Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 31
Filter
Add more filters










Publication year range
1.
J Appl Microbiol ; 135(2)2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38364303

ABSTRACT

AIMS: This study aimed to evaluate and describe the functional differences of cultivable bacteria and fungi inhabiting the leaves of Gevuina avellana Mol. (Proteaceae) in an urban area with high levels of air pollution and in a native forest in the southern Andes. METHODS AND RESULTS: Phyllosphere microorganisms were isolated from the leaves of G. avellana, their plant growth-promoting capabilities were estimated along with their biocontrol potential and tolerance to metal(loid)s. Notably, plants from the urban area showed contrasting culturable leaf-associated microorganisms compared to those from the native area. The tolerance to metal(loid)s in bacteria range from 15 to 450 mg l-1 of metal(loid)s, while fungal strains showed tolerance from 15 to 625 mg l-1, being especially higher in the isolates from the urban area. Notably, the bacterial strain Curtobacterium flaccumfaciens and the fungal strain Cladosporium sp. exhibited several plant-growth-promoting properties along with the ability to inhibit the growth of phytopathogenic fungi. CONCLUSIONS: Overall, our study provides evidence that culturable taxa in G. avellana leaves is directly influenced by the sampling area. This change is likely due to the presence of atmospheric pollutants and diverse microbial symbionts that can be horizontally acquired from the environment.


Subject(s)
Air Pollution , Proteaceae , Trees , Plant Leaves/microbiology
2.
PeerJ ; 11: e16205, 2023.
Article in English | MEDLINE | ID: mdl-37842070

ABSTRACT

Background: Land use change is a key catalyst of global biodiversity loss and ecosystem degradation. Deforestation and conversion of natural habitats to agricultural or urban areas can profoundly disrupt plant-flower visitor interactions by altering their abundances and distribution. Yet, specific studies analyzing the effects of land use change on the structure of networks of the interactions between particular groups of flower visitors and their plants are still scarce. Here, we aimed to analyze how converting native habitats affects the species composition of butterfly communities and their plants, and whether this, in turn, leads to changes in the structure of interaction networks in the modified habitats. Methods: We performed bi-monthly censuses for a year to record plant-butterfly interactions and assess species diversity across three habitat types, reflecting a land-use change gradient. From original native juniper forest to urban and agricultural zones in central Mexico, one site per land use type was surveyed. Interactions were summarized in matrices on which we calculated network descriptors: connectance, nestedness and modularity. Results: We found highest butterfly diversity in native forest, with the most unique species (i.e., species not shared with the other two sites). Agricultural and urban sites had similar diversity, yet the urban site featured more unique species. The plant species richness was highest in the urban site, and the native forest site had the lowest plant species richness, with most of the plants being unique to this site. Butterfly and plant compositions contrasted most between native forest and modified sites. Network analysis showed differences between sites in the mean number of links and interactions. The urban network surpassed agriculture and native forest networks in links, while the native forest network had more interactions than the agriculture and urban networks. Native plants had more interactions than alien species. All networks exhibited low connectance and significant nestedness and modularity, with the urban network featuring the most modules (i.e., 10 modules). Conclusions: Converting native habitats to urban or agricultural areas reshapes species composition, diversity and interaction network structure for butterfly communities and plants. The urban network showed more links and modules, suggesting intricate urban ecosystems due to diverse species, enhanced resources, and ecological niches encouraging interactions and coexistence. These findings emphasize the impacts of land use change on plant-butterfly interactions and the structure of their interaction networks.


Subject(s)
Butterflies , Ecosystem , Animals , Mexico , Biodiversity , Forests , Plants
3.
Preprint in English | SciELO Preprints | ID: pps-4613

ABSTRACT

Plant relocation resulting from vegetation removal is an important conservation strategy. This work aimed to investigate the simultaneous relocation of the bromeliads Aechmea distichantha Lem. and Wittrockia cyathiformis (Vell.) Leme in epiphytic and terricolous form. These bromeliads were rescued from deforested areas due to the construction of a highway. Both were fixed onto tree trunks or pitchforks or in the soil in a Montane Dense Ombrophilous Forest area of Parque da Estadual Cantareira, São Paulo State, Brazil. After one year A. distichantha maintained 100% survival rate, when transplanted in terricolous and 83.33 % in epiphytic form, while W. cyathiformis was 60% for both relocation forms. We concluded that both bromeliad species could be simultaneously relocated as epiphytes or terricolous. Direct relocation to the ground guarantees practicality, as it is difficult to find trees with forks located at small heights from the ground in which the manual fixing of the plant could be done without equipment.


A realocação de plantas resultante da remoção da vegetação é uma importante estratégia de conservação. Este trabalho objetivou investigar a realocação simultânea das bromélias Aechmea distichantha Lem. e Wittrockia cyathiformis  (Vell.) Leme na forma epífita e terrícola, resgatadas de áreas desmatadas devido à construção de uma rodovia. Ambas foram fixadas em troncos de árvores ou forquilhas ou transplantadas para o solo em uma área de Floresta Ombrófila Densa Montana do Parque Estadual da Cantareira, Estado de São Paulo, Brasil. Após um ano, A. distichantha manteve 100% de sobrevida, quando transplantada na forma terrícola e 83,33% na forma epífita, enquanto W. cyathiformis foi de 60% para ambas as formas de realocação. Concluímos que ambas as espécies de bromélias podem ser realocadas simultaneamente como epífitas ou terrícolas. A realocação direta ao solo garante praticidade, pois é difícil encontrar árvores com forquilhas localizadas a pequenas alturas do solo em que a fixação manual da planta possa ser feita sem equipamentos.

4.
Biodivers Data J ; 10: e78896, 2022.
Article in English | MEDLINE | ID: mdl-35437407

ABSTRACT

Background: The dataset we present consists of an inventory compiling all records and knowledge about Staphylinidae (Insecta, Coleoptera) in the Azores and is part of a long-term monitoring performed between 1990 and 2015 in different habitat types of eight islands of the Azores Archipelago. Most samples come from the BALA project (Biodiversity of Arthropods from the Laurisilva of Azores) that sampled native forests in the Azores. Additional sampled habitats include exotic forests, intensive and semi-natural pasturelands, orchards, caves and lava flows. Most of the records (about 96.7%) were collected in standardised sampling campaigns, which included pitfall traps and beating transect protocols. Non-standardised records are based on hand-collecting and sifting, as well as cave, colour and malaise traps. New information: We provide a long-term inventory of Staphylinidae (Insecta, Coleoptera) collected in the course of several standardised sampling campaigns and recorded with non-standardised methods. We collected a total of 10744 specimens belonging to 69 identified species of Staphylinidae, which represents 51% of the species known from the Azores Archipelago. Four endemic species were sampled, representing 40% of the known Azorean endemic species. From this dataset, seven species are new for the Azores: Aleocharafunebris Wollaston, 1864; Amischaforcipata Mulsant & Rey, 1873; Blediusunicornis (Germar, 1825); Carpelimustroglodytes (Erichson, 1840); Cyphaseminulum (Erichson, 1839); Paraphloeostibagayndahensis (MacLeay, 1871); Tachyporuscaucasicus Kolenati, 1846. We also registered a total of 66 new island records for eight Azorean islands. This contribution continues a series of publications on the distribution and abundance of Azorean arthropods. We also provide an updated list of Azorean rove-beetles (Staphylinidae) that now includes 136 species, ten of them considered Azorean endemics.

5.
J Anim Ecol ; 91(7): 1444-1457, 2022 07.
Article in English | MEDLINE | ID: mdl-35396865

ABSTRACT

Urbanization, and the drastic loss of habitat it entails, poses a major threat to global avian biodiversity. Ecological restoration of urban forests is therefore increasingly vital for native bird conservation, but control of invasive predators may also be needed to sustain native bird populations in cities where species invasions have been particularly severe. We evaluated restoration success by investigating changes in native bird communities along a restoration chronosequence of 25 restored urban forests representing 72 years of forest development, which we compared to two target reference systems and a control system. We hypothesized that total species richness and relative abundance of native forest birds would increase with the age of restoration planting. We further hypothesized that relative abundance of rats, possums and cats would negatively impact native birds, while amount of native forest in the surrounding landscape would have a positive effect. We used structural equation modelling (SEM) to investigate the relative influence of forest structure (complexity index, tree height, canopy openness, basal area, species richness and density), landscape attributes (patch area, perimeter length, landscape composition within three buffer zones, distance to the nearest road and water source) and invasive mammalian predator indices of relative abundance on total species richness and relative abundance of native forest birds. Species richness increased with age of restoration planting, with community composition progressing towards that found in target reference systems. SEM revealed that years restored was a direct driver of bird species richness but an indirect driver of abundance, which was directly driven by canopy openness. Contrary to our predictions, invasive mammals had no significant effect on native bird species richness or abundance. Our results demonstrate that provision and improvement of habitat quantity and quality through restoration is the vital first step to re-establishing native forest bird communities in cities.


Subject(s)
Conservation of Natural Resources , Forests , Animals , Biodiversity , Birds , Conservation of Natural Resources/methods , Ecosystem , Mammals , Rats , Trees
6.
Work ; 71(3): 719-728, 2022.
Article in English | MEDLINE | ID: mdl-35253706

ABSTRACT

BACKGROUND: Despite constant technological evolution, the forestry sector is still characterised as one with the highest risk of occupational accidents. There is no doubt that accidents penalise workers considerably, as well as the companies, insurers, and, consequently, the society, to which many of the costs are externalised, namely in cases where the worker is incapacitated and unable to work. OBJECTIVE: The aim of this work is to analyse data on occupational accidents in forestry operations in Brazil between 2007 and 2018 in both native and planted forests. METHODS: Data were made available by the Brazilian Statistical Directory of Accidents at Work. RESULTS: The results show that, although most accidents occurred in planted forests, mortality was higher in native forests. It was also found that, overall, the rate of serious accidents resulting in an incapacity to work and, consequently, sick leave is considerably high. CONCLUSIONS: These results highlight that integrating an occupational safety system into a forest management system is crucial for reducing work-related accidents in both native and planted forests. However, the success of this measure will only be effective if it is accompanied by a review of both the Brazilian labour policy and the Brazilian occupational safety management policy, to ensure compliance with legislation, mainly on the part of outsourced companies.


Subject(s)
Accidents, Occupational , Occupational Health , Brazil/epidemiology , Forestry , Forests , Humans
7.
Environ Sci Pollut Res Int ; 29(38): 57395-57411, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35349065

ABSTRACT

Land use changes have led to the degradation of multiple ecosystem services and affected the quality of aquatic ecosystems. The aims of this study were (i) to assess the expansion of the agricultural border over the native forest of an Argentinean stream basin and (ii) to characterize the surface water quality, considering physicochemical parameters, and pesticide concentrations. The agricultural frontier expansion was estimated through the analysis of satellite image coverage. Samples of surface water were taken bimonthly for 2 years. The native forest cover decreased from 72% in 1987 to 60% in 2017 due to the sustained increase in agricultural activities. In surface water, the concentrations of cations decreased: Na > Ca > K > Mg, whereas those of anions decreased: HCO3 > > Cl > SO4 > PO4. The 84 surface water samples analyzed revealed 25 pesticides, including herbicides (44%), insecticides (28%), and fungicides (28%). Herbicides were detected in more than 60% of the samples. 2,4-D, atrazine, cyproconazole, diazinon, glyphosate, AMPA, and metolachlor were detected in all the study sites and sometimes, 2,4-D, atrazine, dicamba, and metolachlor concentrations exceeded the guideline levels. The high sampling frequency of this study and the two annual cycles of crops in the basin enabled sensing of pesticide molecules and concentrations that had not been previously detected, indicating diffuse contamination. These findings signal an emergent challenge on the Espinal agro-ecosystem integrity due to changes in land use.


Subject(s)
Atrazine , Herbicides , Pesticides , Water Pollutants, Chemical , 2,4-Dichlorophenoxyacetic Acid , Atrazine/analysis , Ecosystem , Environmental Monitoring/methods , Forests , Herbicides/chemistry , Pesticides/analysis , Rivers/chemistry , Water Pollutants, Chemical/analysis , Water Quality
8.
Biodivers Data J ; 10: e96442, 2022.
Article in English | MEDLINE | ID: mdl-36761513

ABSTRACT

Background: Long-term studies are key to understand the drivers of biodiversity erosion, such as land-use change and habitat degradation, climate change, invasive species or pollution. The long-term project SLAM (Long Term Ecological Study of the Impacts of Climate Change in the natural forest of Azores) started in 2012 and focuses on arthropod monitoring, using SLAM (Sea, Land and Air Malaise) traps, aiming to understand the impact of the drivers of biodiversity erosion on Azorean native forests (Azores, Portugal). This is the fourth contribution including SLAM project data and the second focused on the spider fauna (Arachnida, Araneae) of native forests on two islands (Pico and Terceira). In this contribution, we describe data collected between 2019 and 2021 and we analyse them together with a previously published database that covered the 2012-2019 period, in order to describe changes in species abundance patterns over the last ten years. New information: We present abundance data of Azorean spider species for the 2019-2021 period in two Azorean Islands (Terceira and Pico). We also present analyses of species distribution and abundance of the whole sampling period. In the period of 2019-2021, we collected a total of 5110 spider specimens, of which 2449 (48%) were adults. Most juveniles, with the exception of some exotic Erigoninae, were also included in the data presented in this paper, since the low diversity of spiders in the Azores allows a relatively precise species-level identification of this life-stage. We recorded a total of 45 species, belonging to 39 genera and 16 families. The ten most abundant species were composed mostly of endemic or native non-endemic species and only two exotic species (Tenuiphantestenuis (Blackwall, 1852) and Dysderacrocata C. L. Koch, 1838). They included 4308 individuals (84%) of all sampled specimens and were the dominant species in Azorean native forests. The family Linyphiidae was the richest and most abundant taxon, with 15 (33%) species and 2630 (51%) specimens. We report Cheiracanthiummildei L. Koch, 1864, a non-native species, from Pico Island for the first time. We found no new species records on Terceira Island. This publication contributes to increasing the baseline information for future long-term comparisons of the spiders on the studied sites and the knowledge of the arachnofauna of the native forests of Terceira and Pico, in terms of species abundance, distribution and diversity across seasons for a 10 years period.

9.
Biodivers Data J ; 10: e80088, 2022.
Article in English | MEDLINE | ID: mdl-36761596

ABSTRACT

This study explores the composition and structure of species communities associated with the native Azorean tree species Laurusazorica (Seub) Franco (Magnoliophyta, Magnoliopsida, Laurales, Lauraceae). Communities were sampled in six Islands covering the occidental (Flores), central (Faial, Pico, Terceira) and eastern (São Miguel, Santa Maria) groups of Azores Archipelago during the BALA project, using standardised sampling protocols for surveying canopy arthropod fauna. In addition, the study characterises the distribution of species regarding their colonisation status and feeding modes and, finally, compares communities of different Islands. Ninety-four arthropod species totalling 10,313 specimens were collected on L.azorica. The Arthropod community was dominated by Hemiptera species, most of them being herbivores. Endemic and native species showed a very high abundance representing about 94% of the total species abundance. However, despite introduced species being represented by few individuals (6% of the total abundance), their diversity was remarkable (28 species and no significant difference with diversity found in endemic and native species communities). Analysis of rarity patterns revealed a stable community of endemic species (alpha gambin SAD model approaching a log-normal shape), intermediate stable community of native species (alpha SAD gambin model approaching a poisson log-normal) and a less stable community of introduced species (alpha SAD gambin model approaching a log-series shape). A dissimilarity analysis revealed high similarity between communities of Terceira and Pico and high dissimilarity between Flores and Faial communities. We observed a clear individualisation of the different islands when considering endemic species, whereas we observed high overlap when considering native and introduced species groups. Canopy community distribution confirms the results obtained in a previous study which suggest the stability of native and endemic arthropods species communities over introduced species community in native forests fragments. Arthropod species were richer than bryophytes, lichens and vascular plants species. We found that L.azorica serve as the substrate for very few vascular plants species (four epiphytes species), which were present in all Islands, except Elaphoglossumsemicylindricum, which does not occur in Santa Maria. L.azorica shelters a significant number of bryophytes and lichens species. Thirty-two lichens and 92 bryophyte species, including 57 liverworts and 35 mosses, are referred to this phorophyte. Five bryophyte species, all Azorean endemics, are considered Endangered by IUCN Criteria. L.azorica harbours a poor community of epiphyte vascular plant species and all of them were ferns, but the community of bryophytes and lichens are not negligible although very low compared to the community found on other previously studied Azorean trees, the Azorean cedar Juniperusbrevifolia. The present study shows that most islands present particular species distribution patterns without geographical correlation and that conservation programmes should be adapted to each Island. The study, therefore, calls for a specialisation of conservation programmes for each of the Islands.

10.
Biosci. j. (Online) ; 36(Supplement1): 97-108, Dec. 2020. ilus, tab, graf
Article in English | LILACS | ID: biblio-1355148

ABSTRACT

The crop systems adopted in the Amazônia region have been studied several times in terms of the variability and to indicate the soil attributes more sensitive to the different crops. Thus, the objective of this work was to apply multivariate techniques in order to identify the chemical attributes most sensitive to environmental changes in different crop systems in Western Amazonia, Brazil. The research was conducted in five rural properties located in the Humaitá city region, Western Amazonia, Brazil. There were selected four environments with natural characteristics (Native Forest - NF) and five cropping systems (Grazing, Cassava, Açaí, Agroforestry and Reforestation). In the selected areas, soil samples were collected at depths layers of 0.0-0.05 m; 0.05-0.1 m and 0.1-0.2 m and the following chemical analyzes were performed: pH in water, Ca2+, Mg2+, K +, Resin-P, phosphorus bio-available particulate (Pbp), OC, Al3+, H++Al3+ and from these results SB, T, t, m% and V% were calculated. Multivariate statistical techniques were used to verify similarities between the crop systems in the attempt to relate the crops grown and the chemical attributes. The multivariate analysis was essential in the crop systems distinction, as well as to describe the relationship with the chemical properties. The results demonstrate and reinforce the existing variability between crop systems, with emphasis on the variation in crop systems, compared to natural environments. (AU)


Os sistemas de cultivos adotados na região Amazônica vêm sendo utilizados em diversos estudos em termo da variabilidade exercida pelas práticas de manejo e até mesmo indicar aqueles atributos mais sensíveis a esses manejos. Assim, o objetivo deste trabalho foi aplicar técnicas multivariadas a fim de identificar os atributos químicos mais sensíveis às mudanças ambientais em diferentes sistemas de cultivo na Amazônia Ocidental, Brasil. A pesquisa foi realizada em cinco propriedades rurais localizadas na região de Humaitá, Amazônia Ocidental. Foram selecionados quatro ambientes com características naturais (Floresta Nativa ­ FN) e cinco ambientes cultivados (Pastagem, Mandioca, Açaí, Agrofloresta e Reflorestamento). As amostras de solos nas áreas selecionadas foram coletadas nas profundidades de 0,0-0,05 m; 0,05-0,1 m e 0,1- 0,2 m. Foram realizadas as seguintes análises químicas: pH em água, Ca2+, Mg2+, K+, Presina, CO, Al3+,H ++Al3+ e a partir do resultado dessas análises foram calculadas a SB, T, t, m% e V%. Utilizaram-se técnicas de estatística multivariada para verificar semelhanças entre as práticas de manejo na tentativa de agrupar os sistemas de uso/atributos químicos. A análise multivariada foi preponderante na distinção dos sistemas de cultivos estudados, bem como caracterização da relação com as propriedades químicas. Os resultados demonstram e reforçam a variabilidade existente entre os sistemas de cultivo, com ênfase na variação dos sistemas de cultivo, em comparação com os ambientes naturais. (AU)


Subject(s)
Crop Production , Soil Characteristics , Amazonian Ecosystem , Multivariate Analysis
11.
Mycorrhiza ; 30(6): 749-759, 2020 Nov.
Article in English | MEDLINE | ID: mdl-32909119

ABSTRACT

The rapid conversion of native forests to farmland in Ethiopia, the cradle of biodiversity, threatens the diversity of the arbuscular mycorrhizal fungi (AMF) pivotal to plant nutrition and carbon sequestration. This study aimed to investigate the impact of this land-use change on the AMF species composition and diversity in southern Ethiopia. Soil samples were collected from nine plots in each of three land-use types: native forest, agroforestry, and khat monocropping. The plots of the three land-use types were located adjacent to each other for each of the nine replicates. Three 10 × 10m subplots per plot were sampled. AMF spores were extracted from the soil samples, spore densities were determined, and species composition and diversity were evaluated through morphological analysis. Both spore density and species richness were statistically significantly higher in the native forest than in the agroforestry plots with no clear difference to khat, whereas the true diversity (exponential of Shannon-Wiener diversity index) did not differ among the three land-use types due to high evenness among the species in agroforestry. In total, 37 AMF morphotypes belonging to 12 genera in Glomeromycota were found, dominated by members of the genera Acaulospora and Glomus. The highest isolation frequency index (78%) was recorded for Acaulospora koskei from native forest. Consequently, the agroforestry system did not appear to aid in preserving the AMF species richness of native forests relative to perennial monocropping, such as khat cultivation. In contrast, the native forest areas can serve as in situ genetic reserves of mycorrhizal symbionts adapted to the local vegetative, edaphic, and microbial conditions.


Subject(s)
Mycorrhizae , Biodiversity , Ethiopia , Forests , Soil , Soil Microbiology , Spores, Fungal
12.
Glob Chang Biol ; 26(11): 6604-6615, 2020 Nov.
Article in English | MEDLINE | ID: mdl-32881163

ABSTRACT

Forest soils are the most important terrestrial sink of atmospheric methane (CH4 ). Climatic, soil and anthropogenic drivers affect CH4 fluxes, but it is poorly known the relative weight of each driver and whether all drivers have similar effects across forest biomes. We compiled a database of 478 in situ estimations of CH4 fluxes in forest soils from 191 peer-reviewed studies. All forest biomes (boreal, temperate, tropical and subtropical) but savannahs act on average as CH4 sinks, which presented positive fluxes in 65% of the sites. Mixed effects models showed that combined climatic and edaphic variables had the best support, but anthropogenic factors did not have a significant effect on CH4 fluxes at global scale. This model explained only 19% of the variance in soil CH4 flux which decreased with declines in precipitation and increases in temperature, and with increases in soil organic carbon, bulk density and soil acidification. The effects of these drivers were inconsistent across biomes, increasing the model explanation of observed variance to 34% when the drivers have a different slope for each biome. Despite this limited explanatory value which could be related to the use of soil variables calculated at coarse scale (~1 km), our study shows that soil CH4 fluxes in forests are determined by different environmental variables in different biomes. The most sensitive system to all studied drivers were the temperate forests, while boreal forests were insensitive to climatic variables, but highly sensitive to edaphic factors. Subtropical forests and savannahs responded similarly to climatic variables, but differed in their response to soil factors. Our results suggest that the increase in temperature predicted in the framework of climate change would promote CH4 emission (or reduce CH4 sink) in subtropical and savannah forests, have no influence in boreal and temperate forests and promote uptake in tropical forests.


Subject(s)
Methane , Soil , Carbon , Carbon Dioxide/analysis , Ecosystem , Forests
13.
Biodivers Data J ; 8: e49759, 2020.
Article in English | MEDLINE | ID: mdl-32280296

ABSTRACT

BACKGROUND: The data, presented here, come from samples collected during three research projects which aimed to assess the impact of land-use type on Arbuscular Mycorrhizal Fungi (AMF) diversity and community composition in pastures of Terceira Island (Azores, Macaronesia, Portugal) and also in the native forest of two Azorean Islands (Terceira and São Miguel; Azores, Macaronesia, Portugal). Both projects contributed to improving the knowledge of AMF community structure at both local and regional scales. NEW INFORMATION: Little is known on the AMF communities from Azores islands and this study reports the first survey in two Azorean Islands (Terceira and São Miguel). A total of 18,733 glomeromycotan spores were classified at the species level from 244 field soil samples collected in three different habitat types - native forests (dominated by Juniperus brevifolia and Picconia azorica), semi-natural and intensively-managed pastures. Thirty-seven distinct spore morphotypes, representing ten glomeromycotan families, were detected. Species of the family Acaulosporaceae dominated the samples, with 13 species (38% of the taxa), followed by Glomeraceae (6 spp.), Diversisporaceae (4 spp.), Archaeosporaceae (3 spp.), Claroideoglomeraceae (3 spp.), Gigasporaceae (3 spp.), Ambisporaceae and Paraglomeraceae, both with the same number of AMF species (2 spp.), Sacculosporaceae (1 sp.) and Entrophospora (family insertae sedis). Members of the family Acaulosporaceae occurred almost exclusively in the native forests especially associated with the Picconia azorica rhizosphere, while members of Gigasporaceae family showed a high tendency to occupy the semi-natural pastures and the native forests of Picconia azorica. Members of Glomeraceae family were broadly distributed by all types of habitat which confirm the high ecological plasticity of this AMF family to occupy the more diverse habitats.

14.
Biodivers Data J ; 8: e47502, 2020.
Article in English | MEDLINE | ID: mdl-31992947

ABSTRACT

BACKGROUND: Here we present the data obtained from the samples collected as part of a large research project (MACDIV) which aims at understanding the drivers of spider (Araneae) community assembly in Macaronesian islands. To obtain the data, we applied the sampling protocol COBRA (Conservation Oriented Biodiversity Rapid Assessment), in twelve 50 m x 50 m native forest plots and five dry habitat plots on the island of Madeiraand in 5 dry habitat plots on the island of Porto Santo. Through this publication, we contribute to the knowledge of the arachnofauna of the Madeiran archipelago. NEW INFORMATION: From the samples that we collected, we obtained a total of 14,902 specimens, of which 49% were adults (7,263). We identified these specimens to 87 species and 18 morphospecies (undescribed), belonging to 26 families. Species of the family Linyphiidae dominated the samples, with 24 (morpho)species. Out of the 105 recorded (morpho)species, 34 were endemic, 26 native non-endemic, 22 introduced and 23 species of unknown origin. We report seven new records of possibly recently introduced species in the Madeiran archipelago. We also present 21 new records for Madeira island and 32 for Porto Santo (33 for the whole archipelago).

15.
Front Plant Sci ; 10: 1542, 2019.
Article in English | MEDLINE | ID: mdl-31827482

ABSTRACT

Nutrient resorption is crucial for mineral element conservation and efficiency of forest species, but knowledge on its significance and the mechanisms involved is still limited for most species and habitats. Focusing on the harsh conditions for plant growth and survival of southern Patagonia, a field study for comparing the rate of foliar resorption of macro-, micro-nutrients, and trace elements in coexisting Nothofagus pumilio and Nothofagus antarctica forests was performed. Forests located in three contrasting productivity sites (with different soil and climatic conditions) were selected, and mature, functional versus senescent leaves of both species were collected at two different dates of the growing season. Macro- (N, P, Ca, K, S, and Mg), micronutrients (B, Cu, Fe, Mn, Zn, and Ni), and trace elements (Al, Li, Pb, Rb, Sr, Ti, and Tl) were determined in foliar tissues. The mineral element concentrations of mature and senescent leaves were used for calculating the nutrient resorption efficiency (NuR). In general, and making an average of all sites and species, macro-nutrient resorption showed a decreasing trend for N > S = K > P > Mg, being Ca the only macro-nutrient with negative values (i.e., no resorption). Resorption of the majority of the elements did not vary between species in any of the evaluated sites. Variation across sites in nutrient resorption efficiency for most macronutrients, some micronutrients, and trace elements was observed for N. antarctica, whereas N. pumilio had a similar NuR for all experimental sites. On the other hand, regardless of the site or the species, some elements were not resorbed (e.g., B, Cu, Fe, Mn, Al, and Ti). It is concluded that both Nothofagus species performed similarly concerning their nutrient conservation strategy, when coexisting in the same mixed forest. However, no evidence was gained for an increased rate of foliar NuR in association with the sites subjected to more limiting soil and climatic conditions for plant growth.

16.
Sci Total Environ ; 688: 1422-1432, 2019 Oct 20.
Article in English | MEDLINE | ID: mdl-31726570

ABSTRACT

Tropical forests provide a suite of benefits including biodiversity, cultural value, and a range of ecosystem services. Globally, there is increasing interest in incentivizing native forest protection as a multi-benefit natural infrastructure strategy to secure clean and ample water supplies. In addition to conversion to agriculture and other non-forest land uses, non-native species invasion represents a major threat to these systems, particularly on islands. Whereas several recent efforts have quantified the benefits of reforestation or avoided agricultural expansion in tropical forest areas, the hydrologic and associated economic benefits of avoided invasion have received less attention. To address this gap, we quantified the benefits of protecting native forest from conversion to non-native forest in East Maui, Hawai'i in terms of groundwater recharge, a highly valued hydrologic ecosystem service that water utilities increasingly seek to co-finance. Compared with two counterfactual invasion scenarios, the groundwater recharge benefits of planned conservation activities reached 40.9 to 146.3 million cubic meters over 100 years depending on invasion rate assumptions. This translated to 2.70 to 137.6 million dollars of cost savings to the water utility in present value terms (achieved through reducing reliance on more expensive water alternatives) under a range of discount rates and water scarcity assumptions. Our results suggest that investing in native forest conservation provides an important hydrologic ecosystem service benefit that complements the range of benefits provided by these ecosystems. These findings demonstrate that co-financing native forest conservation represents an important supply side option in water resources planning.


Subject(s)
Conservation of Natural Resources/methods , Forests , Hawaii , Water Supply
17.
Biodivers Data J ; 7: e32625, 2019.
Article in English | MEDLINE | ID: mdl-31065232

ABSTRACT

BACKGROUND: The data presented here come from samples collected as part of two recent research projects (NETBIOME - ISLANDBIODIV and FCT - MACDIV) which aimed at understanding the drivers of community assembly in Macaronesian islands. We applied the sampling protocol COBRA (Conservation Oriented Biodiversity Rapid Assessment, Cardoso 2009) in sixteen 50 m x 50 m native forest plots in the Azorean Islands of Pico (6 plots) and Terceira (10 plots) to assess spider diversity. Through this publication, we contribute to the knowledge of the arachnofauna of the Azores and, more specifically, to that of the islands of Pico and Terceira. NEW INFORMATION: The collected samples yielded 8,789 specimens, of which 45% were adults (3,970) belonging to 13 families, 36 species and three morphospecies that have yet to be described. Species of the family Linyphiidae dominated the samples, with 17 species and two morphospecies that have yet to be described (48% of the taxa). Out of the identified (morpho)species, 16 were introduced, 13 Azorean endemic (three of which were undescribed) and seven native (five of them Macaronesian endemics). We report the first record of the introduced species Haplodrassus signifer and Agyneta decora in Pico Island.

18.
Rev. biol. trop ; 67(1): 182-195, Jan.-Mar. 2019. tab, graf
Article in Spanish | LILACS | ID: biblio-1041902

ABSTRACT

Resumen Los bosques y páramos andinos poseen alta riqueza de especies, pero están amenazados constantemente por deforestación. La regeneración natural arbórea de estos ecosistemas condiciona su estructura y funcionalidad en el futuro, pero ha sido escasamente evaluada. En Los Andes del sur del Ecuador, también existen plantaciones forestales de Pinus patula (pino) abandonadas, que podrían ser escenarios para promover la regeneración natural. En un gradiente altitudinal andino, se evaluó florísticamente parámetros de la regeneración arbórea en dos escenarios de estudio: ecosistemas naturales (páramos herbáceos y bosques naturales) y plantaciones de pino. Para ello la diversidad de la regeneración fue descrita mediante la riqueza de especies, índice de Shannon y composición florística. La abundancia a través del número de individuos; estos parámetros fueron comparados en ambos escenarios. También se determinó qué variables ambientales o predictoras de: cobertura de dosel, edáficas, estructura arbórea, distancia horizontal y fisiográficas, explicaron con mayor magnitud la variación en los parámetros de la regeneración. Para ello se realizó un análisis de partición de la variación. La riqueza y diversidad de especies fueron mayores en los ecosistemas naturales, la composición florística fue diferente y su abundancia fue similar. En los ecosistemas naturales, el área basal y la densidad arbórea explicaron mayormente la variación en la riqueza, diversidad y abundancia. No así en las plantaciones de pino en donde la distancia horizontal hacia los bosques nativos fue la predictora que mayormente las explicó. La mayor diversidad de regeneración en los ecosistemas naturales (bosques) está asociada con la existencia de biotipos arbóreos, arbustivos y disponibilidad de semillas, adicionando a la eficiencia en los procesos de dispersión a nivel de micro-hábitat, aspectos que son limitantes en las plantaciones de pino, en los cuales la dispersión o disponibilidad de semillas depende de la cercanía a los ecosistemas naturales.


Abstract Andean forests and paramo have high species richness, but constantly they are threatened by deforestation. Natural arboreal regeneration of these ecosystems will condition their structure and functionality in the future, but now it has been poorly evaluated. In the Andes of Southern Ecuador, there are also abandoned Pinus patula (pine) forest plantations, which could be scenarios to promote natural regeneration. In an Andean altitudinal gradient, we evaluated floristically parameters of tree regeneration between two study scenarios: natural ecosystems (herbaceous paramos and natural forests) and pine plantations. For this, the diversity of regeneration was described by species richness, Shannon index and floristic composition. Abundance with the number of individuals; these parameters were compared between two scenarios. We determined also that environmental variables or predictors of: canopy cover, soil, tree structure, horizontal distance and physiographic explained the variation in the parameters of regeneration with greater magnitude. For this, a partition analysis of the variation was carried out. Richness and diversity of species were greater in natural ecosystems, whereas floristic composition was different and its abundance was similar. In natural ecosystems, basal area and tree density explained mainly the variation in wealth, diversity and abundance. Not so in pine plantations where horizontal distance to the native forests was the predictor that mostly explained. The greatest diversity of regeneration in natural ecosystems (forests) is associated with the existence of arboreal, shrub and seed biotypes. It is adding to this, efficiency in dispersion processes at the micro-habitat level. These aspects are limiting in plantations of pine, in which the dispersion or availability of seeds depends on the proximity to natural ecosystems.


Subject(s)
Regeneration , Forests , Tropical Ecosystem , Climate , Ecuador
19.
F1000Res ; 7: 1446, 2018.
Article in English | MEDLINE | ID: mdl-30542617

ABSTRACT

Data on the germination rates of four tree species, natively founded in the Chilean Mediterranean-climate zone, were determined by germination in crop chambers. The obtained data were used to interpolate or extrapolate the time taken for 50% of seeds to germinate in each case. These results are useful for regional native forest research and, in a broad sense, for its use in models to study germination dynamics in Mediterranean-climate zones.


Subject(s)
Caesalpinia , Prosopis , Chile , Forests , Germination , Quillaja , Seeds , Trees
20.
Ecology ; 99(12): 2876, 2018 Dec.
Article in English | MEDLINE | ID: mdl-30152130

ABSTRACT

A data set of common forest metrics was prepared using inventory data from Ecological Reserves in Maine, northeastern USA. An Ecological Reserve is generally defined as an area where timber harvesting does not occur and natural disturbance events are allowed to proceed without significant human influence. Beginning in the early 2000s, permanent, long term monitoring plots were established in Reserves across Maine. To date, 50 Reserves occupying approximately 70,820 ha with a total of 1,103 monitoring plots comprise Maine's Ecological Reserve System. A goal of the Ecological Reserve Monitoring program is to remeasure plots every 10 years and about half of the plots have been remeasured since the initial inventory. Stand metrics were calculated for both monitoring rounds and include: live tree basal area, live tree density, large (diameter at breast height, dbh ≥40 cm) and very large (dbh ≥51 cm) live tree density, standing dead tree density, large (dbh ≥40 cm) and very large (dbh ≥51 cm) standing dead tree density, total and large (diameter at transect intersect ≥40 cm) downed coarse woody debris volume, as well as various stand dynamic metrics. For comparison, the same metrics were computed for managed forests in Maine using permanent plot data from the US Department of Agriculture, Forest Service, Forest Inventory and Analysis (FIA) Program. Information on Ecological Reserve monitoring plots includes Ecological Reserve name, forest-type group, geographic location, elevation, slope, aspect, and harvest history. This data should prove invaluable for assessing and evaluating long-term changes in Ecological Reserves across the broad ecological/climate zones that are present in Maine. No copyright or proprietary restrictions are associated with the use of this data set other than citation of this Data Paper. These data are freely available for non-commercial scientific use.

SELECTION OF CITATIONS
SEARCH DETAIL
...