cells increased in a time- and dose-dependent manner. Knockdown of NUTM2A-AS1 significantly improved NB cell sensitivity to cisplatin and inhibited metastatic abilities. Additionally, we identified B7-H3, an immune checkpoint-related protein, as a NUTM2A-AS1-associated protein in NB cells. NUTM2A-AS1 was shown to inhibit the protein degradation of B7-H3. Moreover, NUTM2A-AS1 modulated immune evasion in cisplatin-resistant NB cells through B7-H3. Furthermore, NUTM2A-AS1 expression in cisplatin-resistant NB cells was transactivated by NR1D1. In summary, our results unveil the molecular or biological relationship within the NR1D1/NUTM2A-AS1/B7-H3 axis in NB cells under cisplatin treatment, providing an intriguing avenue for fundamental research into cisplatin-resistant NB.


Subject(s)
B7 Antigens , Cisplatin , Drug Resistance, Neoplasm , Gene Expression Regulation, Neoplastic , Neuroblastoma , RNA, Long Noncoding , Humans , Neuroblastoma/genetics , Neuroblastoma/pathology , Neuroblastoma/drug therapy , Neuroblastoma/metabolism , Drug Resistance, Neoplasm/genetics , B7 Antigens/metabolism , B7 Antigens/genetics , RNA, Long Noncoding/genetics , Cisplatin/pharmacology , Cell Line, Tumor , Gene Expression Regulation, Neoplastic/drug effects , Immune Evasion , Animals , Proteolysis/drug effects , Mice
6.
Ecotoxicol Environ Saf ; 279: 116485, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38788564

ABSTRACT

OBJECTIVE: To investigate the effects of excessive light exposure during gestation on intrauterine development and early growth of neonates in rats. METHODS: Pregnant rats were randomly allocated to three groups: the constant light exposure group, non-light exposure group and control group. Blood samples were collected from the tail vein to analyze melatonin and cortisol levels. Weight, daily food and water consumption were recorded. Uterine weight, placental weight and placental diameter were measured on gestational day 19. Natural birth and neonate growth were also monitored. The expression of NR1D1(nuclear receptor subfamily 1 group D member 1) in offspring's SCN (suprachiasmatic nuclei), liver and adipose tissue was measured. Expression of NR1D1, MT1(melatonin 1 A receptor) and 11ß-HSD2 (placental 11ß-hydroxysteroid dehydrogenase type 2) in placenta was also measured. Finally, the expression of MT1 and 11ß-HSD2 in NR1D1 siRNA transfected JEG-3 cells was evaluated. RESULTS: There were no significant differences in maternal weight gain, pregnancy duration, uterine weight, placental body weight, placental diameter, fetal number among three groups. There were no significant differences in weights or lengths of offspring at birth. Compared to other two groups, constant light exposure group showed significantly more rapid growth of offspring in 21st day post-birth. The expression of NR1D1 in SCN, liver and adipose tissues of offspring was not significantly different among three groups. The maternal serum melatonin and cortisol levels of the constant light exposure group were lower and higher than other two groups, respectively. The expressions of NR1D1, MT1 and 11ß-HSD2 were all decreased in placenta of the constant light exposure group. The expression of MT1 and 11ß-HSD2 in JEG-3 cells were decreased after NR1D1 siRNA transfection. CONCLUSION: Excessive light exposure during pregnancy results in elevated cortisol and reduced melatonin exposure to fetuses in uterus, potentially contributing to an accelerated early growth of offspring in rats.


Subject(s)
Light , Melatonin , Placenta , Animals , Female , Pregnancy , Rats , Placenta/radiation effects , 11-beta-Hydroxysteroid Dehydrogenase Type 2 , Fetal Development/radiation effects , Rats, Sprague-Dawley , Hydrocortisone/blood , Nuclear Receptor Subfamily 1, Group D, Member 1/metabolism , Prenatal Exposure Delayed Effects , Receptor, Melatonin, MT1/metabolism , Animals, Newborn , Maternal Exposure , Male
7.
Int J Mol Sci ; 25(9)2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38732079

ABSTRACT

Long-term spaceflight is known to induce disruptions in circadian rhythms, which are driven by a central pacemaker located in the suprachiasmatic nucleus (SCN) of the hypothalamus, but the underlying molecular mechanisms remain unclear. Here, we developed a rat model that simulated microgravity and isolation environments through tail suspension and isolation (TSI). We found that the TSI environment imposed circadian disruptions to the core body temperature, heart rate, and locomotor-activity rhythms of rats, especially in the amplitude of these rhythms. In TSI model rats' SCNs, the core circadian gene NR1D1 showed higher protein but not mRNA levels along with decreased BMAL1 levels, which indicated that NR1D1 could be regulated through post-translational regulation. The autophagosome marker LC3 could directly bind to NR1D1 via the LC3-interacting region (LIR) motifs and induce the degradation of NR1D1 in a mitophagy-dependent manner. Defects in mitophagy led to the reversal of NR1D1 degradation, thereby suppressing the expression of BMAL1. Mitophagy deficiency and subsequent mitochondrial dysfunction were observed in the SCN of TSI models. Urolithin A (UA), a mitophagy activator, demonstrated an ability to enhance the amplitude of core body temperature, heart rate, and locomotor-activity rhythms by prompting mitophagy induction to degrade NR1D1. Cumulatively, our results demonstrate that mitophagy exerts circadian control by regulating NR1D1 degradation, revealing mitophagy as a potential target for long-term spaceflight as well as diseases with SCN circadian disruption.


Subject(s)
ARNTL Transcription Factors , Circadian Rhythm , Mitophagy , Nuclear Receptor Subfamily 1, Group D, Member 1 , Animals , Rats , Circadian Rhythm/physiology , Male , ARNTL Transcription Factors/metabolism , ARNTL Transcription Factors/genetics , Nuclear Receptor Subfamily 1, Group D, Member 1/metabolism , Nuclear Receptor Subfamily 1, Group D, Member 1/genetics , Weightlessness Simulation , Suprachiasmatic Nucleus/metabolism , Suprachiasmatic Nucleus/physiology , Microtubule-Associated Proteins/metabolism , Microtubule-Associated Proteins/genetics , Body Temperature , Heart Rate , Rats, Sprague-Dawley , Proteolysis
8.
Children (Basel) ; 11(5)2024 May 05.
Article in English | MEDLINE | ID: mdl-38790546

ABSTRACT

The NR1H2 gene produces the Liver X Receptor Beta (LXRB) protein, which is crucial for brain cholesterol metabolism and neuronal development. However, its involvement in autism spectrum disorder (ASD) remains largely unexplored, aside from animal studies. This study is the first to explore the potential link between autism and rs2695121/rs17373080 single nucleotide polymorphisms (SNPs) in the regulatory regions of NR1H2, known for their association with neuropsychiatric functions. Additionally, we assessed levels of oxysterols (24-Hydroxycholesterol, 25-Hydroxycholesterol, 27-Hydroxycholesterol), crucial ligands of LXR, and lipid profiles. Our cohort comprised 107 children with ASD and 103 healthy children aged 2-18 years. Clinical assessment tools included the Childhood Autism Rating Scale, Autistic Behavior Checklist, and Repetitive Behavior Scale-Revised. Genotyping for SNPs was conducted using PCR-RFLP. Lipid profiles were analyzed with Beckman Coulter kits, while oxysterol levels were determined through liquid chromatography-tandem mass spectrometry. Significantly higher total cholesterol (p = 0.003), LDL (p = 0.008), and triglyceride (p < 0.001) levels were observed in the ASD group. 27-Hydroxycholesterol levels were markedly lower in the ASD group (p ≤ 0.001). ROC analysis indicated the potential of 27-Hydroxycholesterol to discriminate ASD diagnosis. The SNP genotype and allele frequencies were similar in both groups (p > 0.05). Our findings suggest that disturbances in oxysterol metabolism, previously linked to neurodegeneration, may constitute a risk factor for ASD and contribute to its heterogeneous phenotype.

9.
Orphanet J Rare Dis ; 19(1): 171, 2024 Apr 19.
Article in English | MEDLINE | ID: mdl-38641832

ABSTRACT

BACKGROUND: Clinical studies on progressive familial intrahepatic cholestasis (PFIC) type 5 caused by mutations in NR1H4 are limited. METHODS: New patients with biallelic NR1H4 variants from our center and all patients from literature were retrospectively analyzed. RESULTS: Three new patients were identified to be carrying five new variants. Liver phenotypes of our patients manifests as low-γ-glutamyl transferase cholestasis, liver failure and related complications. One patient underwent liver transplantation (LT) and survived, and two other patients died without LT. Nine other patients were collected through literature review. Twelve out of 13 patients showed neonatal jaundice, with the median age of onset being 7 days after birth. Reported clinical manifestations included cholestasis (13/13, 100%), elevated AFP (11/11, 100%), coagulopathy (11/11, 100%), hypoglycemia (9/13, 69%), failure to thrive (8/13, 62%), splenomegaly (7/13, 54%), hyperammonemia (7/13, 54%), and hepatomegaly (6/13, 46%). Six of 13 patients received LT at a median age of 6.2 months, and only one patient died of acute infection at one year after LT. Other 7 patients had no LT and died with a median age of 5 months (range 1.2-8). There were 8 patients with homozygous genotype and 5 patients with compound heterozygous genotype. In total, 13 different variants were detected, and 5 out of 12 single or multiple nucleotides variants were located in exon 5. CONCLUSIONS: We identified three newly-diagnosed patients and five novel mutations. NR1H4-related PFIC typically cause progressive disease and early death. LT may be the only lifesaving therapy leading to cure.


Subject(s)
Cholestasis, Intrahepatic , Cholestasis , Humans , Infant, Newborn , Infant , Retrospective Studies , Cholestasis, Intrahepatic/genetics , Cholestasis, Intrahepatic/diagnosis , Cholestasis, Intrahepatic/therapy , Cholestasis/genetics
10.
Theranostics ; 14(5): 2036-2057, 2024.
Article in English | MEDLINE | ID: mdl-38505614

ABSTRACT

Background: ApoA5 mainly synthesized and secreted by liver is a key modulator of lipoprotein lipase (LPL) activity and triglyceride-rich lipoproteins (TRLs). Although the role of ApoA5 in extrahepatic triglyceride (TG) metabolism in circulation has been well documented, the relationship between ApoA5 and nonalcoholic fatty liver disease (NAFLD) remains incompletely understood and the underlying molecular mechanism still needs to be elucidated. Methods: We used CRISPR/Cas9 gene editing to delete Apoa5 gene from Syrian golden hamster, a small rodent model replicating human metabolic features. Then, the ApoA5-deficient (ApoA5-/-) hamsters were used to investigate NAFLD with or without challenging a high fat diet (HFD). Results: ApoA5-/- hamsters exhibited hypertriglyceridemia (HTG) with markedly elevated TG levels at 2300 mg/dL and hepatic steatosis on a regular chow diet, accompanied with an increase in the expression levels of genes regulating lipolysis and small adipocytes in the adipose tissue. An HFD challenge predisposed ApoA5-/- hamsters to severe HTG (sHTG) and nonalcoholic steatohepatitis (NASH). Mechanistic studies in vitro and in vivo revealed that targeting ApoA5 disrupted NR1D1 mRNA stability in the HepG2 cells and the liver to reduce both mRNA and protein levels of NR1D1, respectively. Overexpression of human NR1D1 by adeno-associated virus 8 (AAV8) in the livers of ApoA5-/- hamsters significantly ameliorated fatty liver without affecting plasma lipid levels. Moreover, restoration of hepatic ApoA5 or activation of UCP1 in brown adipose tissue (BAT) by cold exposure or CL316243 administration could significantly correct sHTG and hepatic steatosis in ApoA5-/- hamsters. Conclusions: Our data demonstrate that HTG caused by ApoA5 deficiency in hamsters is sufficient to elicit hepatic steatosis and HFD aggravates NAFLD by reducing hepatic NR1D1 mRNA and protein levels, which provides a mechanistic link between ApoA5 and NAFLD and suggests the new insights into the potential therapeutic approaches for the treatment of HTG and the related disorders due to ApoA5 deficiency in the clinical trials in future.


Subject(s)
Hyperlipidemias , Non-alcoholic Fatty Liver Disease , Animals , Cricetinae , Humans , Mice , Non-alcoholic Fatty Liver Disease/metabolism , Liver/metabolism , Triglycerides/metabolism , Hyperlipidemias/metabolism , Diet, High-Fat/adverse effects , Mesocricetus , RNA, Messenger/metabolism , Mice, Inbred C57BL , Nuclear Receptor Subfamily 1, Group D, Member 1/metabolism
11.
Int Ophthalmol ; 44(1): 133, 2024 Mar 14.
Article in English | MEDLINE | ID: mdl-38480634

ABSTRACT

PURPOSE: To investigate the expression of nuclear receptor subfamily 1 group D member 1 (NR1D1) and nuclear receptor subfamily 2 group E Member 3 (NR2E3) in retinoblastoma (RB) and their correlation with the clinical and pathological features of RB. METHODS: Immunohistochemical (IHC) assays were performed to detect and evaluate the expression levels of NR1D1 and NR2E3 in paraffin-embedded tissue samples. The relationship between the expression levels and clinicopathological characteristics of RB patients was analyzed using the χ2 test or Fisher exact test. RESULTS: A total of 51 RB patients were involved in this research. The expression levels of NR1D1 (P = 0.004) and NR2E3 (P = 0.024) were significantly lower in RB tumor tissues than in normal retina. The expression levels of NR1D1 and NR2E3 were less positive in RB patients with advanced stages (P = 0.007, P = 0.015), choroidal infiltration (P = 0.003, P = 0.029), and optic nerve infiltration (P = 0.036, P = 0.003). In addition, a low expression level of NR2E3 was associated with high-risk pathology (P = 0.025) and necrosis (P = 0.035) of RB tissues. CONCLUSION: The expression levels of NR1D1 and NR2E3 were decreased in RB and closely associated with the clinical stage and high invasion of the disease. These findings provide new insights into the mechanism of RB progression and suggest that NR1D1 and NR2E3 could be potential targets for treatment strategies.


Subject(s)
Retinal Neoplasms , Retinoblastoma , Humans , Retinoblastoma/pathology , Retinal Neoplasms/diagnosis , Orphan Nuclear Receptors , Nuclear Receptor Subfamily 1, Group D, Member 1
12.
Clin Case Rep ; 12(2): e8531, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38405357

ABSTRACT

Farnesoid X receptor (FXR) is a nuclear bile acid receptor encoded by the NR1H4 gene, a vital regulator of bile acid homeostasis. Pathogenic mutations of NR1H4 manifest as low gamma-glutamyl transferase (GGT) cholestasis with rapid progression to liver failure, which is referred to as progressive familial intrahepatic cholestasis 5 (PFIC-5). Herein, we present a case with rapid progressive cholestasis, liver failure in early infancy with the NR1H4 termination mutation.

13.
Hepatol Int ; 18(1): 188-205, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38183609

ABSTRACT

BACKGROUND AND PURPOSE: Alcoholic liver disease (ALD), a metabolic liver disease caused by excessive alcohol consumption, has attracted increasing attention due to its high prevalence and mortality. Up to date, there is no effective and feasible treatment method for ALD. This study was to investigate whether Farnesoid X receptor (FXR, NR1H4) can alleviate ALD and whether this effect is mediated by inhibiting absent in melanoma 2 (AIM2) inflammasome activation. METHODS: The difference in FXR expression between normal subjects and ALD patients was analyzed using the Gene Expression Omnibus (GEO) database. Lieber-DeCarli liquid diet with 5% ethanol (v/v) (EtOH) was adopted to establish the mouse ALD model. Liver histopathological changes and the accumulation of lipid droplets were assessed by H&E and Oil Red O staining. Quantitative real-time PCR, Western blotting analysis and immunofluorescence staining were utilized to evaluate the expression levels of related genes and proteins. DCFH-DA staining was adopted to visualize reactive oxidative species (ROS). RESULTS: FXR was distinctly downregulated in liver tissues of patients with steatosis compared to normal livers using the GEO database, and in ethanol-induced AML-12 cellular steatosis model. FXR overexpression ameliorated hepatic lipid metabolism disorder and steatosis induced by ethanol by inhibiting the expression of genes involved in lipid synthesis and inducing the expression of genes responsible for lipid metabolism. Besides, FXR overexpression inhibited ethanol-induced AIM2 inflammasome activation and alleviated oxidative stress and ROS production during ethanol-induced hepatic steatosis. However, when FXR was knocked down, the results were completely opposite. CONCLUSIONS: FXR attenuated lipid metabolism disorders and lipid degeneration in alcohol-caused liver injury and alleviated oxidative stress and inflammation by inhibiting AIM2 inflammasome activation.


Subject(s)
Fatty Liver , Liver Diseases, Alcoholic , Melanoma , Animals , Humans , Mice , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Ethanol/adverse effects , Ethanol/metabolism , Fatty Liver/etiology , Inflammasomes/adverse effects , Inflammasomes/metabolism , Lipids , Liver/pathology , Liver Diseases, Alcoholic/prevention & control , Liver Diseases, Alcoholic/genetics , Reactive Oxygen Species/metabolism
14.
Histopathology ; 84(4): 661-670, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38084644

ABSTRACT

AIMS: Nuclear receptor subfamily 1 group D member 1 (NR1D1)-rearranged soft tissue tumour is a newly described entity with an epithelioid morphology and a potential for aggressive behaviour. Largely due to under-recognition, this tumour type has not yet been widely acknowledged. Herein, we report four additional cases to further expand its clinicopathological and molecular spectrum. METHODS AND RESULTS: Four mesenchymal tumours with NR1D1 rearrangement were identified from our consultation files. There were one male and three females with ages ranging from 19 to 47 years (median = 28.5 years). Tumour occurred in the tongue, neck, hip and index finger, respectively. Histologically, two tumours were composed predominantly of epithelioid cells; one tumour had admixed epithelioid-spindle cells and one tumour consisted of monomorphic small round to ovoid cells. By immunohistochemistry, none of the tumours expressed lineage-specific markers. Targeted RNA-sequencing identified NR1D1 fusions in all four tumours, the partner genes being MAML2, MAML3, KMT2A and NCOA2, respectively. The novel MAML3 and NCOA2 rearrangements were confirmed by fluorescence in-situ hybridisation analysis. On follow-up (2-23 months), one patient experienced local recurrence due to incomplete resection and one patient developed lung metastasis. The other two patients were alive without disease. CONCLUSIONS: This study adds more support for NR1D1-rearranged soft tissue tumour as an emerging entity. The occurrence of two additional tumours in the head and neck region, description of a small round cell variant and identification of novel MAML3, KMT2A and NCOA2 partners further expand its clinicopathological and molecular spectrum. More studies on larger series are necessary to validate the fully malignant potential of NR1D1-rearranged soft tissue tumour.


Subject(s)
Soft Tissue Neoplasms , Transcription Factors , Female , Humans , Male , Biomarkers, Tumor/genetics , In Situ Hybridization, Fluorescence , Nuclear Receptor Subfamily 1, Group D, Member 1/genetics , Soft Tissue Neoplasms/genetics , Soft Tissue Neoplasms/pathology , Transcription Factors/genetics , Young Adult , Adult , Middle Aged
15.
Biochim Biophys Acta Mol Basis Dis ; 1870(2): 166930, 2024 02.
Article in English | MEDLINE | ID: mdl-37918680

ABSTRACT

Oxidative stress-mediated activation of inflammasome has a significant effect on the pathogenesis of nonalcoholic fatty liver disease (NAFLD). Farnesoid X receptor (NR1H4, FXR) has been implicated in biological function and many diseases, including NAFLD. The regulatory effect of FXR on oxidative stress and whether this process is related with the activation of absent melanoma 2 (AIM2) inflammasome in NAFLD remain unclear. In the present research, we confirmed that FXR in the livers of steatosis patients is significantly reduced compared with normal liver tissue by using the Gene Expression Omnibus (GEO) database and a palmitic acid (PA) - mediated steatosis model in AML-12 cells. Under the premise of ensuring the same food intake as the control group, overexpression of FXR in mice attenuated HFD-mediated weight gain and liver steatosis, facilitated lipid metabolism, improved fatty acid ß-oxidation, lipolysis, and reduced fatty acid synthesis and intake, which also inhibited the activation of AIM2 inflammasome. Overexpression of FXR alleviated PA-induced triglyceride (TG) accumulation, imbalance of lipid homeostasis, and the activation of AIM2 inflammasome in hepatic steatosis cells, while FXR knockdown appeared the opposite effects. FXR overexpression suppressed PA- and HFD-induced oxidative stress, but FXR siRNA demonstrated the opposite influence. The decreased ROS generation may be the reason why FXR weakens AIM2 activation when a fatty acid overload occurs. In conclusion, our results confirm that other than regulating lipid homeostasis and blocking NLRP3 inflammasome activation, FXR improves hepatic steatosis by a novel mechanism that inhibits oxidative stress and AIM2 inflammasome activation.


Subject(s)
Melanoma , Non-alcoholic Fatty Liver Disease , Animals , Humans , Mice , DNA-Binding Proteins/genetics , Inflammasomes/genetics , Non-alcoholic Fatty Liver Disease/pathology , Palmitic Acid
16.
Cytokine ; 175: 156484, 2024 03.
Article in English | MEDLINE | ID: mdl-38159471

ABSTRACT

The anti-inflammatory role of physical exercise is mediated by interleukin 10 (IL-10), and their release is possibly upregulated in response to IL-6. Previous studies demonstrated that mice lacking IL-6 (IL-6 KO mice) exhibited diminished exercise tolerance, and reduced strength. Rev-erbα, a transcriptional suppressor involved in circadian rhythm, has been discovered to inhibit the expression of genes linked to bodily functions, encompassing inflammation and metabolism. It also plays a significant role in skeletal muscle and exercise performance capacity. Given the potential association between Rev-erbα and the immune system and the fact that both pathways are modulated following acute aerobic exercise, we examined the physical performance of IL-10 KO mice and analyzed the modulation of the atrophy and Rev-erbα pathways in the muscle of wild type (WT) and IL-10 KO mice following one session of acute exercise. For each phenotype, WT and IL-10 KO were divided into two subgroups (Control and Exercise). The acute exercise session started at 6 m/min, followed by 3 m/min increments every 3 min until animal exhaustion. Two hours after the end of the exercise protocol, the gastrocnemius muscle was removed and prepared for the reverse transcription-quantitative polymerase chain reaction (RT-q-PCR) and immunoblotting technique. In summary, compared to WT, the IL-10 KO animals showed lower body weight and grip strength in the baseline. The IL-10 control group presented a lower protein content of BMAL1. After the exercise protocol, the IL-10 KO group had higher mRNA levels of Trim63 (atrophy signaling pathway) and lower mRNA levels of Clock and Bmal1 (Rev-erbα signaling pathway). This is the first study showing the relationship between Rev-erbα and atrophy in IL-10 KO mice. Also, we accessed a public database that analyzed the gastrocnemius of MuRF KO mice submitted to two processes of muscle atrophy, a denervation surgery and dexamethasone (Dexa) injections. Independently of knockout, the denervation demonstrated lower Nr1d1 levels. In conclusion, IL-10 seems to be a determinant in the Rev-erbα pathway and atrophy after acute exercise, with no modulation in the baseline state.


Subject(s)
ARNTL Transcription Factors , Interleukin-10 , Animals , Mice , ARNTL Transcription Factors/genetics , ARNTL Transcription Factors/metabolism , Atrophy , Interleukin-10/genetics , Interleukin-6/genetics , Mice, Knockout , Muscle Proteins/genetics , Muscle, Skeletal/metabolism , RNA, Messenger/metabolism , Tripartite Motif Proteins , Ubiquitin-Protein Ligases
17.
Mil Med Res ; 10(1): 62, 2023 Dec 11.
Article in English | MEDLINE | ID: mdl-38072952

ABSTRACT

Nuclear receptor subfamily 1, group D, member 1 (NR1D1, also known as REV-ERBα) belongs to the nuclear receptor (NR) family, and is a heme-binding component of the circadian clock that consolidates circadian oscillators. In addition to repressing the transcription of multiple clock genes associated with circadian rhythms, NR1D1 has a wide range of downstream target genes that are intimately involved in many physiopathological processes, including autophagy, immunity, inflammation, metabolism and aging in multiple organs. This review focuses on the pivotal role of NR1D1 as a key transcription factor in the gene regulatory network, with particular emphasis on the milestones of the latest discoveries of NR1D1 ligands. NR1D1 is considered as a promising drug target for treating diverse diseases and may contribute to research on innovative biomarkers and therapeutic targets for organ injury-related diseases. Further research on NR1D1 ligands in prospective human trials may pave the way for their clinical application in many organ injury-related disorders.


Subject(s)
Circadian Rhythm , Nuclear Receptor Subfamily 1, Group D, Member 1 , Humans , Prospective Studies , Nuclear Receptor Subfamily 1, Group D, Member 1/genetics , Nuclear Receptor Subfamily 1, Group D, Member 1/metabolism
18.
Toxicol Appl Pharmacol ; 481: 116770, 2023 12 15.
Article in English | MEDLINE | ID: mdl-37995809

ABSTRACT

BACKGROUND: The expression and activity of cytochrome P450 2B6 (CYP2B6) may be related to the metabolic associated fat liver disease (MAFLD). Since constitutive androstane receptor (CAR) is a classic transcriptional regulator of CYP2B6, and the single nucleotide polymorphisms (SNPs) of CYP2B6 and CAR are both associated with adverse reactions of efavirenz, we hypothesized that genetic polymorphisms of CAR might also result in additional interindividual variability in CYP2B6. This study was devoted to explore the association between CYP2B6 and CAR SNPs and susceptibility to MAFLD. MATERIALS AND METHODS: A total of 590 objects of study (118 with MAFLD and 472 healthy control) between December 2014 and April 2018 were retrospectively enrolled. Twenty-two selected SNPs in CYP2B6 and CAR were genotyped with a custom-designed 48-plex SNP Scan TM® Kit. The frequencies of the alleles, genotypes and genetic models of the variants were compared between the two groups. The odds ratios (ORs) and the corresponding 95% confidence intervals (CIs) were calculated. RESULTS: The T allele of rs3745274 in CYP2B6 was associated with a decreased risk for MAFLD (OR 0.610; 95% CI: 0.451-0.825, p = 0.001) which was still statistically significant after adjusting with Bonferroni method(p = 0.014) The allele, genotype and genetic model frequencies were similar in the two groups for the other twenty-one SNPs (all P > 0.05). There were no multiplicative or additive interactions between the SNPs. CONCLUSION: Our study revealed that rs3745274 variants in CYP2B6 is associated with susceptibility to MAFLD in the Han Chinese population.


Subject(s)
Anti-HIV Agents , Non-alcoholic Fatty Liver Disease , Humans , Cytochrome P-450 CYP2B6/genetics , Retrospective Studies , Polymorphism, Single Nucleotide , Genotype , China/epidemiology
19.
Cerebellum ; 2023 Oct 25.
Article in English | MEDLINE | ID: mdl-37880519

ABSTRACT

As an excitatory neuron in the cerebellum, the granule cells play a crucial role in motor learning. The assembly of NMDAR in these neurons varies in developmental stages, while the significance of this variety is still not clear. In this study, we found that motor training could specially upregulate the expression level of NR1a, a splicing form of NR1 subunit. Interestingly, overexpression of this splicing variant in a cerebellar granule cell-specific manner dramatically elevated the NMDAR binding activity. Furthermore, the NR1a transgenic mice did not only show an enhanced motor learning, but also exhibit a higher efficacy for motor training in motor learning. Our results suggested that as a "junior" receptor, NR1a facilitates NMDAR activity as well as motor skill learning.

20.
Chronobiol Int ; 40(10): 1395-1403, 2023 10 03.
Article in English | MEDLINE | ID: mdl-37781884

ABSTRACT

Chronobiology, which studies biological rhythms and their impacts on health, presents a potential avenue for treating amyotrophic lateral sclerosis. Clock gene-related therapies, focusing on genes responsible for regulating biological rhythms, may hold promise in the treatment. Among these clock genes, nuclear receptor subfamily 1 Group D member 1 (NR1D1) plays a vital role in neurodegenerative diseases. In this particular study, it was aimed to investigate the potential of FDA-approved drugs commonly used in amyotrophic lateral sclerosis treatment and melatonin, a hormone known for its role in regulating sleep-wake cycles, as ligands for clock gene-related therapy. The ligands were subjected to molecular docking and molecular dynamics simulation methods against the NR1D1 clock gene. These results suggested that combining melatonin with FDA-approved medications commonly used in the treatment might yield positive outcomes. This study provides preliminary data and lays the groundwork for future investigations involving in vitro (laboratory-based) and in vivo (animal or human-based) research on chronotherapy. In summary, this research highlights the potential of clock gene-related therapy utilizing melatonin in conjunction with FDA-approved drugs for amyotrophic lateral sclerosis treatment, offering insights into novel treatment strategies. The findings underscore the need for further studies to explore the effectiveness of this hypothetical approach in experimental and clinical settings.


Subject(s)
Amyotrophic Lateral Sclerosis , Melatonin , Animals , Humans , Melatonin/pharmacology , Circadian Rhythm/physiology , Amyotrophic Lateral Sclerosis/drug therapy , Molecular Docking Simulation , Chronotherapy/methods , Nuclear Receptor Subfamily 1, Group D, Member 1/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...