Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 119
Filter
1.
Mol Neurobiol ; 2024 Mar 18.
Article in English | MEDLINE | ID: mdl-38499905

ABSTRACT

The purinergic signaling system comprises a complex network of extracellular purines and purine-metabolizing ectoenzymes, nucleotide and nucleoside receptors, ATP release channels, and nucleoside transporters. Because of its immunomodulatory function, this system is critically involved in the pathogenesis of multiple sclerosis (MS) and its best-characterized animal model, experimental autoimmune encephalomyelitis (EAE). MS is a chronic neuroinflammatory demyelinating and neurodegenerative disease with autoimmune etiology and great heterogeneity, mostly affecting young adults and leading to permanent disability. In MS/EAE, alterations were detected in almost all components of the purinergic signaling system in both peripheral immune cells and central nervous system (CNS) glial cells, which play an important role in the pathogenesis of the disease. A decrease in extracellular ATP levels and an increase in its downstream metabolites, particularly adenosine and inosine, were frequently observed at MS, indicating a shift in metabolism toward an anti-inflammatory environment. Accordingly, upregulation of the major ectonucleotidase tandem CD39/CD73 was detected in the blood cells and CNS of relapsing-remitting MS patients. Based on the postulated role of A2A receptors in the transition from acute to chronic neuroinflammation, the association of variants of the adenosine deaminase gene with the severity of MS, and the beneficial effects of inosine treatment in EAE, the adenosinergic system emerged as a promising target in neuroinflammation. More recently, several publications have identified ADP-dependent P2Y12 receptors and the major extracellular ADP producing enzyme nucleoside triphosphate diphosphohydrolase 2 (NTPDase2) as novel potential targets in MS.

2.
Drug Dev Res ; 85(2): e22166, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38424708

ABSTRACT

Hyperlipidemia is a common clinically encountered health condition worldwide that promotes the development and progression of cardiovascular diseases, including atherosclerosis. Berberine (BBR) is a natural product with acknowledged anti-inflammatory, antioxidant, and metabolic effects. This study evaluated the effect of BBR on lipid alterations, oxidative stress, and inflammatory response in rats with acute hyperlipidemia induced by poloxamer-407 (P-407). Rats were pretreated with BBR (25 and 50 mg/kg) for 14 days and acute hyperlipidemia was induced by a single dose of P-407 (500 mg/kg). BBR ameliorated hypercholesterolemia, hypertriglyceridemia, and plasma lipoproteins in P-407-adminsitered rats. Plasma lipoprotein lipase (LPL) activity was decreased, and hepatic 3-hydroxy-3-methylglutaryl CoA (HMG-CoA) reductase activity was enhanced in hyperlipidemic rats. The expression of low-density lipoprotein receptor (LDL-R) and ATP-binding cassette transporter 1 (ABCA1) was downregulated in hyperlipidemic rats. BBR enhanced LPL activity, upregulated LDL-R, and ABCA1, and suppressed HMG-CoA reductase in P-407-administered rats. Pretreatment with BBR ameliorated lipid peroxidation, nitric oxide (NO), pro-inflammatory mediators (interleukin [IL]-6, IL-1ß, tumor necrosis factor [TNF]-α, interferon-γ, IL-4 and IL-18) and enhanced antioxidants. In addition, BBR suppressed lymphocyte ecto-nucleoside triphosphate diphosphohydrolase (E-NTPDase) and ecto-adenosine deaminase (E-ADA) as well as NO and TNF-α release by macrophages isolated from normal and hyperlipidemic rats. In silico investigations revealed the binding affinity of BBR toward LPL, HMG-CoA reductase, LDL-R, PSK9, ABCA1, and E-NTPDase. In conclusion, BBR effectively prevented acute hyperlipidemia and its associated inflammatory responses by modulating LPL, cholesterolgenesis, cytokine release, and lymphocyte E-NTPDase and E-ADA. Therefore, BBR is an effective and safe natural compound that might be employed as an adjuvant against hyperlipidemia and its associated inflammation.


Subject(s)
Berberine , Hyperlipidemias , Rats , Animals , Berberine/pharmacology , Berberine/therapeutic use , Hyperlipidemias/drug therapy , Inflammation/drug therapy , Inflammation/pathology , Oxidative Stress , Interleukin-6/metabolism , Antioxidants/therapeutic use , Lymphocytes/metabolism , Lymphocytes/pathology , Tumor Necrosis Factor-alpha/metabolism , Oxidoreductases/metabolism , Oxidoreductases/pharmacology , Oxidoreductases/therapeutic use
3.
Auton Neurosci ; 252: 103158, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38422662

ABSTRACT

The present study investigated the localization of the adenosine 5'-diphosphate (ADP)-selective P2Y12 purinoceptors in the rat carotid body using multilabeling immunofluorescence. Punctate immunoreactive products for P2Y12 were distributed in chemoreceptive type I cells immunoreactive to vesicular nucleotide transporter (VNUT) or dopamine beta-hydroxylase, but not in S100B-immunoreactive glial-like type II cells. P2Y12 immunoreactivity was localized in cell clusters containing VNUT-immunoreactive type I cells surrounded by the perinuclear cytoplasm and cytoplasmic processes of type II cells immunoreactive for ectonucleoside triphosphate diphosphohydrolase 2 (NTPDase2) and NTPDase3, which hydrolyze extracellular nucleotide tri- and/or di-phosphates. In ATP bioluminescence assays using carotid bodies, the degradation of extracellular ATP was attenuated in the presence of the selective NTPDases inhibitor ARL67156, suggesting ATP-degrading activity by NTPDases in the tissue. These results suggest that ATP released from type I cells is degraded into ADP and adenosine 5'-monophosphate by NTPDases expressed in type II cells, and that ADP modulates type I cells via P2Y12 purinoceptors.


Subject(s)
Carotid Body , Rats , Animals , Receptors, Purinergic P2Y12 , Nucleotides , Adenosine Triphosphate/metabolism , Adenosine
4.
Brain Res Bull ; 209: 110909, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38402994

ABSTRACT

BACKGROUND: The efficacy of acupuncture at Zusanli (ST36) in alleviating lower-limb pain is widely acknowledged in clinical practice, while its underlying mechanism remains incompletely elucidated. Our previous research had revealed that the prompt analgesia induced by needling-ST36 was accompanied by expression alterations in certain exco-nucleotidases within the sciatic nerve. Building upon this finding, the current work focused on NTPDase1, the primary ecto-nucleotidase in the human body, which converts ATP into AMP. METHODS: A 20-min acupuncture was administered unilaterally at the ST36 on rats with acute ankle arthritis. The pain thresholds of the injured hind paws were determined. Pharmacological interference was carried out by introducing the corresponding reagents to the sciatic nerve. ATP levels around the excised nerve were measured using a luciferase-luciferin assay. Live calcium imaging, utilizing the Fura 2-related-F340/F380 ratio, was conducted on Schwann cells in excised nerves and cultured rat SCs line, RSC96 cells. RESULTS: The analgesic effect induced by needling-ST36 was impaired when preventing ATP degradation via inhibiting NTPDase1 activities with ARL67156 or Ticlopidine. Conversely, increasing NTPDase1 activities with Apyrase duplicated the acupuncture effect. Similarly, preventing the conversion of AMP to adenosine via suppression of NT5E with AMP-CP hindered the acupuncture effect. Unexpectedly, impeded ATP hydrolysis ability and diminished NTPDase1 expression were observed in the treated group. Agonism at P2Y2Rs with ATP, UTP, or INS365 resulted in anti-nociception. Contrarily, antagonism at P2Y2Rs with Suramin or AR-C 118925xx prevented acupuncture analgesia. Immunofluorescent labeling demonstrated that the treated rats expressed more P2Y2Rs that were predominant in Schwann cells. Suppression of Schwann cells by inhibiting ErbB receptors also prevented acupuncture analgesia. Finally, living imaging on the excised nerves or RSC96 cells showed that agonism at P2Y2Rs indeed led to [Ca2+]i rise. CONCLUSION: These findings strongly suggest that the analgesic mechanism of needling-ST36 on the hypersensation in the lower limb partially relies on NTPDase1 activities in the sciatic nerve. In addition to facilitating adenosine signaling in conjunction with NT5E, most importantly, NTPDase1 may provide an appropriate low-level ATP milieu for the activation of P2Y2R in the sciatic nerve, particularly in Schwann cells.


Subject(s)
Acupuncture Analgesia , Acupuncture Therapy , Antigens, CD , Arthritis , Rats , Humans , Animals , Apyrase , Ankle , Pain , Sciatic Nerve/metabolism , Adenosine Triphosphate/metabolism , Analgesics , Adenosine Monophosphate , Adenosine , Acupuncture Points
5.
Anat Sci Int ; 99(1): 68-74, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37410337

ABSTRACT

In the carotid body of laboratory rodents, adenosine 5'-triphosphate (ATP)-mediated transmission is regarded as critical for transmission from chemoreceptor type I cells to P2X3 purinoceptor-expressing sensory nerve endings. The present study investigated the distribution of P2X3-immunoreactive sensory nerve endings in the carotid body of the adult male Japanese monkey (Macaca fuscata) using multilabeling immunofluorescence. Immunoreactivity for P2X3 was detected in nerve endings associated with chemoreceptor type I cells immunoreactive for synaptophysin. Spherical or flattened terminal parts of P2X3-immunoreactive nerve endings were in close apposition to the perinuclear cytoplasm of synaptophysin-immunoreactive type I cells. Immunoreactivity for ectonucleoside triphosphate diphosphohydrolase 2 (NTPDase2), which hydrolyzes extracellular ATP, was localized in the cell body and cytoplasmic processes of S100B-immunoreactive cells. NTPDase2-immunoreactive cells surrounded P2X3-immunoreactive terminal parts and synaptophysin-immunoreactive type I cells, but did not intrude into attachment surfaces between terminal parts and type I cells. These results suggest ATP-mediated transmission between type I cells and sensory nerve endings in the carotid body of the Japanese monkey, as well as those of rodents.


Subject(s)
Carotid Body , Rats , Animals , Male , Carotid Body/metabolism , Macaca fuscata/metabolism , Receptors, Purinergic P2X3/metabolism , Synaptophysin/metabolism , Rats, Wistar , Sensory Receptor Cells/metabolism , Adenosine Triphosphate/metabolism
6.
J Histochem Cytochem ; 72(1): 41-60, 2024 01.
Article in English | MEDLINE | ID: mdl-38158780

ABSTRACT

The present study investigated the localization and the adenosine 5'-triphosphate (ATP)-degrading function of the plasma membrane-bound ecto-nucleotidase, ectonucleoside triphosphate diphosphohydrolase 2 (NTPDase2), in the rat adrenal medulla. The effect of ATP degradation product, adenosine 5'-diphosphate (ADP), on carbachol (CCh)-induced intracellular Ca2+ ([Ca2+]i) responses in adrenal chromaffin cells was examined using calcium imaging. NTPDase2-immunoreactive cells were distributed between chromaffin cells. NTPDase2-immunoreactive cells were immunoreactive for glial fibrillary acidic protein and S100B, suggesting that they were sustentacular cells. NTPDase2-immunoreactive cells surrounded chromaffin cells immunoreactive for vesicular nucleotide transporter and P2Y12 ADP-selective purinoceptors. In ATP bioluminescence assays using adrenal medullary slices, ATP was rapidly degraded and its degradation was attenuated by the NTPDase inhibitors sodium polyoxotungstate (POM-1) and 6-N, N-diethyl-d-ß,γ-dibromomethylene ATP (ARL67156). ADP inhibited CCh-induced [Ca2+]i increases of chromaffin cells in adrenal medullary slices. The inhibition of CCh-induced [Ca2+]i increases by ADP was blocked by the P2Y12 purinoceptor antagonist AZD1283. CCh-induced [Ca2+]i increases were also inhibited by the P2Y1, P2Y12, and P2Y13 purinoceptor agonist 2-methylthioadenosine diphosphate trisodium (2MeSADP), in combination with the P2Y1 purinoceptor antagonist MRS2179. These results suggest that sustentacular cells express NTPDase2 to degrade ATP released from adrenal chromaffin cells, and ADP modulates the excitability of chromaffin cells via P2Y12 purinoceptors to regulate catecholamine release during preganglionic sympathetic stimuli. (J Histochem Cytochem 72: 41-60, 2024).


Subject(s)
Adenosine Triphosphatases , Adrenal Medulla , Chromaffin Cells , Animals , Rats , Adenosine/metabolism , Adenosine Triphosphate/metabolism , Adrenal Medulla/metabolism , Calcium/metabolism , Chromaffin Cells/metabolism , Diphosphates/metabolism , Adenosine Triphosphatases/metabolism
7.
Purinergic Signal ; 2023 Nov 17.
Article in English | MEDLINE | ID: mdl-37975950

ABSTRACT

Trypanosoma cruzi is the pathogen of Chagas disease, a neglected tropical disease that affects more than 6 million people worldwide. There are no vaccines to prevent infection, and the therapeutic arsenal is very minimal and toxic. The unique E-NTPDase of T. cruzi (TcNTPDase1) plays essential roles in adhesion and infection and is a virulence factor. Quercetin is a flavonoid with antimicrobial, antiviral, and antitumor activities. Its potential as a partial inhibitor of NTPDases has also been demonstrated. In this work, we synthesized the non-natural L-glycoside derivatives of quercetin and evaluated them as inhibitors of recombinant TcNTPDase1 (rTcNTPDase1). These compounds, and quercetin and miquelianin, a natural quercetin derivative, were also tested. Compound 16 showed the most significant inhibitory effect (94%). Quercetin, miquelianin, and compound 14 showed inhibition close to 50%. We thoroughly investigated the inhibitory effect of 16. Our data suggested a competitive inhibition with a Ki of 8.39 µM (± 0.90). To better understand the interaction of compound 16 and rTcNTPDase1, we performed molecular dynamics simulations of the enzyme and docking analyses with the compounds. Our predictions show that compound 16 binds to the enzyme's catalytic site and interacts with important residues for NTPDase activity. As an inhibitor of a critical T. cruzi enzyme, (16) could be helpful as a starting point in the developing of a future treatment for Chagas disease. Furthermore, the discovery of (16) as an inhibitor of TcNTPDase1 may open new avenues in the study and development of new inhibitors of E-NTPDases.

8.
Int J Mol Sci ; 24(20)2023 Oct 10.
Article in English | MEDLINE | ID: mdl-37894719

ABSTRACT

NTPDase1/CD39, the major vascular ectonucleotidase, exerts thrombo-immunoregulatory function by controlling endothelial P2 receptor activation. Despite the well-described release of ATP from endothelial cells, few data are available regarding the potential role of CD39 as a regulator of arterial diameter. We thus investigated the contribution of CD39 in short-term diameter adaptation and long-term arterial remodeling in response to flow using Entpd1-/- male mice. Compared to wild-type littermates, endothelial-dependent relaxation was modified in Entpd1-/- mice. Specifically, the vasorelaxation in response to ATP was potentiated in both conductance (aorta) and small resistance (mesenteric and coronary) arteries. By contrast, the relaxing responses to acetylcholine were supra-normalized in thoracic aortas while decreased in resistance arteries from Entpd1-/- mice. Acute flow-mediated dilation, measured via pressure myography, was dramatically diminished and outward remodeling induced by in vivo chronic increased shear stress was altered in the mesenteric resistance arteries isolated from Entpd1-/- mice compared to wild-types. Finally, changes in vascular reactivity in Entpd1-/- mice were also evidenced by a decrease in the coronary output measured in isolated perfused hearts compared to the wild-type mice. Our results highlight a key regulatory role for purinergic signaling and CD39 in endothelium-dependent short- and long-term arterial diameter adaptation to increased flow.


Subject(s)
Adenosine Triphosphate , Endothelial Cells , Male , Animals , Mice , Antigens, CD/genetics , Apyrase/physiology , Vasodilation , Endothelium, Vascular
9.
Tissue Cell ; 82: 102122, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37262979

ABSTRACT

The present study examined cellular components and the localization of vesicular glutamate transporter (VGLUT) 1 and 2 and serotonin (5-HT) in chemosensory cell clusters in the rat pharynx and larynx. Triple immunolabeling for guanine nucleotide-binding protein G (t), subunit ⍺3 (GNAT3) and nucleoside triphosphate diphosphohydrolase 2 (NTPDase2) with synaptotagmin-1 (Syt1) revealed NTPDase2-immunoreactive type I-like cells in addition to GNAT3-immunoreactive type II-like and Syt1-immunoreactive type III-like cells in pharyngolaryngeal chemosensory cell clusters. Therefore, these clusters appear to comprise similar cell types to those in the lingual taste buds with slight morphological modifications. An immunofluorescence analysis of VGLUT1 or VGLUT2 and GNAT3 with P2X3 purinoceptors revealed that VGLUTs co-localized to P2X3-immunoreactive spherical nerve terminals closely associated with GNAT3-immunoreactive type II-like cells. Moreover, triple immunolabeling for Syt1/synaptosomal-associated protein, 25 kDa (SNAP25) and P2X3 with VGLUT1 or VGLUT2 revealed punctate immunoreactive products for VGLUT1 and VGLUT2 within P2X3-immunoreactive flat axon terminals wrapped around Syt1/SNAP25-immunoreactive type III-like cells. The afferent nerve fibers innervating cell clusters may contain glutamate and release it by exocytosis. On the other hand, immunoreactive products for 5-HT and dopa decarboxylase were detected in Syt1-immunoreactive cells, indicating the release of 5-HT by these cells. The present results suggest that chemosensory cell clusters in the pharynx and larynx may be modulated by intrinsic glutamate and 5-HT.


Subject(s)
Larynx , Serotonin , Rats , Animals , Pharynx , Signal Transduction , Glutamates
10.
Purinergic Signal ; 2023 May 11.
Article in English | MEDLINE | ID: mdl-37165287

ABSTRACT

CD39 (NTPDase1-nucleoside triphosphate diphosphohydrolase 1) is a membrane-tethered ectonucleotidase that hydrolyzes extracellular ATP to ADP and ADP to AMP. This enzyme is expressed in a variety of cell types and tissues and has broadly been recognized within vascular tissue to have a protective role in converting "danger" ligands (ATP) into neutral ligands (AMP). In this study, we investigate the enzyme kinetics of CD39 using a Michaelis-Menten modeling framework. We show how the unique situation of having a reaction product also serving as a substrate (ADP) complicates the determination of the governing kinetic parameters. Model simulations using values for the kinetic parameters reported in the literature do not align with corresponding time-series data. This dissonance is explained by CD39 kinetic parameters previously being determined by graphical/linearization methods, which have been shown to distort the underlying error structure and lead to inaccurate parameter estimates. Modern methods of estimating these kinetic parameters using nonlinear least squares are still challenging due to unidentifiable parameter interactions. We propose a workflow to accurately determine these parameters by isolating the ADPase and ATPase reactions and estimating the respective ADPase parameters and ATPase parameters with independent data sets. Theoretically, this ensures all kinetic parameters are identifiable and reliable for future prospective model simulations involving CD39. These kinds of mathematical models can be used to understand how circulating purinergic nucleotides affect disease etiology and potentially inform the development of corresponding therapies.

11.
Bioorg Chem ; 135: 106460, 2023 06.
Article in English | MEDLINE | ID: mdl-37023582

ABSTRACT

Ticlopidine is an antithrombotic prodrug of the thienotetrahydropyridine family. For platelet inhibition it has to undergo oxidative ring-opening by cytochrome P450 enzymes. The resulting thiol reacts with a cysteine residue of the purinergic P2Y12 receptor on thrombocytes resulting in covalent receptor blockade. Ticlopidine in its intact, not-metabolized form was previously shown to inhibit ecto-nucleoside triphosphate diphosphohydrolase-1 (NTPDase1, also known as cluster of differentiation (CD) 39). CD39 catalyzes the extracellular hydrolysis of ATP via ADP to AMP, which is further hydrolyzed by ecto-5'-nucleotidase (CD73) to adenosine. CD39 inhibition has been proposed as a novel strategy to increase the extracellular concentration of antiproliferative ATP, while decreasing immunosuppressive and cancer-promoting adenosine levels. In the present study, we performed an extensive structure-activity relationship (SAR) analysis of ticlopidine derivatives and analogs as CD39 inhibitors followed by an in-depth characterization of selected compounds. Altogether 74 compounds were synthesized, 41 of which are new, not previously described in literature. Benzotetrahydropyridines, in which the metabolically labile thiophene is replaced by a benzene ring, were discovered as a new class of allosteric CD39 inhibitors.


Subject(s)
Adenosine Triphosphate , Ticlopidine , Adenosine , Blood Platelets , Structure-Activity Relationship , 5'-Nucleotidase/metabolism
12.
J Cell Commun Signal ; 17(3): 827-844, 2023 Sep.
Article in English | MEDLINE | ID: mdl-36723784

ABSTRACT

The therapeutic potential of purinergic signaling has been explored for a wide variety of diseases, including those related to the skin. In this study, we used the self-assembled skin substitutes (SASS), a highly functional reconstructed human skin model, which shares many properties with normal human skin, to study the impact of purinergic receptors agonists, such as ATP, UTP and a P2Y receptor antagonist, Reactive Blue 2 during wound healing. After treating the wounded skins, we evaluated the wound area, reepithelialization, length of migrating tongues toward the wound, quality of the skins through the cytokeratin 10 and laminin-5 expression, epidermal and dermal cell proliferation. In addition, the expression of the main ectoenzymes capable of hydrolyzing nucleotides were investigated through the wounded SASS regions: unwounded region, wound margin, intermediate region and migrating epidermal tongue. After 3 days, under the UTP treatment, the wounded SASS showed an increase in the reepithelialization and in the proliferation of keratinocytes and fibroblasts, without altering the quality of the skin. We also identified the presence of the ectoenzymes NTPDase1 and NPP1 in the reconstructed human skin model, suggesting their involvement in wound healing. Considering the need for new therapies capable of promoting healing in complex wounds, although these results are still preliminary, they suggest the involvement of extracellular nucleotides in human skin healing and the importance to understand their role in this mechanism. New experiments it will be necessary to determine the mechanisms by which the purinergic signaling is involved in the skin wound healing.

13.
Physiol Rep ; 10(18): e15464, 2022 09.
Article in English | MEDLINE | ID: mdl-36117383

ABSTRACT

Nucleotidases contribute to the regulation of inflammation, coagulation, and cardiovascular activity. Exercise promotes biological adaptations, but its effects on nucleotidase activities and expression are unclear. The objective of this study was to review systematically the effects of exercise on nucleotidase functionality in healthy and unhealthy subjects. The MEDLINE, EMBASE, Cochrane Library, and Web of Science databases were searched to identify, randomized clinical trials, non-randomized clinical trials, uncontrolled clinical trials, quasi-experimental, pre-, and post-interventional studies that evaluated the effects of exercise on nucleotidases in humans, and was not limited by language and date. Two independent reviewers performed the study selection, data extraction, and assessment of risk of bias. Of the 203 articles identified, 12 were included in this review. Eight studies reported that acute exercise, in healthy and unhealthy subjects, elevated the activities or expression of nucleotidases. Four studies evaluated the effects of chronic training on nucleotidase activities in the platelets and lymphocytes of patients with metabolic syndrome, chronic kidney disease, and hypertension and found a decrease in nucleotidase activities in these conditions. Acute and chronic exercise was able to modify the blood plasma and serum levels of nucleotides and nucleosides. Our results suggest that short- and long-term exercise modulate nucleotidase functionality. As such, purinergic signaling may represent a novel molecular adaptation in inflammatory, thrombotic, and vascular responses to exercise.


Subject(s)
Exercise , Hypertension , Exercise Therapy , Humans , Nucleotidases , Nucleotides
14.
ASN Neuro ; 14: 17590914221102068, 2022.
Article in English | MEDLINE | ID: mdl-35593054

ABSTRACT

Ectonucleoside triphosphate diphosphohydrolase 2 (NTPDase2) hydrolyzes extracellular ATP to ADP, which is the ligand for P2Y1,12,13 receptors. The present study describes the distribution of NTPDase2 in adult rat brains in physiological conditions, and in hippocampal neurodegeneration induced by trimethyltin (TMT). The study also describes the regulation of NTPDase2 by inflammatory mediators in primary astrocytes and oligodendroglial cell line OLN93. In physiological conditions, NTPDase2 protein was most abundant in the hippocampus, where it was found in fibrous astrocytes and synaptic endings in the synaptic-rich hippocampal layers. In TMT-induced neurodegeneration, NTPDase2-mRNA acutely decreased at 2-dpi and then gradually recovered to the control level at 7-dpi and 21-dpi. As determined by immunohistochemistry and double immunofluorescence, the decrease was most pronounced in the dentate gyrus (DG), where NTPDase2 withdrew from the synaptic boutons in the polymorphic layer of DG, whereas the recovery of the expression was most profound in the subgranular layer. Concerning the regulation of NTPDase2 gene expression, proinflammatory cytokines IL-6, IL-1ß, TNFα, and IFNγ negatively regulated the expression of NTPDase2 in OLN93 cells, while did not altering the expression in primary astrocytes. Different cell-intrinsic stressors, such as depletion of intracellular energy store, oxidative stress, endoplasmic reticulum stress, and activation of protein kinase C, also massively disturbed the expression of the NTPDase2 gene. Together, our results suggest that the expression and the activity of NTPDase2 transiently cease in neurodegeneration and brain injury, most likely as a part of the acute adaptive response designed to promote cell defense, survival, and recovery.


Subject(s)
Adenosine Triphosphatases , Astrocytes , Adenosine Triphosphatases/genetics , Adenosine Triphosphatases/metabolism , Adenosine Triphosphate , Animals , Astrocytes/metabolism , Hippocampus/metabolism , Polyphosphates , Rats
15.
Cell Mol Life Sci ; 79(3): 152, 2022 Feb 25.
Article in English | MEDLINE | ID: mdl-35212809

ABSTRACT

ATP and adenosine have emerged as important signaling molecules involved in vascular remodeling, retinal functioning and neurovascular coupling in the mammalian eye. However, little is known about the regulatory mechanisms of purinergic signaling in the eye. Here, we used three-dimensional multiplexed imaging, in situ enzyme histochemistry, flow cytometric analysis, and single cell transcriptomics to characterize the whole pattern of purine metabolism in mouse and human eyes. This study identified ecto-nucleoside triphosphate diphosphohydrolase-1 (NTPDase1/CD39), NTPDase2, and ecto-5'-nucleotidase/CD73 as major ocular ecto-nucleotidases, which are selectively expressed in the photoreceptor layer (CD73), optic nerve head, retinal vasculature and microglia (CD39), as well as in neuronal processes and cornea (CD39, NTPDase2). Specifically, microglial cells can create a spatially arranged network in the retinal parenchyma by extending and retracting their branched CD39high/CD73low processes and forming local "purinergic junctions" with CD39low/CD73- neuronal cell bodies and CD39high/CD73- retinal blood vessels. The relevance of the CD73-adenosine pathway was confirmed by flash electroretinography showing that pharmacological inhibition of adenosine production by injection of highly selective CD73 inhibitor PSB-12489 in the vitreous cavity of dark-adapted mouse eyes rendered the animals hypersensitive to prolonged bright light, manifested as decreased a-wave and b-wave amplitudes. The impaired electrical responses of retinal cells in PSB-12489-treated mice were not accompanied by decrease in total thickness of the retina or death of photoreceptors and retinal ganglion cells. Our study thus defines ocular adenosine metabolism as a complex and spatially integrated network and further characterizes the critical role of CD73 in maintaining the functional activity of retinal cells.


Subject(s)
5'-Nucleotidase/metabolism , Adenosine/metabolism , Light , Retina/radiation effects , 5'-Nucleotidase/antagonists & inhibitors , 5'-Nucleotidase/genetics , Adenosine Diphosphate/analogs & derivatives , Adenosine Diphosphate/pharmacology , Adenosine Triphosphate/metabolism , Animals , Antigens, CD/genetics , Antigens, CD/metabolism , Apoptosis/drug effects , Apoptosis/radiation effects , Apyrase/genetics , Apyrase/metabolism , Female , Humans , Male , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Microglia/metabolism , Photoreceptor Cells/metabolism , Retina/metabolism , Retina/physiology , Retinal Ganglion Cells/cytology , Retinal Ganglion Cells/metabolism
16.
Vitam Horm ; 118: 199-221, 2022.
Article in English | MEDLINE | ID: mdl-35180927

ABSTRACT

Extracellular purine nucleotides, such as adenosine 5'-triphosphate (ATP), are important modulators of hippocampal function and plasticity. In the extracellular space, ATP is inherently short-lived molecule, which undergoes rapid enzymatic degradation to adenosine by ectonucleotidases. Given that ectonucleotidases have distinct and overlapping distribution in the hippocampus, and as ovarian hormones participate in a formation, maturation, and a refinement of synaptic contacts, both during development and in adulthood, the present chapter summarizes known data about spatial distribution of selected ecto-enzymes and estradiol-induced effects on ectonucleotidases in the rat hippocampus.


Subject(s)
5'-Nucleotidase , Estradiol , 5'-Nucleotidase/metabolism , 5'-Nucleotidase/pharmacology , Adenosine Triphosphate/metabolism , Adult , Animals , Estradiol/metabolism , Female , Hippocampus/metabolism , Humans , Ovariectomy , Rats
17.
Purinergic Signal ; 17(4): 713-724, 2021 12.
Article in English | MEDLINE | ID: mdl-34604944

ABSTRACT

Sepsis is life-threatening organ dysfunction caused by a dysregulated inflammatory and immune response to infection. Sepsis involves the combination of exaggerated inflammation and immune suppression. During systemic infection and sepsis, the liver works as a lymphoid organ with key functions in regulating the immune response. Extracellular nucleotides are considered damage-associated molecular patterns and are involved in the control of inflammation. Their levels are finely tuned by the membrane-associated ectonucleoside triphosphate diphosphohydrolase (E-NTPDase) enzyme family. Although previous studies have addressed the role of NTPDase1 (CD39), the role of the other extracellular NTPDases, NTPDase2, -3, and -8, in sepsis is unclear. In the present studies we identified NTPDase8 as a top downregulated gene in the liver of mice submitted to cecal ligation-induced sepsis. Immunohistochemical analysis confirmed the decrease of NTPDase8 expression at the protein level. In vitro mechanistic studies using HepG2 hepatoma cells demonstrated that IL-6 but not TNF, IL-1ß, bacteria, or lipopolysaccharide are able to suppress NTPDase8 gene expression. NTPDase8, as well as NTPDase2 and NTPDase3 mRNA was downregulated, whereas NTPDase1 (CD39) mRNA was upregulated in polymorphonuclear leukocytes from both inflamed and septic patients compared to healthy controls. Although the host's inflammatory response of polymicrobial septic NTPDase8 deficient mice was no different from that of wild-type mice, IL-6 levels in NTPDase8 deficient mice were higher than IL-6 levels in wild-type mice with pneumonia. Altogether, the present data indicate that extracellular NTPDases are differentially regulated during sepsis.


Subject(s)
Adenosine Triphosphatases/metabolism , Inflammation/metabolism , Leukocytes/metabolism , Sepsis/metabolism , Adenosine Triphosphatases/genetics , Animals , Female , Humans , Inflammation/genetics , Liver/metabolism , Male , Mice , Mice, Knockout , Sepsis/genetics
18.
Arch Pharm (Weinheim) ; 354(12): e2100300, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34697820

ABSTRACT

The antithrombotic prodrugs ticlopidine and clopidogrel are thienotetrahydro-pyridine derivatives that are metabolized in the liver to produce thiols that irreversibly block adenosine diphosphate (ADP)-activated P2Y12 receptors on thrombocytes. In their native, nonmetabolized form, both drugs were reported to act as inhibitors of ectonucleoside triphosphate diphosphohydrolase-1 (NTPDase1, CD39). CD39 catalyzes the extracellular hydrolysis of nucleoside tri- and diphosphates, mainly adenosine 5'-triphosphate (ATP) and ADP, yielding adenosine monophosphate, which is further hydrolyzed by ecto-5'-nucleotidase (CD73) to produce adenosine. While ATP has proinflammatory effects, adenosine is a potent anti-inflammatory, immunosuppressive agent. Inhibitors of CD39 and CD73 have potential as novel checkpoint inhibitors for the immunotherapy of cancer and infection. In the present study, we investigated 2-substituted thienotetrahydropyridine derivatives, structurally related to ticlopidine, as CD39 inhibitors. Due to their substituent on the 2-position, they will not be metabolically transformed into reactive thiols and can, therefore, be expected to be devoid of P2Y12 receptor-antagonistic activity in vivo. Several of the investigated 2-substituted thienotetrahydropyridine derivatives showed concentration-dependent inhibition of CD39. The most potent derivative, 32, showed similar CD39-inhibitory potency to ticlopidine, both acting as allosteric inhibitors. Compound 32 showed an improved selectivity profile: While ticlopidine blocked several NTPDase isoenzymes, 32 was characterized as a novel dual inhibitor of CD39 and CD73.


Subject(s)
5'-Nucleotidase/antagonists & inhibitors , Apyrase/antagonists & inhibitors , Enzyme Inhibitors/pharmacology , Thienopyridines/pharmacology , Allosteric Regulation/drug effects , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/chemistry , GPI-Linked Proteins/antagonists & inhibitors , Humans , Structure-Activity Relationship , Thienopyridines/chemical synthesis , Thienopyridines/chemistry , Ticlopidine/pharmacology
19.
ASN Neuro ; 13: 17590914211044882, 2021.
Article in English | MEDLINE | ID: mdl-34569324

ABSTRACT

The present study examined the involvement of purinergic signaling components in the rat model of hippocampal degeneration induced by trimethyltin (TMT) intoxication (8 mg/kg, single intraperitoneal injection), which results in behavioral and neurological dysfunction similar to neurodegenerative disorders. We investigated spatial and temporal patterns of ecto-nucleoside triphosphate diphosphohydrolase 1 (NTPDase1/CD39) and ecto-5' nucleotidase (eN/CD73) activity, their cell-specific localization, and analyzed gene expression pattern and/or cellular localization of purinoreceptors and proinflammatory mediators associated with reactive glial cells. Our study demonstrated that all Iba1+ cells at the injured area, irrespective of their morphology, upregulated NTPDase1/CD39, while induction of eN/CD73 has been observed at amoeboid Iba1+ cells localized within the hippocampal neuronal layers with pronounced cell death. Marked induction of P2Y12R, P2Y6R, and P2X4-messenger RNA at the early stage of TMT-induced neurodegeneration might reflect the functional properties, migration, and chemotaxis of microglia, while induction of P2X7R at amoeboid cells probably modulates their phagocytic role. Reactive astrocytes expressed adenosine A1, A2A, and P2Y1 receptors, revealed induction of complement component C3, inducible nitric oxide synthase, nuclear factor-kB, and proinflammatory cytokines at the late stage of TMT-induced neurodegeneration. An increased set of purinergic system components on activated microglia (NTPDase1/CD39, eN/CD73, and P2X7) and astrocytes (A1R, A2AR, and P2Y1), and loss of homeostatic glial and neuronal purinergic pathways (P2Y12 and A1R) may shift purinergic signaling balance toward excitotoxicity and inflammation, thus favoring progression of pathological events. These findings may contribute to a better understanding of the involvement of purinergic signaling components in the progression of neurodegenerative disorders that could be target molecules for the development of novel therapies.


Subject(s)
Astrocytes , Microglia , Animals , Hippocampus , Inflammation Mediators , Rats , Trimethyltin Compounds
20.
J Food Biochem ; : e13864, 2021 Jul 14.
Article in English | MEDLINE | ID: mdl-34263471

ABSTRACT

In order to confirm the erectile potential of Quercetin (Q) in cyclosporine-induced hypertensive rats, this research assesses the influence of Q on the ectonucleotidases and adenosine deaminase (ADA) in the brains of rats. Male Wistar rats (200 g-250 g) were divided into five groups at random: Normal control (CTRL), cyclosporine-induced hypertensive rats (25 mg kg day-1 ) (HT) group, positive control (Sildenafil [SIL], 5 mg kg day-1 ), Quercetin 25 mg kg day-1 (25 Q), and Quercetin 50 mg kg day-1 (50 Q). Aside from standard diet-fed male rats; cyclosporine was given i.p for the period of 30 days as well as Q orally while the female rats were only given a standard diet. The animals were subjected to sexual activity (copulation) after which the male rat hypothalamus was dissected for biochemical examination (E-NTPDase activities, ecto-5'-nucleotidase as well as ADA and also levels of nitric oxide [NO]). We observed that Q enhanced copulatory behavior as evident in mounting, intromission, ejaculation numbers, and latencies. A substantial (p < .05) increase in the activity of E-NTPDase (ATP and ADP as substrate) without any notable difference in the action of ecto-5' nucleotidase was facilitated by cyclosporine-induction when compared to the CTRL. The 50 mg/kg, however, had the highest reversal effect in accordance with dose manner. Also, cyclosporine increased ADA activity with a concomitant reduction of NO level while both doses of Q down-regulated ADA activity and, increased NO levels. Enhanced sexual behavior, modulation of ectonucleotidases as well as ADA activity and increased NO levels suggest that Q-rich plant foods may be promising sources of dietary phytonutrients for erectile dysfunction (ED) management. PRACTICAL APPLICATIONS: Behavioral and biochemical assays evaluated showed that Q significantly enhanced sexual behavior as well as improved ATP bioavailability in cyclosporine-induced erectile dysfunctional rats. The modulatory effects of Q on ectonucleotidases, along with its ability to minimize adenosine deaminase activity and increase nitric oxide levels, indicate that Q-rich plants and/or plant foods may be promising sources of dietary phytonutrients for erectile dysfunction management.

SELECTION OF CITATIONS
SEARCH DETAIL
...