Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 341
Filter
1.
Foods ; 13(13)2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38998505

ABSTRACT

Numerous natural antioxidants commonly found in our daily diet have demonstrated significant benefits for human health and various diseases by counteracting the impact of reactive oxygen and nitrogen species. Their chemical properties enable a range of biological actions, including antihypertensive, antimicrobial, anti-inflammatory, anti-fibrotic, and anticancer effects. Despite promising outcomes from preclinical studies, ongoing debate persists regarding their reproducibility in human clinical models. This controversy largely stems from a lack of understanding of the pharmacokinetic properties of these compounds, coupled with the predominant focus on monotherapies in research, neglecting potential synergistic effects arising from combining different antioxidants. This study aims to provide an updated overview of natural antioxidants, operating under the hypothesis that a multitherapeutic approach surpasses monotherapy in efficacy. Additionally, this study underscores the importance of integrating these antioxidants into the daily diet, as they have the potential to prevent the onset and progression of various diseases. To reinforce this perspective, clinical findings pertaining to the treatment and prevention of non-alcoholic fatty liver disease and conditions associated with ischemia and reperfusion phenomena, including myocardial infarction, postoperative atrial fibrillation, and stroke, are presented as key references.

2.
Foods ; 13(13)2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38998616

ABSTRACT

When looking for new ingredients to process red meat, poultry, and fish products, it is essential to consider using vegetable resources that can replace traditional ingredients such as animal fat and synthetic antioxidants that may harm health. The Amazon, home to hundreds of edible fruit species, can be a viable alternative for new ingredients in processing muscle food products. These fruits have gained interest for their use as natural antioxidants, fat replacers, colorants, and extenders. Some of the fruits that have been tested include açai, guarana, annatto, cocoa bean shell, sacha inchi oil, and peach palm. Studies have shown that these fruits can be used as dehydrated products or as liquid or powder extracts in doses between 250 and 500 mg/kg as antioxidants. Fat replacers can be added directly as flour or used to prepare emulsion gels, reducing up to 50% of animal fat without any detrimental effects. However, oxidation problems of the gels suggest that further investigation is needed by incorporating adequate antioxidant levels. In low doses, Amazon fruit byproducts such as colorants and extenders have been shown to have positive technological and sensory effects on muscle food products. While evidence suggests that these fruits have beneficial health effects, their in vitro and in vivo nutritional effects should be evaluated in muscle food products containing these fruits. This evaluation needs to be intended to identify safe doses, delay the formation of key oxidation compounds that directly affect health, and investigate other factors related to health.

3.
Gels ; 10(6)2024 Jun 08.
Article in English | MEDLINE | ID: mdl-38920937

ABSTRACT

Acute and chronic wounds present a significant healthcare challenge, requiring innovative solutions for effective treatment. The exploitation of natural by-products with advanced cell regeneration potential and plant-based materials, which possess bioactive properties, is an innovative topic in wound management. This study investigates the potential of donkey gelatin and keratin for blending with natural bioactive extracts such as sumac, curcumin, and oak acorn to fabricate antioxidant and antimicrobial nanofibers with accelerated wound healing processes. The fabricated nanofibers possess good in vitro biocompatibility, except for the sumac-based donkey nanofibers, where cell viability significantly dropped to 56.25% (p < 0.05 compared to non-treated cells). The nanofiber dimensions showed structural similarities to human extracellular matrix components, providing an ideal microenvironment for tissue regeneration. The donkey nanofiber-based sumac and curcumin extracts presented a higher dissolution in the first 10 min (74% and 72%). Curcumin extract showed similar antimicrobial and antifungal performances to rivanol, while acorn and sumac extracts demonstrated similar values to each other. In vitro tests performed on murine fibroblast cells demonstrated high migration rates of 89% and 85% after 24 h in the case of acorn and curcumin nanofibers, respectively, underscoring the potential of these nanofibers as versatile platforms for advanced wound care applications.

4.
Antioxidants (Basel) ; 13(6)2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38929146

ABSTRACT

In this research, bio-based films were developed using polyelectrolyte complexes derived from chitosan and gelatin for packaging fish oil. To further enhance the antioxidant functionality, the films were enriched with gallic acid and orange essential oils, either individually or in combination. Initially, the films were characterized for their physico-chemical, optical, surface, and barrier properties. Subsequently, the phenolic compounds and antioxidant capacity of the films were assessed. Finally, the films were tested as antioxidant cover lids for packaging fish oil, which was then stored at ambient temperature for 30 days, with periodical monitoring of oil oxidation parameters. This study revealed that the inclusion of gallic acid-induced possible crosslinking effects, as evidenced by changes in moisture content, solubility, and liquid absorption. Additionally, shifts in the FTIR spectral bands suggested the binding of gallic acid and/or phenols in orange essential oils to CSGEL polymer chains, with noticeable alterations in film coloration. Notably, films containing gallic acid exhibited enhanced UV barrier properties crucial for preserving UV-degradable food compounds. Moreover, formulations with gallic acid demonstrated decreased water vapor permeability, while samples containing orange essential oils had lower CO2 permeability levels. Importantly, formulations containing both gallic acid and essential oils showed a synergistic effect and a significant antioxidant capacity, with remarkable DPPH inhibition rates of up to 88%. During the 30-day storage period, fish oil experienced progressive oxidation, as indicated by an increase in the K232 value in control samples. However, films incorporating gallic acid or orange essential oils as active antioxidants, even used as indirect food contact, effectively delayed the oxidation, highlighting their protective benefits. This study underscores the potential of sustainable bio-based films as natural antioxidant packaging for edible fish oil or fresh fish, offering a promising tool for enhancing food preservation while reducing its waste.

5.
J Agric Food Chem ; 72(21): 11854-11870, 2024 May 29.
Article in English | MEDLINE | ID: mdl-38743017

ABSTRACT

The critical role of oxidative stress in Alzheimer's disease (AD) has been recognized by researchers recently, and natural antioxidants have been demonstrated to have anti-AD activity in animal models, such as Ginkgo biloba extract, soy isoflavones, lycopene, and so on. This paper summarized these natural antioxidants and points out that natural antioxidants always have multiple advantages which are help to deal with AD, such as clearing free radicals, regulating signal transduction, protecting mitochondrial function, and synaptic plasticity. Based on the available data, we have created a relatively complete pathway map of reactive oxygen species (ROS) and AD-related targets and concluded that oxidative stress caused by ROS is the core of AD pathogenesis. In the prospect, we introduced the concept of a combined therapeutic strategy, termed "Antioxidant-Promoting Synaptic Remodeling," highlighting the integration of antioxidant interventions with synaptic remodeling approaches as a novel avenue for therapeutic exploration.


Subject(s)
Alzheimer Disease , Antioxidants , Ginkgo biloba , Oxidative Stress , Plant Extracts , Alzheimer Disease/drug therapy , Alzheimer Disease/metabolism , Antioxidants/pharmacology , Humans , Animals , Oxidative Stress/drug effects , Ginkgo biloba/chemistry , Plant Extracts/chemistry , Plant Extracts/pharmacology , Reactive Oxygen Species/metabolism
6.
Food Chem ; 453: 139690, 2024 Sep 30.
Article in English | MEDLINE | ID: mdl-38781903

ABSTRACT

Jabuticaba peel, rich in antioxidants, offering health benefits. In this study, the extraction of phenolic compounds from jabuticaba peel using ultrasound-assisted (UA) and their subsequent concentration by nanofiltration (NF) employing a polyamide 200 Da membrane was evaluated. The UA extractions were conducted using the Central Composite Rotatable Design (CCRD) 22 methodology, with independent variables extraction time (11.55 to 138 min) and temperature (16.87 to 53.3 °C), and fixed variables mass to ethanol solution concentration at pH 1.0 (1:25 g/mL), granulometry (1 mm), and ultrasonic power (52.8 W). The maximum concentrations obtained were 700.94 mg CE/100 g for anthocyanins, 945.21 mg QE/100 g for flavonoids, 133.19 mg GAE/g for phenols, and an antioxidant activity IC50 of 24.36 µg/mL. Key phenolic compounds identified included cyanidin-3-glucoside, delphinidin-3-glucoside, and various acids like syringic and gallic. NF successfully concentrated these compounds, enhancing their yield by up to 45%. UA and NF integrate for sustainable extraction.


Subject(s)
Antioxidants , Fruit , Phenols , Plant Extracts , Phenols/chemistry , Phenols/isolation & purification , Plant Extracts/chemistry , Plant Extracts/isolation & purification , Fruit/chemistry , Antioxidants/chemistry , Antioxidants/isolation & purification , Filtration , Myrtaceae/chemistry , Anthocyanins/chemistry , Anthocyanins/isolation & purification , Chemical Fractionation/methods
7.
J Therm Biol ; 121: 103861, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38714146

ABSTRACT

The study investigated the impact of Mistletoe Leaf Powder (MLP) supplementation on some parameters in heat-stressed broiler chickens. The standard baseline diets, comprising four different formulations, were provided during the starter and finisher stages. Chickens were randomly assigned to the 4 dietary groups: a negative control (CON) with no supplementation, a positive control (VTC) with 200 mg/kg vitamin C, and 2 experimental treatment groups with 2500 mg/kg (MLP2) and 5000 mg/kg (MLP5) MLP supplementation. The Body Weight Gain (BWG) in MLP2 and MLP5 treatment groups was comparable (P > 0.05) to those in VTC, while the CON group exhibited significantly (P < 0.05) lower BWG. Feed consumption was significantly (P < 0.05) lower broiler chickens in the CON group compared to those VTC, MLP2, and MLP5. Heat shock protein 70 (HSP70) levels were lower in broiler chickens belonging to VTC, MLP2, and MLP5 groups compared to those in CON, and MLP2 showed no difference (P > 0.05) from MLP5 and VTC. Serum glutathione peroxidase and catalase concentrations were higher (P < 0.05) in birds belonging to MLP5, MLP2, and VTC groups compared to CON. The 8-hydroxy-2'-deoxyguanosine concentration was lower (P < 0.05) in birds of VTC, MLP2, and MLP5 compared to the CON, with VTC showing the least concentration. Serum insulin levels were higher (P < 0.05) in MLP5 compared to those in CON, while serum triiodothyronine and leptin concentrations were lower (P < 0.05) in CON compared to birds in VTC, MLP2, and MLP5. Microbiota analysis revealed that the Coliform bacteria population was higher (P < 0.05) in birds belonging to CON compared to those in VTC, MLP2, and MLP5 groups, whereas lactic acid-producing bacteria were significantly (P < 0.05) lower in birds of CON and highest in MLP2 and MLP5 groups. In conclusion, dietary supplementation of MLP at 5000 mg/kg enhanced performance, oxidative status, influenced metabolic hormones, and gut microbiota in broiler chickens raised under high ambient temperature.


Subject(s)
Animal Feed , Chickens , DNA Damage , Dietary Supplements , Gastrointestinal Microbiome , HSP70 Heat-Shock Proteins , Plant Leaves , Animals , Male , Animal Feed/analysis , Antioxidants/metabolism , Biomarkers/blood , Chickens/metabolism , Chickens/microbiology , Gastrointestinal Microbiome/drug effects , Heat-Shock Response/drug effects , Hot Temperature , HSP70 Heat-Shock Proteins/genetics , HSP70 Heat-Shock Proteins/metabolism , Oxidative Stress/drug effects , Female
8.
Foods ; 13(9)2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38731685

ABSTRACT

Walnuts play a positive role in human health due to their large amounts of unsaturated fatty acids, whereas lipid oxidation can easily occur during storage. Herein, three natural antioxidants (epicatechin, sesamol, and myricetin) were added to the composite film cross-linked with chitosan and soy protein peptide, and the antioxidant film appropriate for the preservation of walnut kernels from Juglans sigillata was screened to improve the storage quality of walnuts. The results showed that three antioxidant films could all enhance the storage performance of walnut kernels, with sesamol being the best. The characterization of antioxidant film cross-linked with chitosan and soy protein peptide containing sesamol (C/S-ses film) revealed that the composite film improved the slow release and stability of sesamol; in addition, the presence of sesamol could effectively reduce the light transmittance and water vapor permeability of the composite film, together with significantly enhancing the antioxidant and antimicrobial activities, resulting in an effective prolongation of the storage period of walnut kernels. These findings indicated that C/S-ses possess excellent potential for retarding the oxidative rancidity of unsaturated fatty acids and will provide an effective strategy for the preservation of walnut kernels.

9.
Redox Rep ; 29(1): 2333619, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38577911

ABSTRACT

KEY POLICY HIGHLIGHTSNanobubbles and nanoparticles may enhance the polyphenols' bioavailabilityNanobubbles may stimulate the activation of Nrf2 and detox enzymesArmoured oxygen nanobubbles may enhance radiotherapy or chemotherapy effects.


Subject(s)
Antioxidants , Nanoparticles , Antioxidants/therapeutic use , Biological Availability , Polyphenols , Oxygen
10.
Food Chem ; 451: 139435, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-38678660

ABSTRACT

This study aimed to assess the antioxidant activity of golden chlorella (GoC) and grape pomace (GrP) extracts both in vitro and in pea protein-based extrudates. We hypothesized that GoC/GrP would limit oxidation of proteins in the extrudates compared with commercial antioxidants. The results showed that GoC extract was effective in metal chelation and GrP extract possessed excellent radical scavenging activity and reducing power. Protein oxidation inevitably occurred after low-moisture extrusion in terms of elevated level of protein carbonyls and the gradual loss of thiols. LC-MS/MS revealed that the monoxidation and 4-hydroxynonenal adduction were the major oxidative modifications, and legumin was the most susceptible globulin for oxidation. The GoC/GrP extracts effectively retarded the oxidation progress in extrudates by lower intensity of oxidized peptides, whereas protein electrophoretic profiles remained unaffected. This study highlighted the great potential of GoC/GrP as natural antioxidants in plant-based foods.


Subject(s)
Antioxidants , Oxidation-Reduction , Pisum sativum , Plant Extracts , Proteomics , Antioxidants/chemistry , Plant Extracts/chemistry , Plant Extracts/pharmacology , Pisum sativum/chemistry , Vitis/chemistry , Pea Proteins/chemistry , Chlorella/chemistry , Chlorella/metabolism , Tandem Mass Spectrometry , Plant Proteins/chemistry , Plant Proteins/metabolism
11.
Article in English | MEDLINE | ID: mdl-38579397

ABSTRACT

The perception of polyphenols as a safe, healthy, and sustainable solution for replacing synthetic antioxidants has been an important factor for their rapid growing in the global food market. Therefore, it is essential to use reliable methods for their quantification in commercial products intended for animal or human consumption. The purpose of this study is to evaluate the performance of some solvents used for the extraction of selected polyphenols, explore their stability under different experimental conditions, and validate a liquid chromatography tandem mass-spectrometry method for their quantification in commercial fish feed ingredients by using the standard addition method. The regression models for gallic acid, hydroxytyrosol, catechin, oleuropein, carnosol and carnosic acid were linear in the range 0-30 µg/mL, limit of detection and quantification around 0.03 and 0.1 µg/mL, respectively, and accuracy within ± 15 % of the nominal concentrations. The method was successfully applied to the determination of specific polyphenols in commercial fish feed ingredients supplemented with polyphenols from olive and rosemary extracts.


Subject(s)
Animal Feed , Limit of Detection , Polyphenols , Tandem Mass Spectrometry , Tandem Mass Spectrometry/methods , Polyphenols/analysis , Animal Feed/analysis , Reproducibility of Results , Animals , Chromatography, Liquid/methods , Linear Models , Fishes , Olea/chemistry , Rosmarinus/chemistry
12.
Heliyon ; 10(7): e28783, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38586321

ABSTRACT

Synthetic antioxidants have long been used to protect edible oils from oxidation. However, concerns about their potential health risks and environmental impact have led to a growing interest in natural antioxidants. In this study, we explore the antioxidant properties of extracts from four Nekemias plant species: Nekemias grossedentata (AGR), Nekemias megalophylla (AME), Nekemias chaffanjonii (ACH), and Nekemias cantoniensis (ACA) by obtaining the values for different tests. We investigate their bioactive compound content and evaluate their antioxidant capabilities on six edible oils categorized into three lipid systems based on their fatty acid compositions: oleic acid, linoleic acid, and linolenic acid. Our findings demonstrate that AGR and AME extracts, rich in bioactive compounds, exhibit strong antioxidant activities in vitro, effectively inhibiting lipid oxidation, especially in oleic acid-rich oils like camellia oil. The antioxidant effects of these extracts are comparable to synthetic antioxidants such as TBHQ and superior to natural antioxidant Tea Polyphenols (TP). While the extracts also show antioxidant potential in linoleic and linolenic acid systems, the stability of their effects in these oils is lower than in oleic acid system. These results suggest that Nekemias species extracts have the potential to serve as natural additives for extending the shelf life of edible oils, contributing to the exploration of natural antioxidants.

13.
Food Chem ; 449: 139201, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38599104

ABSTRACT

This study aimed to determine the effect of the administration dose, combinations with co-antioxidants (vitamin C, caffeic acid, chlorogenic acid, catechin, rutin), and different food matrices (cooked and lyophilized hen eggs, chicken breast, soybean seeds, potatoes) on the potential bioaccessibility of rosmarinic acid (RA) in simulated digestion conditions, depending on the digestion stage (gastric and intestinal) and the contribution of physicochemical and biochemical digestion factors. The in vitro bioaccessibility of RA depended on the digestion stage and conditions. The physicochemical factors were mainly responsible for the bioaccessibility of RA applied alone. The higher RA doses improved its bioaccessibility, especially at the intestinal stage of digestion. Furthermore, the addition of vitamin C and protein-rich food matrices resulted in enhanced intestinal bioaccessibility of RA. In the future, the knowledge of factors influencing the bioaccessibility of RA can help enhance its favorable biological effects and therapeutic potential.


Subject(s)
Antioxidants , Biological Availability , Cinnamates , Depsides , Digestion , Models, Biological , Rosmarinic Acid , Depsides/metabolism , Depsides/chemistry , Cinnamates/metabolism , Cinnamates/chemistry , Cinnamates/analysis , Animals , Antioxidants/metabolism , Antioxidants/chemistry , Chickens/metabolism , Humans , Solanum tuberosum/chemistry , Solanum tuberosum/metabolism , Eggs/analysis , Glycine max/chemistry , Glycine max/metabolism
14.
Heliyon ; 10(7): e28456, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38560209

ABSTRACT

High volume of postharvest materials including peels from citrus fruits is periodically generated, which contributes to environmental pollution. Investigating the chemical composition cum antioxidant property of these 'wastes' would be instructive in achieving value addition in the food and pharmaceutical value chain. On this premise, this study carried out phytochemical screening and antioxidant activity of three (3) commonly cultivated citrus varieties namely Citrus sinensis 'valencia', Citrus sinensis 'washinton' and Citrus sinensis 'thompson navel'. The peels were extracted using ethanol and hexane in a Soxhlet extractor and thereafter subjected to phytochemical and Gas Chromatography/Mass Spectrometry (GC/MS) analyses, ferric ion reducing antioxidant power (FRAP), hydrogen peroxide scavenging and cupric ion reducing antioxidant capacity (CUPRAC) assays to evaluate their antioxidant potentials. Results show that Citrus sinensis peel extracts contain alkaloids, flavonoids, phenols, phytosterols, diterpenes, tannins and glycosides. GC/MS analysis identified about 48 compounds in each extract; with the predominant bioactive compounds being limonene (16.5%), ascorbic acid (17.7%), stearic acid (26.3%), linalool (4.7%), linoleic acid (16.18%), palmitic acid (15.23%), pentadecyclic acid (1.1%). Ethanol and hexane extracts of Valencia exhibited higher FRAP (9.09 ± 0.13) and CUPRAC (2.04 ± 0.06) values while the ethanol extract of Ibadan sweet demonstrated greater hydrogen peroxide scavenging activity (1.39 ± 0.00). Citrus peels are rich in bioactive compounds with excellent antioxidant activity and may serve as potential sources of natural antioxidants for food products or pharmaceutical formulations.

15.
BMC Plant Biol ; 24(1): 345, 2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38684952

ABSTRACT

BACKGROUND: During the pandemic, the interest in colorful wild small fruits increased due to their positive effects on health. Also it has become very important to offer species with high nutritional value as fresh or processed products for human consumption due to increasing world population and decreasing arable land. In this context, we characterized the horticultural characteristics of 11 rosehip genotypes grown from seeds. RESULTS: Citric acid was determined as the main organic acid in all the genotypes investigated. The mean values of the organic acids obtained from all the genotypes were found to be as follows: citric acid (7177 mg L-1), malic acid (3669 mg L-1), tartaric acid (1834 mg L-1), oxalic acid (1258 mg L-1), carboxylic acid (631.9 mg L-1), shikimic acid (157.8 mg L-1), ascorbic acid (155 mg L-1), and acetic acid (20.9 mg L-1). Ellagic acid was the dominant phenolic compound (90.1 mg L-1 - 96.2 mg L-1) in all genotypes. The average values obtained from all genotypes for total phenolics, total flavonoids, and antioxidant activity were 37 261 mg GAE L-1, 526.2 mg quercetin L-1, and 93.6%, respectively. These characteristics had the lowest coefficients of variation, which indicated that all genotypes were similar regarding high biochemical with antioxidant effect. In addition, fruit width, fruit length, and fruit weight varied between 13.0 and 17.3 mm, 20.7 and 25.5 mm, and 1.4 and 2.7 g, respectively. CONCLUSIONS: The genotypes were categorized according to different purposes, such as suitability for wine production, making vinegar, etc. While the pomological characteristics were strongly positively correlated among themselves, they were generally found to be negatively correlated with the phytochemical characteristics. Categorizing genotypes according to different usage purposes can improve the agricultural and industrial application of rosehip and enhance their breeding efficacy.


Subject(s)
Genotype , Rosa , Rosa/genetics , Antioxidants/metabolism , Fruit/genetics , Fruit/growth & development , Phenols , Horticulture , Flavonoids
16.
Antioxidants (Basel) ; 13(3)2024 Feb 22.
Article in English | MEDLINE | ID: mdl-38539804

ABSTRACT

The broiler industry supplies high-quality animal protein to the world. The ban of antibiotics as growth promoters has opened the way for plenty of phytochemicals and antioxidants to be explored. This study summarizes the use of natural antioxidants in a broiler diet as a way through which to deal with stressors, as well as their effects on the expression of various genes. The transcriptional factors and genes involved in the regulation of redox homeostasis are described and emphasis is placed on nuclear factor erythroid 2-related factor 2 and nuclear factor kappa B. Sources such as fruits, vegetables, spices, mushrooms, and algae contain numerous natural antioxidant compounds. The antioxidant activity of these compounds has also been confirmed at the genome level. This study focuses on the regulation of oxidative stress-related genes, as well as on genes that regulate the inflammatory response, apoptosis, response to heat stress, lipid metabolism, and the intestinal barrier status. The natural compounds presented include, but are not limited to, the following: rutin, lycopene, magnolol, genistein, hesperidin, naringin, quercetin, curcumin, bisdemethoxycurcumin, resveratrol, astaxanthin, squalene, pterostilbene, protocatechuic acid, taraxasterol, myricetin, and proanthocyanidins. Several studies have revealed a dose-dependent action. Future studies should focus on the role of phytogenic compounds as antibiotic alternatives in relation to gut microbiota and their role in eubiosis.

17.
Article in English | MEDLINE | ID: mdl-38519750

ABSTRACT

Research on natural products is growing due to their potential health benefits and medicinal properties. Despite regional variations in phytochemical composition and bioactivity, Smilax glabra Roxb (SGB) has attracted the interest of researchers. Scientists are particularly interested in the Vietnamese SGB variant, which is influenced by biological and environmental factors. Despite geographical differences in phytochemical makeup and bioactivities, SGB remains a fascinating subject in traditional herbal medicine. Using ultra-performance liquid chromatography and quadrupole time-of-flight mass spectrometry (UPLC-QTOF-MS/MS), the phytochemicals in Vietnamese SGB extracts were investigated. This study revealed a wide range of phytochemical compounds, including flavonoids, terpenoids, glycosides, alkaloids, organic acids, phenolics, and steroids. Furthermore, utilizing zebrafish as a model organism, we discovered that these extracts have the surprising ability to greatly improve the survival rate of zebrafish larvae exposed to oxidative stress caused by arsenite (NaAsO2) and hydrogen peroxide (H2O2). Notably, our discoveries suggest the occurrence of new antioxidative pathways in addition to the kelch-like ECH-associated protein 1 (Keap1)/nuclear factor erythroid 2-related factor 2 (Nrf2) pathway, expanding the understanding of the antioxidant properties and potential therapeutic uses of these plants. To summarize, our research findings shed light on the phytochemical composition of Vietnamese SGB, revealing its potential as a natural antioxidant and encouraging further exploration of its underlying mechanisms for future innovative antioxidant therapies.

18.
Heliyon ; 10(6): e27619, 2024 Mar 30.
Article in English | MEDLINE | ID: mdl-38500973

ABSTRACT

The study investigates the effect of ethanol and Moringa antioxidant on the performance and emission characteristics of a Soybean biodiesel blend (B15, B20, and B25) using a direct injection, four-stroke, naturally aspirated, water-cooled single-cylinder diesel engine equipped with SCADA software. The effect of reaction parameters on FAEE yield such as, time, catalyst concentration, molar ratio of alcohol to oil, and blending quality, was optimized using the one factor at a time experimental technique. The maximum yield of 97.8% biodiesel was produced at the ideal catalyst concentration, blending quality, alcohol to oil molar ratio, and time of 1 h, are 1%, 12:1, and 500 rpm, respectively. The Rancimat method was used to assess the oxidative stability of pure biodiesel after the natural antioxidant (extracted from Moringa leaf) was added at concentrations of 1500, 2500, 3500, and 4500 ppm. The addition of antioxidants to biodiesel significantly increased its induction time from 4.52 to 19.98 h. Brake-thermal efficiency increased by 4.4% whereas brake-specific fuel consumptions decreased by 4.6% for B15E2M (15% SB+2E + M) when compared to B15. Emission characteristics of B25E2M showed higher reduction of CO, HC and NOx by 20.27%, 8% and 7% as compared to the B25 respectively. The physicochemical qualities, performance, and emission characteristics of B15 blends with additive are generally comparable to those of diesel fuel. In conclusion, both additives significantly improved the combustion performance of soybean biodiesel blend.

19.
Int J Biol Macromol ; 264(Pt 1): 130464, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38423417

ABSTRACT

In current study, curcumin-loaded bioactive nanocomplexes (Cur NCs) (2 %, 5 %, 8 %, and 11 %) were used to prepare corn starch (CS)-based composite films (CS-Cur NCs). Fourier-transform infrared spectroscopy, X-ray diffraction and scanning electron microscopy revealed that Cur NCs were uniformly dispersed in the polymer matrix via physical interaction. Moreover, the mechanical, gas barrier, hydrophobicity, optical, and thermal properties and the antioxidant activity of composite films were potentially improved with the addition of Cur NCs. Subsequently, CS-based film with 11 % Cur NCs exhibited high antioxidant activity (the scavenging rates of DPPH and ABTS are 50.07 % ± 0.82 % and 65.26 % ± 1.60 %, respectively) and was used for packaging blueberries. Compared with the control, the CS-Cur NCs packaging treatment effectively improved the appearance and nutrition of blueberries, and maintained the high activity of several antioxidant enzymes. Furthermore, CS-Cur NCs packaging treatment significantly improved the ascorbic acid (AsA) and glutathione (GSH) levels, thus regulating the AsA-GSH cycle system and suppressing the accumulation of reactive oxygen species (ROS). In summary, the CS-Cur NCs packaging could effectively conserve the postharvest quality of blueberries by improving antioxidant enzyme activity and suppressing excessive accumulation of ROS, which contributes to the development of bioactive packaging and provides novel insights into the preservation of blueberries. This work demonstrates that the development of active packaging is promising to absorb the oxidative radicals from food, and protect the food from inherent and external factors, thus enhancing the quality, security, and shelf-life of the food during storage.


Subject(s)
Blueberry Plants , Curcumin , Antioxidants/pharmacology , Antioxidants/chemistry , Curcumin/pharmacology , Curcumin/chemistry , Food Packaging/methods , Reactive Oxygen Species , Ascorbic Acid , Glutathione
20.
Heliyon ; 10(2): e24576, 2024 Jan 30.
Article in English | MEDLINE | ID: mdl-38312565

ABSTRACT

The pathology of many diseases arises from oxidative stress and cell destruction. Antioxidant application is one of the most important ways for oxidative stress prevention in the cells and its consequent effects. The present study investigated the natural antioxidants inhibitory effects of thymol and carvacrol on human hemoglobin treated with tartrazine. Purified hemoglobin from human blood samples was treated with tartrazine alone or in combination with mentioned natural antioxidants (thymol and carvacrol). Treated samples were picked up at regular time intervals and changes were followed by UV-visible and fluorescence spectroscopic assays, and circular dichroism spectroscopy (CD). The result of fluorescence spectroscopy revealed that thymol and carvacrol prevented the production of heme-degradation products and advanced glycation end products (AGEs) caused by hemoglobin oxidation with tartrazine. The results of UV-visible and fluorescence spectroscopy revealed the positive effect of these antioxidants on preserving Hb folding, heme, and especially the porphyrin ring surrounding the microenvironment. The results of the circular dichroism (CD) assay showed the protection of alpha helix structure in hemoglobin treated with thymol and carvacrol compared to the control sample. The mentioned antioxidants caused hemoglobin resistance against tartrazine's destructive effect by preventing both heme degradation and glycemic toxins formation and thus reducing the rate of oxidative processes. This matter can be important for various pharmaceutical, health, and cosmetic industries.

SELECTION OF CITATIONS
SEARCH DETAIL
...