ABSTRACT
In vitro antimicrobial activity of nano-ZnO-loaded nanoliposomes at different levels of lecithin:nano-ZnO ratio (5:1, 15:1, and 25:1 w/w) against Aspergillus niger (IBRC-M 30095) and Botrytis cinerea (IBRC-M 30162) was evaluated. Nanoliposome formulations containing nano-ZnO were fabricated through thin-layer hydration sonication and heat methods. The minimum inhibitory concentration (MIC) and minimum fungicidal concentration (MFC) of nano-ZnO-loaded nanoliposomes and free nano-ZnO against Aspergillus niger and Botrytis cinerea were determined. The time-kill experiments were performed for each isolate. Results showed that the encapsulation of nano-ZnO in nanoliposome systems significantly enhanced their antimicrobial activities by improving the penetration of ZnO nanoparticles the fungi cell membrane. In vitro antifungal activity of nano-ZnO-loaded nanoliposomes against Aspergillus niger and Botrytis cinerea was increased in thin-layer hydration sonication method compared with the heat method. The log phase for Aspergillus niger and Botrytis cinerea was around 70 h. Adding nano-ZnO-loaded nanoliposomes to the culture medium shortened the log phase for both Aspergillus niger and Botrytis cinerea. The highest antimicrobial activity of nanoliposomes was achieved using nanoliposomes containing the lecithin:nano-ZnO ratio of 25:1 (w/w) as compared to all samples. However, the length of the log phase growth cultures exposed to the nanoliposome formulations prepared by thin-layer hydration sonication method with the lecithin:nano-ZnO ratio of 25:1 (w/w) at MIC and MFC values was 60 and 40 h for both Aspergillus niger and Botrytis cinerea, respectively.
Subject(s)
Antifungal Agents , Aspergillus niger , Botrytis , Liposomes , Microbial Sensitivity Tests , Zinc Oxide , Aspergillus niger/drug effects , Aspergillus niger/growth & development , Botrytis/drug effects , Botrytis/growth & development , Zinc Oxide/pharmacology , Zinc Oxide/chemistry , Liposomes/chemistry , Antifungal Agents/pharmacology , Antifungal Agents/chemistry , Kinetics , Nanoparticles/chemistryABSTRACT
Neurodegenerative disorders (NDDs) are characterized by the progressive loss of structure or neuron function, often associated with neuronal death. Treatments for neurodegenerative diseases only address symptoms without having any disease-modifying effect but serious side effects. Currently, there is no effective treatment for NDDs. This is due to the poor flow of drugs to the blood-barrier brain (BBB) which does not allow macromolecules like proteins and peptides to pass through it. Targeted drug delivery to the central nervous system (CNS) for the diagnosis and treatment of NDDs, such as Alzheimer's disease (AD), is restricted due to the limitations posed by the BBB as well as opsonization by plasma proteins in the systemic circulation and peripheral side-effects. Nanotechnology thereby presents a broad approach for transporting molecules through the BBB, thus allowing the entry of substances acting directly on the site affected by the disease. The aim of this review is to outline current strategies in nanotechnology for treating Alzheimer's and Parkinson's diseases.