Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 796
Filter
1.
Spectrochim Acta A Mol Biomol Spectrosc ; 321: 124731, 2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38955074

ABSTRACT

Ibrutinib, an antineoplastic agent tackling chronic lymphocytic leukemia, mantle cell lymphoma, and Waldenstrom's Macroglobulinemia, falls under the category of BCS class II drugs, characterized by a puzzling combination of low solubility and high permeability. Its oral bioavailability remains a perplexing challenge, merely reaching 2.9 % due to formidable first-pass metabolism hurdles. In a bid to surmount this obstacle, researchers embarked on a journey to develop ibrutinib-loaded NLCs (Nanostructured Lipid Carriers) using a methodology steeped in complexity: a Design of Experiments (DoE)-based hot melted ultrasonication approach. Despite a plethora of methods for analyzing ibrutinib in various matrices, the absence of a spectrofluorimetric method for assessing it in rat plasma added to the enigma. Thus emerged a spectrofluorimetric method, embodying principles of white analytical chemistry and analytical quality by design, employing a Placket-Burman design for initial method exploration and a central composite design for subsequent refinement. This method underwent rigorous validation in accordance with ICH guidelines, paving the way for its application in scrutinizing the in-vivo pharmacokinetics of ibrutinib-loaded NLCs, juxtaposed against commercially available formulations. Surprisingly, the optimized NLCs exhibited a striking 1.82-fold boost in oral bioavailability, shedding light on their potential efficacy. The environmental impact of this method was scrutinized using analytical greenness tools, affirming its eco-friendly attributes. In essence, the culmination of these efforts has not only propelled advancements in drug bioavailability but also heralded the dawn of a streamlined and environmentally conscious analytical paradigm.

2.
Int J Pharm ; 660: 124377, 2024 Jun 22.
Article in English | MEDLINE | ID: mdl-38914351

ABSTRACT

Lidocaine is generally recognized and preferred for local anaesthesia, but in addition, studies have described additional benefits of lidocaine in cancer therapy, inflammation reduction, and wound healing. These properties contribute to its increasing importance in dermatological applications, and not only in pain relief but also in other potential therapeutic outcomes. Therefore, the purpose of our study was to enhance lidocaine delivery through the skin. A stable nanostructured lipid carrier (NLC), as a passive permeation enhancer, was developed using a 23 full factorial design. The nanosystems were characterized by crystallinity behaviour, particle size, zeta potential, encapsulation efficiency measurements, and one of them was selected for further investigation. Then, NLC gel was formulated for dermal application and compared to a traditional dermal ointment in terms of physicochemical (rheological behaviour) and biopharmaceutical (qualitative Franz diffusion and quantitative Raman investigations) properties. The study also examined the use of 3D printed solid microneedles as active permeation enhancers for these systems, offering a minimally invasive approach to enhance transdermal drug delivery. By actively facilitating drug permeation through the skin, microneedles can complement the passive transport achieved by NLCs, thereby providing an innovative and synergistic approach to improving lidocaine delivery.

3.
J Control Release ; 372: 778-794, 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38936744

ABSTRACT

Alopecia areata affects over 140 million people worldwide and causes severe psychological distress. The Janus kinase (JAK) inhibitor, tofacitinib, shows significant potential in therapeutic applications for treating alopecia areata; however, the systemic adverse effects of oral administration and low absorption rate at the target site limit its application. Hence, to address this issue, we designed topical formulations of tofacitinib-loaded cationic lipid nanoparticles (TFB-cNLPs) with particle sizes of approximately 200 nm. TFB-cNLPs promoted percutaneous absorption and hair follicle targeting in an ex vivo pig ear model. TFB-cNLP decreased IFN-γ-induced alopecia areata symptoms in an in vitro follicle model by blocking the Janus kinase/signal transducers and activators of transcription (JAK/STAT) pathway. It also reduced the number of CD8+NKG2D+T cells in a C3H mouse model of alopecia areata in vivo, thereby inhibiting the progression of alopecia areata and reversing hair loss. These findings suggest that TFB-cNLP enhanced hair follicle targeting and has the potential for topical treatment or prevention of alopecia areata.

4.
Mol Pharm ; 21(7): 3674-3683, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38838194

ABSTRACT

The efficacy of nanostructured lipid carriers (NLC) for drug delivery strongly depends on their stability and cell uptake. Both properties are governed by their compositions and internal structure. To test the effect of the lipid composition of NLC on cell uptake and stability, three kinds of liquid lipids with different degrees of unsaturation are employed. After ensuring homogeneous size distributions, the thermodynamic characteristics, stability, and mixing properties of NLC are characterized. Then the rates and predominant pathways of cell uptake are determined. Although the same surfactant is used in all cases, different uptake rates are observed. This finding contradicts the view that the surface properties of NLC are dominated by the surfactant. Instead, the uptake rates are explained by the structure of the nanocarrier. Depending on the mixing properties, some liquid lipids remain inside the nanocarrier, while other liquid lipids are present on the surface. Nanocarriers with liquid lipids on the surface are taken up more readily by the cells. This shows that the engineering of efficient lipid nanocarriers requires a delicate balance of interactions between all components of the nanocarrier on the molecular level.


Subject(s)
Drug Carriers , Drug Delivery Systems , Lipids , Nanostructures , Lipids/chemistry , Drug Carriers/chemistry , Nanostructures/chemistry , Drug Delivery Systems/methods , Humans , Surface-Active Agents/chemistry , Nanoparticles/chemistry , Thermodynamics , Particle Size , Surface Properties
5.
Polymers (Basel) ; 16(11)2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38891551

ABSTRACT

This study aimed to examine the characteristics of H-K4M hydroxypropyl methylcellulose (HPMC) films containing nanostructured lipid carriers (NLCs) loaded with furosemide. A hot homogenization technique and an ultrasonic probe were used to prepare and reduce the size of the NLCs. Films were made using the casting technique. This study used a Box-Behnken design to evaluate the influence of three key independent variables, specifically H-K4M concentration (X1), surfactant Cremophor RH40 concentration (X2), and mixing speed (X3), on the physicochemical properties of furosemide-loaded NLCs and films. The furosemide-loaded NLCs had a particle size ranging from 54.67 to 99.13 nm, and a polydispersity index (PDI) ranging from 0.246 to 0.670. All formulations exhibited a negative zeta potential, ranging from -7.05 to -5.61 mV. The prepared films had thicknesses and weights ranging from 0.1240 to 0.2034 mm and 0.0283 to 0.0450 g, respectively. The drug content was over 85%. Film surface wettability was assessed based on the contact angle, ranging from 32.27 to 68.94°. Film tensile strength varied from 1.38 to 7.77 MPa, and their elongation at break varied from 124.19 to 170.72%. The ATR-FTIR analysis confirmed the complete incorporation of the drug in the film matrix. Therefore, the appropriate selection of values for key parameters in the synthesis of HPMC films containing drug-loaded NLCs is important in the effective development of films for medical applications.

6.
Colloids Surf B Biointerfaces ; 241: 113983, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38850741

ABSTRACT

Glioblastoma (GB) is one of the most lethal types of neoplasms with unique anatomic, physiologic, and pathologic features that usually persist after exposure to standard therapeutic modalities. It is biologically aggressive, and the existence of the blood-brain barrier (BBB) limits the efficacy of standard therapies. In this work, we hypothesize the potential of surface-functionalized ultra-small nanostructured lipid carriers (usNLCs) with charge-switchable cell-penetrating peptides (CPPs) to overcome this biological barrier and improve targeted delivery to brain tumor tissues. The big question is: what is the potential of CPPs in directing nanoparticles toward brain tumor tissue? To answer this question, the usNLCs were functionalized with distinct biomolecules [five CPPs, c(RGDfK) and transferrin, Tf] through electrostatic interaction and its ability as a targeting approach to BBB (HBMEC) and glioma cells (U87 cells) evaluated in terms of physicochemical properties, cellular uptake, permeability in a 2D-BBB model, and tumor growth inhibition. Monte Carlo simulations elucidated CPP adsorption patterns. The permeability studies revealed that targeted usNLCs, especially usNLCsTf and usNLCsCPP4, exhibited an increased permeability coefficient compared to the non-targeted usNLCs. Functionalized usNLCs evidenced enhanced uptake in BBB cells, with smaller CPPs showing higher internalization (CPP1 and CPP2). Similarly, functionalized usNLCs exhibited more significant cytotoxicity in glioma cells, with specific CPPs promoting favorable internalization. Analysis of the endocytic pathway indicated that usNLCsCPPs were mainly internalized by direct translocation and caveolae-mediated endocytosis. Optimal usNLCs with dual targeting capabilities to both BBB and GB cells provide a promising therapeutic strategy for GB.

7.
Article in English | MEDLINE | ID: mdl-38878088

ABSTRACT

Nanostructured lipid carriers (NLC) have low storage and gastrointestinal stability, limiting their applicability. The work aimed to elevate the stability and behaviour of NLC in the alimentary tract by creating an alginate bead. Through the extrusion dropping procedure, Resveratrol (RES)-loaded NLC were efficiently integrated into alginate beads. The incorporation had no significant impact on the particle size, morphology, or inner structure of NLC, as assessed using DLS (Dynamic Light Scattering), SEM (Scanning Electron Microscopy), Differential Scanning Calorimetry (DSC) and FT-IR (Fourier Transform Infra-Red). Incorporating NLC into alginate beads improves its physical stability compared to dispersion of NLC as well as NLC-Sol. An in vitro release investigation found that the NLC-alginate beads released RES more slowly than optimized NLC formulation (RES-NLCs-opt) and NLC-alginate sol. Research on simulated in vitro digestive models revealed that just a small amount of integrated NLC may permeate stomach fluid due to its tiny size. The slow diffusion of NLC from alginate to intestinal fluid prevented aggregation and allowed for gentle hydrolysis of the lipid matrix. Incorporating NLC in alginate beads shows promise for improving stability, modifying gastrointestinal behaviour, and controlling release throughout the process of digestion.

8.
Pharmaceuticals (Basel) ; 17(6)2024 Jun 02.
Article in English | MEDLINE | ID: mdl-38931387

ABSTRACT

Bromocriptine (BCR) presents poor bioavailability when administered orally because of its low solubility and prolonged first-pass metabolism. This poses a significant challenge in its utilization as an effective treatment for managing Parkinson's disease (PD). The utilization of lipid nanoparticles can be a promising approach to overcome the limitations of BCR bioavailability. The aim of the research work was to develop and evaluate bromocriptine-loaded solid lipid nanoparticles (BCR-SLN) and bromocriptine-loaded nanostructured lipid carriers (BCR-NLC) employing the Box-Behnken design (BBD). BCR-SLNs and BCR-NLCs were developed using the high-pressure homogenization method. The prepared nanoparticles were characterized for particle size (PS), polydispersity index (PDI), and entrapment efficiency (EE). In vitro drug release, cytotoxicity studies, in vivo plasma pharmacokinetic, and brain distribution studies evaluated the optimized lipid nanoparticles. The optimized BCR-SLN had a PS of 219.21 ± 1.3 nm, PDI of 0.22 ± 0.02, and EE of 72.2 ± 0.5. The PS, PDI, and EE of optimized BCR-NLC formulation were found to be 182.87 ± 2.2, 0.16 ± 0.004, and 83.57 ± 1.8, respectively. The in vitro release profile of BCR-SLN and BCR-NLC showed a biphasic pattern, immediate release, and then trailed due to the sustained release. Furthermore, a pharmacokinetic study indicated that both the optimized BCR-SLN and BCR-NLC formulations improve the plasma and brain bioavailability of the drug compared to the BCR solution. Based on the research findings, it can be concluded that the BCR-loaded lipid nanoparticles could be a promising carrier by enhancing the BBB penetration of the drug and helping in the improvement of the bioavailability and therapeutic efficacy of BCR in the management of PD.

9.
Article in English | MEDLINE | ID: mdl-38811464

ABSTRACT

Nanostructured lipid carriers (NLCs) hold significant promise as drug delivery systems (DDS) owing to their small size and efficient drug-loading capabilities. Surface functionalization of NLCs can facilitate interaction with specific cell receptors, enabling targeted cell delivery. Mannosylation has emerged as a valuable tool for increasing the ability of nanoparticles to be recognized and internalized by macrophages. Nevertheless, the design and development of functionalized NLC is a complex task that entails the optimization of numerous variables and steps, making the process challenging and time-consuming. Moreover, no previous studies have been focused on evaluating the functionalization efficiency. In this work, hybrid Artificial Intelligence technologies are used to help in the design of mannosylated drug loaded NLCs. Artificial neural networks combined with fuzzy logic or genetic algorithms were employed to understand the particle formation processes and optimize the combinations of variables for the different steps in the functionalization process. Mannose was chemically modified to allow, for the first time, functionalization efficiency quantification and optimization. The proposed sequential methodology has enabled the design of a robust procedure for obtaining stable mannosylated NLCs with a uniform particle size distribution, small particle size (< 100 nm), and a substantial positive zeta potential (> 20mV). The incorporation of mannose on the surfaces of these DDS following the established protocols achieved > 85% of functionalization efficiency. This high effectiveness should enhance NLC recognition and internalization by macrophages, thereby facilitating the treatment of chronic inflammatory diseases.

10.
Int J Pharm ; 658: 124222, 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38735632

ABSTRACT

Dry eye disease (DED) is a chronic multifactorial disorder of the ocular surface caused by tear film dysfunction and constitutes one of the most common ocular conditions worldwide. However, its treatment remains unsatisfactory. While artificial tears are commonly used to moisturize the ocular surface, they do not address the underlying causes of DED. Apigenin (APG) is a natural product with anti-inflammatory properties, but its low solubility and bioavailability limit its efficacy. Therefore, a novel formulation of APG loaded into biodegradable and biocompatible nanoparticles (APG-NLC) was developed to overcome the restricted APG stability, improve its therapeutic efficacy, and prolong its retention time on the ocular surface by extending its release. APG-NLC optimization, characterization, biopharmaceutical properties and therapeutic efficacy were evaluated. The optimized APG-NLC exhibited an average particle size below 200 nm, a positive surface charge, and an encapsulation efficiency over 99 %. APG-NLC exhibited sustained release of APG, and stability studies demonstrated that the formulation retained its integrity for over 25 months. In vitro and in vivo ocular tolerance studies indicated that APG-NLC did not cause any irritation, rendering them suitable for ocular topical administration. Furthermore, APG-NLC showed non-toxicity in an epithelial corneal cell line and exhibited fast cell internalization. Therapeutic benefits were demonstrated using an in vivo model of DED, where APG-NLC effectively reversed DED by reducing ocular surface cellular damage and increasing tear volume. Anti-inflammatory assays in vivo also showcased its potential to treat and prevent ocular inflammation, particularly relevant in DED patients. Hence, APG-NLC represent a promising system for the treatment and prevention of DED and its associated inflammation.


Subject(s)
Apigenin , Drug Carriers , Dry Eye Syndromes , Lipids , Nanoparticles , Animals , Apigenin/administration & dosage , Apigenin/chemistry , Apigenin/pharmacology , Apigenin/pharmacokinetics , Drug Carriers/chemistry , Dry Eye Syndromes/drug therapy , Humans , Rabbits , Lipids/chemistry , Lipids/administration & dosage , Cell Line , Nanoparticles/chemistry , Administration, Ophthalmic , Drug Liberation , Anti-Inflammatory Agents/administration & dosage , Anti-Inflammatory Agents/chemistry , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/pharmacokinetics , Particle Size , Nanostructures/administration & dosage , Nanostructures/chemistry , Male
11.
Gels ; 10(5)2024 May 01.
Article in English | MEDLINE | ID: mdl-38786224

ABSTRACT

Nanostructured lipid carriers (NLCs) have the potential to increase the bioavailability and reduce the side effects of docetaxel (DTX). However, only a small fraction of nanoparticles given intravenously can reach a solid tumor. In situ-forming gels combined with nanoparticles facilitate local administration and promote drug retention at the tumor site. Injectable hydrogels based on poloxamer 407 are excellent candidates for this hybrid nanoparticle-hydrogel system because of their thermoresponsive behavior and biocompatibility. Therefore, this work aimed to develop injectable poloxamer hydrogels containing NLCs for intratumoral delivery of DTX. To ensure sterility, the obtained hydrogels were autoclaved (121 °C for 15 min) after preparation. Then, the incorporation of NLCs into the poloxamer hydrogels and the impact of steam sterilization on the nanocomposite hydrogels were evaluated concerning sol-gel transition, injectability, and physicochemical stability. All formulations were extruded through the tested syringe-needle systems with acceptable force (2.2-13.4 N) and work (49.5-317.7 N·mm) of injection. Following steam sterilization, injection became easier in most cases, and the physicochemical properties of all hydrogels remained practically unchanged according to the spectroscopical and thermal analysis. The rheological evaluation revealed that the nanocomposite hydrogels were liquid at 25 °C and underwent rapid gelation at 37 °C. However, their sterilized counterparts gelled at 1-2 °C above body temperature, suggesting that the autoclaving conditions employed had rendered these nanocomposite hydrogels unsuitable for local drug delivery.

12.
Pharmaceutics ; 16(5)2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38794264

ABSTRACT

Porcine epidemic diarrhea virus (PEDV) is an acute enteric coronavirus, inducing watery diarrhea and high mortality in piglets, leading to huge economic losses in global pig industry. Ivermectin (IVM), an FDA-approved antiparasitic agent, is characterized by high efficacy and wide applicability. However, the poor bioavailability limits its application. Since the virus is parasitized inside the host cells, increasing the intracellular drug uptake can improve antiviral efficacy. Hence, we aimed to develop nanostructured lipid carriers (NLCs) to enhance the antiviral efficacy of IVM. The findings first revealed the capacity of IVM to inhibit the infectivity of PEDV by reducing viral replication with a certain direct inactivation effect. The as-prepared IVM-NLCs possessed hydrodynamic diameter of 153.5 nm with a zeta potential of -31.5 mV and high encapsulation efficiency (95.72%) and drug loading (11.17%). IVM interacted with lipids and was enveloped in lipid carriers with an amorphous state. Furthermore, its encapsulation in NLCs could enhance drug internalization. Meanwhile, IVM-NLCs inhibited PEDV proliferation by up to three orders of magnitude in terms of viral RNA copies, impeding the accumulation of reactive oxygen species and mitigating the mitochondrial dysfunction caused by PEDV infection. Moreover, IVM-NLCs markedly decreased the apoptosis rate of PEDV-induced Vero cells. Hence, IVM-NLCs showed superior inhibitory effect against PEDV compared to free IVM. Together, these results implied that NLCs is an efficient delivery system for IVM to improve its antiviral efficacy against PEDV via enhanced intracellular uptake.

13.
Pharmaceutics ; 16(5)2024 May 10.
Article in English | MEDLINE | ID: mdl-38794305

ABSTRACT

Recently, the number of people acquiring tattoos has increased, with tattoos gaining significant popularity in people between 20 and 40 years old. Inflammation is a common reaction associated with tattooing. The purpose of this study was to evaluate a nanostructured lipid carrier loading pranoprofen (PRA-NLC) as a tattoo aftercare formulation to reduce the inflammation associated with tattooing. In this context, the in vitro drug release and the ex vivo permeation-through-human-skin tests using Franz cells were appraised. The tolerance of our formulation on the skin was evaluated by studying the skin's biomechanical properties. In addition, an in vivo anti-inflammatory study was conducted on mice skin to evaluate the efficacy of the formulation applied topically after tattooing the animals. PRA-NLC showed a sustained release up to 72 h, and the amount of pranoprofen retained in the skin was found to be 33.48 µg/g/cm2. The formulation proved to be well tolerated; it increased stratum corneum hydration, and no signs of skin irritation were observed. Furthermore, it was demonstrated to be non-cytotoxic since the cell viability was greater than 80%. Based on these results, we concluded that PRA-NLC represents a suitable drug delivery carrier for the transdermal delivery of pranoprofen to alleviate the local skin inflammation associated with tattooing.

14.
Nanomedicine (Lond) ; 19(12): 1087-1101, 2024.
Article in English | MEDLINE | ID: mdl-38661720

ABSTRACT

Aim: To investigate the therapeutic potential of mebendazole (MBZ)-loaded nanostructured lipid carriers (NLCs). Methodology: NLC-MBZ was prepared and characterized to evaluate the in vitro and in vivo anticancer effects and the inhibitory effect on RanGTP and its potential as an antimetastatic treatment in vivo. Results: NLC-MBZ exhibited a size and charge of 155 ± 20 nm and -27 ± 0.5 mV, respectively, with 90.7% encapsulation. Free MBZ and NLC-MBZ had a 50% inhibitory concentration of 610 and 305 nM, respectively, against MDA-MB-231 cell lines. NLC-MBZ decreased tumor size, suppressed tumor lung metastases, and lowered the expression of CDC25A, SKP2, RbX1 and Cullin1 while boosting the Rb proteins. Conclusion: NLC-MBZ displayed antiangiogenic potential and resulted in a reduced rate of lung metastasis in vivo.


[Box: see text].


Subject(s)
Breast Neoplasms , Lung Neoplasms , Mebendazole , Mebendazole/pharmacology , Mebendazole/therapeutic use , Humans , Animals , Breast Neoplasms/drug therapy , Breast Neoplasms/pathology , Female , Cell Line, Tumor , Mice , Lung Neoplasms/drug therapy , Lung Neoplasms/pathology , Drug Carriers/chemistry , Lipids/chemistry , Mice, Inbred BALB C , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Mice, Nude
15.
Adv Pharm Bull ; 14(1): 48-66, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38585451

ABSTRACT

Delivery and formulation of oral peptide and protein therapeutics have always been a challenge for the pharmaceutical industry. The oral bioavailability of peptide and protein therapeutics mainly relies on their gastrointestinal solubility and permeability which are affected by their poor membrane penetration, high molecular weight and proteolytic (chemical and enzymatic) degradation resulting in limited delivery and therapeutic efficacy. The present review article highlights the challenges and limitations of oral delivery of peptide and protein therapeutics focusing on the application, potential and importance of solid lipid nanoparticles (SLNs) and nanostructured lipid carriers (NLCs) as lipid-based drug delivery systems (LBDDSs) and their advantages and drawbacks. LBDDSs, due to their lipid-based matrix can encapsulate both lipophilic and hydrophilic drugs, and by reducing the first-pass effect and avoiding proteolytic degradation offer improved drug stability, dissolution rate, absorption, bioavailability and controlled drug release. Furthermore, their small size, high surface area and surface modification increase their mucosal adhesion, tissue-targeted distribution, physiological function and half-life. Properties such as simple preparation, high-scale manufacturing, biodegradability, biocompatibility, prolonged half-life, lower toxicity, lower adverse effects, lipid-based structure, higher drug encapsulation rate and various drug release profile compared to other similar carrier systems makes LBDDSs a promising drug delivery system (DDS). Nevertheless, undesired physicochemical features of peptide and protein drug development and discovery such as plasma stability, membrane permeability and circulation half-life remain a serious challenge which should be addressed in future.

16.
Am J Cancer Res ; 14(3): 1101-1120, 2024.
Article in English | MEDLINE | ID: mdl-38590403

ABSTRACT

Morellic acid (MA), a typical compound found in Garcinia plants, is known for its anticancer properties. In present study, we isolated MA from resin of Garcinia hanburyi Hook. f. using preparative chromatography. We have successfully prepared MA-loaded nanostructured lipid carriers (MA-NLCs) and refined the production process via orthogonal testing. Optimization of the preparation process resulted in an average particle size of 165.50±1.70 nm with a PDI of 0.19±0.01. The EE% and DL% of MA-NLCs were 78.17±0.34% and 7.25±0.38%, respectively. The zeta potential of MA-NLCs was -21.85±0.67 mV. Comparatively, MA-NLCs showed a greater area under the curve (AUC) and an extended half-life (t1/2) than free MA. Pharmacokinetics analysis revealed that the AUC0-t increased from 4.91±0.65 µg/mL∙min (free MA) to 18.91±3.40 µg/mL∙min (MA-NLCs) and the t1/2 value for MA-NLCs was 7.93-fold longer than that of free MA. In vitro cytotoxic assessments indicated that MA formulations curtailed the proliferation of cancer cells. In vivo, MA-NLCs significantly inhibited the tumor growth in tumor-bearing mouse model. Molecular mechanism studies revealed that up-regulation of apaf-1 and activation of caspase-3, caspase-9 and GSDME by MA-NLCs may trigger to apoptosis and pyroptosis in cancer cells. Consequently, our findings support the potential of NLCs as an effective MA delivery system for the clinical management of cancer.

17.
Article in English | MEDLINE | ID: mdl-38566386

ABSTRACT

Wound healing is crucial for maintaining skin integrity and preventing complications from external threats. Various plants, such as Achillea millefolium, Aloe vera, Curcuma longa, Calendula officinalis, Camellia sinensis, Azadirachta indica, and Plantago, have demonstrated wound healing capabilities and have been used in herbal medicine for wound care. NLCs are second-generation lipid nanoparticles, blending solid and liquid lipids to improve medication loading and limit leakage. NLCs have been used in various applications, including cosmeceuticals, chemotherapy, gene therapy, and brain targeting. Wound healing is divided into four stages: hemostasis, inflammatory response, proliferation, and remodeling. Factors such as age, gender, chronic disorders, and local agents like infections can affect recovery. These plants' antiinflammatory, antioxidant, and antibacterial activities have demonstrated potential in wound healing. Combining herbal medicinal plants and nanostructured lipid carriers (NLCs) can revolutionise wound treatment and improve overall healthcare outcomes.

18.
Int J Pharm ; 657: 124048, 2024 May 25.
Article in English | MEDLINE | ID: mdl-38537925

ABSTRACT

Doxorubicin hydrochloride (DOX) is an anticancer agent used in cancer chemotherapy. The purpose of this study was to design nanostructured lipid carriers (NLCs) of DOX as smart chemotherapy to improve its photostability and anticancer efficacy. The characteristics of DOX and DOX-loaded NLCs were investigated using UV-Vis spectroscopy, Fourier transform infrared (FTIR) spectroscopy, particle size, and zeta potential study. The cytotoxicity of DOX was evaluated against three cancer cell lines (HeLa, A549, and CT-26). The particle size and zeta potential were in the range 58.45-94.08 nm and -5.80 mV - -18.27 mV, respectively. The chemical interactions, particularly hydrogen bonding and van der Waals forces, between DOX and the main components of NLCs was confirmed by FTIR. NLCs showed the sustained release profile of DOX. The photostability results revealed that the NLC system improved the photostability of DOX. Cytotoxicity results using the three cell lines showed that all formulations improved the anticancer efficacy of free DOX, and the efficacy was dependent on cell type and particle size. These results suggest that DOX-loaded NLCs are promising chemotherapeutic agents for cancer treatment.


Subject(s)
Cell Survival , Doxorubicin , Drug Carriers , Drug Liberation , Lipids , Nanoparticles , Particle Size , Doxorubicin/administration & dosage , Doxorubicin/chemistry , Doxorubicin/pharmacology , Humans , Drug Carriers/chemistry , Nanoparticles/chemistry , Lipids/chemistry , Cell Line, Tumor , Cell Survival/drug effects , Antibiotics, Antineoplastic/administration & dosage , Antibiotics, Antineoplastic/chemistry , Antibiotics, Antineoplastic/pharmacology , Nanostructures/chemistry , Drug Stability , HeLa Cells , A549 Cells , Antineoplastic Agents/chemistry , Antineoplastic Agents/administration & dosage , Antineoplastic Agents/pharmacology
19.
Food Res Int ; 182: 114148, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38519178

ABSTRACT

In this current study, the internal structure of nanostructured lipid carriers was modulated by phospholipids (lecithin PC, hydrogenated soybean phospholipid HPC) and solid lipids to achieve stable encapsulation of citral. The presence of high melting point HPC could construct α-crystalline type with more lattice defects and effectively inhibit ß-ization. The HPC group could maintain the particle size at 155.9-186.9 nm, the polydispersity index (PDI) at 0.182-0.321, the Zeta potential at -57.58 mV to -49.35 mV and the retention rate of citral at 91.33-98.49 % in the acidic environments of 2 mM and 20 mM hydrochloric acid solutions. The recrystallization index (RI) of NLC increased with the number of solid lipid ester bonds (from 3.57 % to 16.58 % in the PC group and from 0.82 % to 12.47 % in the HPC group). The results illustrated that the number of solid lipid ester bonds and the melting point of phospholipids affected crystallinity of the lipid matrix and thus the stability of encapsulated citral. Hydrogenated phospholipid with high melting points was more beneficial in stabilizing citral. The present study improved the acidic stability of citral and provided a new thought for the application of citral in acidic beverages.


Subject(s)
Acyclic Monoterpenes , Nanostructures , Phospholipids , Drug Carriers/chemistry , Nanostructures/chemistry , Esters
20.
Acta Parasitol ; 69(1): 929-950, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38489009

ABSTRACT

PURPOSE: Resistance and adverse consequences of albendazole (ABZ) in treating trichinellosis urged demand for secure and effective new drugs. The current study aimed to assess the effect of chitosan-coated lipid nano-combination with albendazole and miltefosine (MFS) in treating experimental murine trichinellosis and evaluating pathological and immunological changes of trichinellosis. MATERIALS AND METHODS: One hundred twenty Swiss albino mice were divided into six groups. Each group was subdivided into a and b subgroups based on the scarification time, which was 7- and 40-days post-infection (PI), respectively. The treatment efficacy was evaluated using parasitological, histopathological, serological (interleukin (IL)-12 and IL-4 serum levels), immunohistochemical (GATA3, glutathione peroxidase1 (GPX1) and caspase-3), and scanning electron microscopy (SEM) methods. RESULTS: The most effective drug was nanostructured lipid carriers (NLCs) loaded with ABZ (G5), which showed the most significant reduction in adults and larval count (100% and 92.39%, respectively). The greatest amelioration in histopathological changes was reported in G4 treated with MFS. GATA3 and caspase-3 were significantly reduced in all treated groups. GPX1 was significantly increased in G6 treated with MFS + NLCs. The highest degenerative effects on adults and larvae by SEM were documented in G6. CONCLUSION: Loading ABZ or MFS on chitosan-coated NLCs enhanced their efficacy against trichinellosis. Although ABZ was better than MFS, their combination should be considered as MFS caused a significant reduction in the intensity of infection. Furthermore, MFS showed anti-inflammatory (↓GATA3) and antiapoptotic effects (↓caspase-3), especially in the muscular phase. Also, when loaded with NLCS, it showed an antioxidant effect (↑GPX1).


Subject(s)
Albendazole , Chitosan , Phosphorylcholine , Phosphorylcholine/analogs & derivatives , Trichinellosis , Animals , Mice , Chitosan/chemistry , Albendazole/administration & dosage , Albendazole/pharmacology , Trichinellosis/drug therapy , Phosphorylcholine/administration & dosage , Phosphorylcholine/pharmacology , Anthelmintics/administration & dosage , Lipids/blood , Drug Carriers/chemistry , Nanoparticles/chemistry , Immunohistochemistry , Male
SELECTION OF CITATIONS
SEARCH DETAIL
...