Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 253
Filter
1.
Heliyon ; 10(11): e32567, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38961963

ABSTRACT

Effective management of fertilizers is essential in influencing the prevalence of insects in rice (Oryza sativa L.) fields. Over two years (2019-20 and 2020-21), an experiment conducted at Bangladesh Rice Research Institute (BRRI), Habiganj, during the boro season aimed to identify the most effective multidimensional treatment (EMT) by testing various combinations of chemical fertilizers and its effect on rice insects. The goal was to optimize rice grain yield while minimizing harmful insect infestation and supporting natural enemies. Eight different chemical fertilizer applications were used as follows: T1 contained a full mix of nitrogen (N), phosphorus (P), potassium (K), and sulfur (S); T2 had PKS but lacked N; T3 had NKS but lacked P; T4 had NPS but lacked K; T5 had NPK but lacked S; T6 had KS but lacked N and P; T7 had PS but lacked N and K; and T8 lacked all four elements - N, P, K, and S. The relationship between the dynamics of harmful insects and natural enemies was highly positively correlated (r = 0.72 to 0.97). In two consecutive growing years, the 2020-21 season exhibited notably higher counts of harmful insects, with Rice Leafroller (RLR) dominating in the booting stage and White Backed Planthopper (WBPH) in mid-tillering, while Green Mirid Bug (GMB) prevailed among natural enemies across both stages, surpassing insect pest counts, notably GMB, Lady bird beetle (LBB), Carabid beetle (CDB), and Staphylinid (STD). However, the yield was notably higher in the 2019-20 growing season despite these pest pressures. Throughout the mid-tillering and booting stages, T1 consistently exhibited the highest average populations of harmful insects and natural enemies, while T7 demonstrated the lowest count of harmful insects, followed by T2 at both growth stages. Additionally, the highest grain yield (GY) was consistently recorded in T1, followed by T5, T6, and T3, with yields of 7.98 t/ha, 7.63 t/ha, 7.38 t/ha, and 7.33 t/ha, respectively. In both stages, beneficial insects prevailed over harmful ones in all fertilizer applications, with significant declines noted in T2 and T7. Factor analysis showed successful selection for EMT in the MGIDI index for all variables except INT and GY during the 2019-20 season, with selection differentials (SD) ranging from -0.10 to 8.29. However, in 2020-21, selection was achieved for all variables with SD ranging from 0.37 to 6.08. According to the MGIDI index, the top-ranked EMTs were identified as T4 and T3 for the 2019-20 period, and T3 and T5 for the 2020-21 period. The EMT shared in both years, T3, proved effective because of its positive impact on enhancing natural enemies throughout both periods (with SD ranging from 4.76 to 8.29 for 2019-20 and 3.03 to 6.08 for 2020-21), and its notable contribution to rice grain yield (SD = 0.37) in 2020-21. This study uniquely integrates EMT to optimize rice grain yield while simultaneously managing harmful insect infestations and supporting natural enemies, addressing a critical need in sustainable rice cultivation. The suggestion is to give preference to fertilizer application T3, which omits P but contains N and K, to improve rice grain yield and boost natural enemies, thereby reducing harmful insect infestation. Moreover, future investigations should concentrate on refining fertilizer blends to strike a harmony between maximizing yield and fostering ecological robustness in rice cultivation.

2.
Curr Res Insect Sci ; 5: 100087, 2024.
Article in English | MEDLINE | ID: mdl-38988880

ABSTRACT

Herbivory is a major fitness pressure for plants and a key driver of crop losses in agroecosystems. Dense monocultures are expected to favor specialist herbivorous insects, particularly those who primarily consume crop species; yet, levels and types of herbivory are not uniform within regional cropping systems. It is essential to determine which local and regional ecological factors drive variation in herbivory in order to support functional agroecosystems that rely less on chemical inputs. Crops in the genus Cucurbita host a suite of both generalist and specialist herbivores that inflict significant damage, yet little is known about the relative contribution of these herbivores to variation in herbivory and how local- and landscape-scale Cucurbita resource concentrations, management practices, and natural enemies mediate this relationship. In this study, we tested whether three foundational ecological hypotheses influenced Cucurbita herbivory across 20 pumpkin fields in the semi-arid Southern High Plains Region of Texas. We used generalized linear mixed models and confirmatory path analysis to assess whether the Density-dependent Herbivory Hypothesis, Resource Concentration Hypothesis, or the Natural Enemies Hypothesis, could explain variation in Cucurbita herbivory and insect dynamics in the context of conventional agronomic practices. We found that herbivory increased over time, indicating that herbivores were causing sustained damage throughout the growing season. We also found that fields with higher local Cucurbita resources had lower herbivory, suggesting a resource dilution effect. Natural enemy communities were more abundant and taxonomically rich in sites with greater generalist herbivore abundance, though predator abundance declined over time, indicating that late-season crop fields are most at risk given high herbivory and low natural enemy-based control. Our findings also suggest that while local resource availability may drive the abundance and richness of arthropod communities, additional agronomic and phenological information is needed to anticipate herbivory risk in an agriculturally dominated landscape.

3.
IMA Fungus ; 15(1): 18, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38961514

ABSTRACT

Sphaerellopsis species are putative hyperparasites of rust fungi and may be promising biological control agents (BCA) of rust diseases. However, few detailed studies limit potential BCA development in Sphaerellopsis. Here, we explored the biogeography, host-specificity, and species diversity of Sphaerellopsis and examined the early infection stage of one species, S. macroconidialis, to infer its trophic status. We randomly screened 5,621 rust specimens spanning 99 genera at the Arthur Fungarium for the presence of Sphaerellopsis. We identified 199 rust specimens infected with Sphaerellopsis species on which we conducted morphological and multi-locus phylogenetic analyses. Five Sphaerellopsis species were recovered, infecting a total of 122 rust species in 18 genera from 34 countries. Sphaerellopsis melampsorinearum sp. nov. is described as a new species based on molecular phylogenetic data and morphological features of the sexual and asexual morphs. Sphaerellopsis paraphysata was the most commonly encountered species, found on 77 rust specimens, followed by Sphaerellopsis macroconidialis on 56 and S. melampsorinearum on 55 examined specimens. The type species, Sphaerellopsis filum, was found on 12 rust specimens and Sphaerellopsis hakeae on a single specimen. We also recovered and documented for the first time, the sexual morph of S. macroconidialis, from a specimen collected in Brazil. Our data indicate that Sphaerellopsis species are not host specific and furthermore that most species are cosmopolitan in distribution. However, S. paraphysata is more abundant in the tropics, and S. hakeae may be restricted to Australia. Finally, we confirm the mycoparasitic strategy of S. macroconidialis through in-vitro interaction tests with the urediniospores of Puccinia polysora. Shortly after germination, hyphae of S. macroconidialis began growing along the germ tubes of P. polysora and coiling around them. After 12 days of co-cultivation, turgor loss was evident in the germ tubes of P. polysora, and appressorium-like structures had formed on urediniospores. The interaction studies indicate that Sphaerellopsis species may be more effective as a BCA during the initial stages of rust establishment.

4.
Arch Insect Biochem Physiol ; 116(3): e22125, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38973236

ABSTRACT

Insect pest control can be achieved by the application of RNA interference (RNAi), a key molecular tool in functional genomics. Whereas most RNAi research has focused on insect pests, few studies have been performed on natural enemies. Validating the efficacy of RNAi in natural enemies is crucial for assessing its safety and enabling molecular research on these organisms. Here, we assessed the efficacy of RNAi in the ladybird beetle Eriopis connexa Germar (Coleoptera: Coccinellidae), focusing on genes related to reproduction, such as vitellogenin (Vg) and its receptor (VgR). In the transcriptome of E. connexa, we found one VgR (EcVgR) and two Vg genes (EcVg1 and EcVg2). These genes have been validated by in silico analyses of functional domains and evolutionary relationships. Five-day-old females were injected with 500 ng/µL of a specific double-stranded RNA (dsRNA) (dsEcVg1, dsEcVg2, or dsEcVgR) for RNAi tests, while nonspecific dsRNA (dsGFP or dsAgCE8.1) was used as a control. Interestingly, dsEcVg2 was able to knockdown both Vg genes, while dsEcVg1 could silence only EcVg1. Additionally, the viability of the eggs was significantly reduced when both Vg genes were knocked down at the same time (after treatment with dsEcVg2 or "dsEcVg1+dsEcVg2"). Ultimately, malformed, nonviable eggs were produced when EcVgR was silenced. Interestingly, no dsRNA treatment had an impact on the quantity of eggs laid. Therefore, the feasibility of RNAi in E. connexa has been confirmed, suggesting that this coccinellid is an excellent Neotropical model for molecular research on natural enemies and for studying RNAi nontarget effects.


Subject(s)
Coleoptera , Gene Knockdown Techniques , RNA Interference , Animals , Coleoptera/genetics , Female , Vitellogenins/genetics , Vitellogenins/metabolism , Insect Proteins/genetics , Insect Proteins/metabolism , Reproduction/genetics , RNA, Double-Stranded/genetics , Receptors, Cell Surface/genetics , Receptors, Cell Surface/metabolism , Egg Proteins/genetics , Egg Proteins/metabolism , Pest Control, Biological
5.
Ecol Evol ; 14(5): e11350, 2024 May.
Article in English | MEDLINE | ID: mdl-38737568

ABSTRACT

Invasive grasses cause devastating losses to biodiversity and ecosystem function directly and indirectly by altering ecosystem processes. Escape from natural enemies, plant-plant competition, and variable resource availability provide frameworks for understanding invasion. However, we lack a clear understanding of how natural stressors interact in their native range to regulate invasiveness. In this study, we reduced diverse guilds of natural enemies and plant competitors of the highly invasive buffelgrass across a precipitation gradient throughout major climatic shifts in Laikipia, Kenya. To do this, we used a long-term ungulate exclosure experiment design across a precipitation gradient with nested treatments that (1) reduced plant competition through clipping, (2) reduced insects through systemic insecticide, and (3) reduced fungal associates through fungicide application. Additionally, we measured the interaction of ungulates on two stem-boring insect species feeding on buffelgrass. Finally, we measured a multiyear smut fungus outbreak. Our findings suggest that buffelgrass exhibits invasive qualities when released from a diverse group of natural stressors in its native range. We show natural enemies interact with precipitation to alter buffelgrass productivity patterns. In addition, interspecific plant competition decreased the basal area of buffelgrass, suggesting that biotic resistance mediates buffelgrass dominance in the home range. Surprisingly, systemic insecticides and fungicides did not impact buffelgrass production or reproduction, perhaps because other guilds filled the niche space in these highly diverse systems. For example, in the absence of ungulates, we showed an increase in host-specific stem-galling insects, where these insects compensated for reduced ungulate use. Finally, we documented a smut outbreak in 2020 and 2021, corresponding to highly variable precipitation patterns caused by a shifting Indian Ocean Dipole. In conclusion, we observed how reducing natural enemies and competitors and certain interactions increased properties related to buffelgrass invasiveness.

6.
Transgenic Res ; 33(3): 75-88, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38578501

ABSTRACT

Genetically engineered (GE) cotton event MON 88702, producing Mpp51Aa2 (previously mCry51Aa2) from Bacillus thuringiensis (Bt), controls sucking pests, such as Lygus spp. (Hemiptera: Miridae) and thrips (Thysanoptera). Ingesting high doses of the insecticidal protein resulted in adverse effects on life table parameters of beneficial, predatory Orius spp. (Hemiptera: Anthocoridae). This triggered laboratory studies with more realistic food treatments, including different combinations of prey types with and without Bt protein to further characterize risks to this important group of non-target organisms. In this work, exclusive feeding of frozen spider mites (Tetranychus urticae, Acari: Tetranychidae) from Bt cotton confirmed adverse effects on longevity and fecundity of O. majusculus adults. Alternate feeding of Bt protein-containing spider mites and Bt-free Ephestia kuehniella (Lepidoptera: Pyralidae) eggs mitigated effects on longevity, but not on fecundity. When living larvae of Spodoptera littoralis (Lepidoptera: Noctuidae) from Bt cotton were fed to the predators, however, no effects on longevity and reproduction of female O. majusculus were observed, despite the fact that Bt protein concentrations in larvae were almost as high as concentrations in spider mites. When a diverse mix of prey species with various Bt protein concentrations is consumed in the field, it is unlikely that exposure of Orius spp. to Mpp51Aa2 is high enough to exert adverse effects on predator populations. MON 88702 cotton may thus be a valuable tool for integrated management of sucking pests.


Subject(s)
Bacillus thuringiensis , Gossypium , Longevity , Pest Control, Biological , Plants, Genetically Modified , Reproduction , Animals , Gossypium/genetics , Gossypium/parasitology , Gossypium/growth & development , Gossypium/metabolism , Plants, Genetically Modified/genetics , Plants, Genetically Modified/growth & development , Plants, Genetically Modified/parasitology , Bacillus thuringiensis/genetics , Reproduction/genetics , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Predatory Behavior , Fertility/genetics , Spodoptera/growth & development , Spodoptera/physiology , Spodoptera/genetics , Larva/growth & development , Larva/genetics , Bacillus thuringiensis Toxins/genetics , Endotoxins/genetics , Endotoxins/metabolism , Heteroptera/genetics , Heteroptera/physiology , Heteroptera/growth & development , Hemolysin Proteins/genetics , Hemolysin Proteins/metabolism , Tetranychidae/genetics , Female
7.
Sci Total Environ ; 930: 172521, 2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38641095

ABSTRACT

Agricultural practitioners, researchers and policymakers are increasingly advocating for integrated pest management (IPM) to reduce pesticide use while preserving crop productivity and profitability. Using selective pesticides, putatively designed to act on pests while minimising impacts on off-target organisms, is one such option - yet evidence of whether these chemicals control pests without adversely affecting natural enemies and other beneficial species (henceforth beneficials) remains scarce. At present, the selection of pesticides compatible with IPM often considers a single (or a limited number of) widely distributed beneficial species, without considering undesired effects on co-occurring beneficials. In this study, we conducted standardised laboratory bioassays to assess the acute toxicity effects of 20 chemicals on 15 beneficial species at multiple exposure timepoints, with the specific aims to: (1) identify common and diverging patterns in acute toxicity responses of tested beneficials; (2) determine if the effect of pesticides on beetles, wasps and mites is consistent across species within these groups; and (3) assess the impact of mortality assessment timepoints on International Organisation for Biological Control (IOBC) toxicity classifications. Our work demonstrates that in most cases, chemical toxicities cannot be generalised across a range of beneficial insects and mites providing biological control, a finding that was found even when comparing impacts among closely related species of beetles, wasps and mites. Additionally, we show that toxicity impacts increase with exposure length, pointing to limitations of IOBC protocols. This work challenges the notion that chemical toxicities can be adequately tested on a limited number of 'representative' species; instead, it highlights the need for careful consideration and testing on a range of regionally and seasonally relevant beneficial species.


Subject(s)
Agriculture , Pesticides , Animals , Pesticides/toxicity , Agriculture/methods , Mites/drug effects , Toxicity Tests, Acute , Wasps/drug effects , Pest Control/methods , Coleoptera/drug effects , Pest Control, Biological
8.
Chemosphere ; 357: 142036, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38615963

ABSTRACT

Arthropods represent an entry point for pesticide transfers in terrestrial food webs, and pesticide accumulation in upper chain organisms, such as predators can have cascading consequences on ecosystems. However, the mechanisms driving pesticide transfer and bioaccumulation in food webs remain poorly understood. Here we review the literature on pesticide transfers mediated by terrestrial arthropods in food webs. The transfer of pesticides and their potential for bioaccumulation and biomagnification are related to the chemical properties and toxicokinetic of the substances, the resistance and detoxification abilities of the contaminated organisms, as well as by their effects on organisms' life history traits. We further identify four critical areas in which knowledge gain would improve future predictions of pesticides impacts on terrestrial food webs. First, efforts should be made regarding the effects of co-formulants and pesticides mixtures that are currently understudied. Second, progress in the sensitivity of analytical methods would allow the detection of low concentrations of pesticides in small individual arthropods. Quantifying pesticides in arthropods preys, their predators, and arthropods or vertebrates at higher trophic level would bring crucial insights into the bioaccumulation and biomagnification potential of pesticides in real-world terrestrial food webs. Finally, quantifying the influence of the trophic structure and complexity of communities on the transfer of pesticides could address several important sources of variability in bioaccumulation and biomagnification across species and food webs. This narrative review will inspire future studies aiming to quantify pesticide transfers in terrestrial food webs to better capture their ecological consequences in natural and cultivated landscapes.


Subject(s)
Arthropods , Bioaccumulation , Food Chain , Pesticides , Pesticides/metabolism , Animals , Arthropods/metabolism , Ecosystem , Environmental Monitoring , Environmental Pollutants/metabolism
9.
Pest Manag Sci ; 2024 Apr 08.
Article in English | MEDLINE | ID: mdl-38587057

ABSTRACT

BACKGROUND: Apolygus lucorum is one of the most important piercing-sucking insect pests of the tea plant In this study, we assessed the attractiveness of basil plants to A. lucorum and the effectiveness of Ocimum gratissimum L. in the control of A. lucorum. The control efficiency of main volatile chemicals emitted from O. gratissimum flowers was also evaluated. RESULTS: Among seven basil varieties, O. gratissimum was more attractive to A. lucorum adults and was selected as a trap plant to assess its attractiveness to A. lucorum and effects on natural enemies in tea plantations. The population density of A. lucorum on trap strips of O. gratissimum in tea plantations was significantly higher than that on tea at 10-20 m away from the trap strips. Intercropping O. gratissimum with tea plants, at high-density significantly reduced A. lucorum population levels. Eucalyptol, limonene, ß-ocimene, and linalool were the four dominant components in the O. gratissimum flower volatiles, and their emissions showed a gradual upward trend over the sampling period. Olfactometer assays indicated that eucalyptol and dodecane showed attraction to A. lucorum. High numbers of A. lucorum were recorded on limonene, eucalyptol, and myrcene-baited yellow sticky traps in field trials in which 11 dominant volatiles emitted by O. gratissimum flowers were evaluated. CONCLUSION: Our research indicated that the aromatic plant O. gratissimum and its volatiles could attract A. lucorum and planting O. gratissimum has the potential as a pest biocontrol method to manipulate A. lucorum populations in tea plantations. © 2024 Society of Chemical Industry.

10.
Proc Biol Sci ; 291(2018): 20232522, 2024 Mar 13.
Article in English | MEDLINE | ID: mdl-38444337

ABSTRACT

Pesticides have well-documented negative consequences to control crop pests, and natural predators are alternatives and can provide an ecosystem service as biological control agents. However, there remains considerable uncertainty regarding whether such biological control can be a widely applicable solution, especially given ongoing climatic variation and climate change. Here, we performed a meta-analysis focused on field studies with natural predators to explore broadly whether and how predators might control pests and in turn increase yield. We also contrasted across studies pest suppression by a single and multiple predators and how climate influence biological control. Predators reduced pest populations by 73% on average, and increased crop yield by 25% on average. Surprisingly, the impact of predators did not depend on whether there were many or a single predator species. Precipitation seasonality was a key climatic influence on biological control: as seasonality increased, the impact of predators on pest populations increased. Taken together, the positive contribution of predators in controlling pests and increasing yield, and the consistency of such responses in the face of precipitation variability, suggest that biocontrol has the potential to be an important part of pest management and increasing food supplies as the planet precipitation patterns become increasingly variable.


Subject(s)
Ecosystem , Pesticides , Climate Change , Uncertainty
11.
Front Plant Sci ; 15: 1297182, 2024.
Article in English | MEDLINE | ID: mdl-38504897

ABSTRACT

Harmonia axyridis (H. axyridis) is the natural enemy of many aphid species. Traditional manual release of H. axyridis adults requires substantial manpower, and release efficiency is low. Automatic mechanical devices can improve the efficiency of delivery. Based on H. axyridis adults' morphological size, a prototype release system for H. axyridis was designed, which considered the adhesion characteristics of H. axyridis adults. According to the measured physical characteristics of H. axyridis adults, the structural parameters of the mechanical system for the release of the H. axyridis adults were determined. The relationship of the quantity of release, the impeller rotating speed, and the time for the release of H. axyridis adults were constructed. The mechanism can quantitatively adjust the number of H. axyridis adults to meet a certain H. axyridis-aphids ratio. Combining the image processing technology with the camera function of a mobile phone, the maximum cross-sectional area method was used to count the H. axyridis adults in the designated area. Results showed that the impeller rotating speed had a significant effect on the survival rate of the H. axyridis adults. When the airflow velocities were 29.5 m/s and 38.3 m/s, the survival rates of the H. axyridis adults were 93.8% and 94.5% at 4.2 rpm. The adhesion rate of the H. axyridis adults was 2.5%-4.6%. This work will provide technical support for the research of biological control.

12.
Adv Virus Res ; 118: 213-272, 2024.
Article in English | MEDLINE | ID: mdl-38461030

ABSTRACT

Grapevine leafroll-associated virus 3 (GLRaV-3) is a major pathogen of grapevines worldwide resulting in grapevine leafroll disease (GLD), reduced fruit yield, berry quality and vineyard profitability. Being graft transmissible, GLRaV-3 is also transmitted between grapevines by multiple hemipteran insects (mealybugs and soft scale insects). Over the past 20 years, New Zealand has developed and utilized integrated pest management (IPM) solutions that have slowly transitioned to an ecosystem-based biological response to GLD. These IPM solutions and combinations are based on a wealth of research within the temperate climates of New Zealand's nation-wide grape production. To provide context, the grapevine viruses present in the national vineyard estate and how these have been identified are described; the most pathogenic and destructive of these is GLRaV-3. We provide an overview of research on GLRaV-3 genotypes and biology within grapevines and describe the progressive development of GLRaV-3/GLD diagnostics based on molecular, serological, visual, and sensor-based technologies. Research on the ecology and control of the mealybugs Pseudococcus calceolariae and P. longispinus, the main insect vectors of GLRaV-3 in New Zealand, is described together with the implications of mealybug biological control agents and prospects to enhance their abundance and/or fitness in the vineyard. Virus transmission by mealybugs is described, with emphasis on understanding the interactions between GLRaV-3, vectors, and plants (grapevines, alternative hosts, or non-hosts of the virus). Disease management through grapevine removal and the economic influence of different removal strategies is detailed. Overall, the review summarizes research by an interdisciplinary team working in close association with the national industry body, New Zealand Winegrowers. Teamwork and communication across the whole industry has enabled implementation of research for the management of GLD.


Subject(s)
Closteroviridae , Hemiptera , Vitis , Animals , Ecosystem , New Zealand , Plant Diseases , Biology
13.
Oecologia ; 204(3): 603-612, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38393366

ABSTRACT

Tree diversity promotes predator abundance and diversity, but evidence linking these effects to increased predation pressure on herbivores remains limited. In addition, tree diversity effects on predators can vary temporally as a function of environmental variation, or due to contrasting responses by different predator types. In a multi-year study, we assessed temporal variation in tree diversity effects on bird community abundance, diversity, and predation rates as a whole and by functional group based on feeding guild (omnivores vs. insectivores) and migratory status (migrant vs. resident). To this end, we conducted bird point counts in tree monocultures and polycultures and assessed attacks on clay caterpillars four times over a 2-year period in a tree diversity experiment in Yucatan, Mexico. Tree diversity effects on the bird community varied across surveys, with positive effects on bird abundance and diversity in most but not all surveys. Tree diversity had stronger and more consistent effects on omnivorous and resident birds than on insectivorous and migratory species. Tree diversity effects on attack rates also varied temporally but patterns did not align with variation in bird abundance or diversity. Thus, while we found support for predicted increases in bird abundance, diversity, and predation pressure with tree diversity, these responses exhibited substantial variation over time and the former two were uncoupled from patterns of predation pressure, as well as contingent on bird functional traits. These results underscore the need for long-term studies measuring responses by different predator functional groups to better understand tree diversity effects on top-down control.


Subject(s)
Herbivory , Trees , Animals , Trees/physiology , Insecta/physiology , Birds/physiology , Predatory Behavior/physiology , Ecosystem
14.
Neotrop Entomol ; 53(2): 391-399, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38347318

ABSTRACT

The peanut thrips, Enneothrips enigmaticus (Thysanoptera: Thrypidae), is an important pest of the peanut (Arachis hypogaea) in South America. Due to concerns about the environment and human health induced by the extensive use of pesticides in the management control of pests, environmentally and friendlier tactics must be targeted. Thus, this study investigates, for the first time, the behavior of Xylocoris sordidus (Hemiptera: Anthocoridae) as a biological control agent for E. enigmaticus. The methodology included no-choice tests to assess whether the predation rate varies according to the developmental stage of the prey, as well as the predator's developmental stage with the highest predation capacity. Additionally, an analysis of the functional response of adult and 5th instar nymphs of X. sordidus exposed to different densities of E. enigmaticus nymphs (1, 2, 4, 8, 16, and 32) was conducted. The results confirm the predation of peanut thrips by X. sordidus, with a higher predation rate in the nymphal stages of the prey. There was no difference in predation capacity between predator nymphs and adults, and exhibiting a type II functional response. Therefore, the potential of X. sordidus as a biological control agent for E. enigmaticus is confirmed, showing the importance of adopting measures to preserve this predator in peanut crops.


Subject(s)
Hemiptera , Heteroptera , Thysanoptera , Humans , Animals , Biological Control Agents , Heteroptera/physiology , Predatory Behavior , Nymph/physiology , Arachis , Pest Control, Biological
15.
Ecol Evol ; 14(1): e10853, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38259957

ABSTRACT

The invasion of alien plant species threatens the composition and diversity of native communities. However, the invasiveness of alien plants and the resilience of native communities are dependent on the interactions between biotic and abiotic factors, such as natural enemies and nutrient availability. In our study, we simulated the invasion of nine invasive plant species into native plant communities using two levels of nutrient availability and suppression of natural enemies. We evaluated the effect of biotic and abiotic factors on the response of alien target species and the resistance of native communities to invasion. The results showed that the presence of enemies (enemy release) increased the biomass proportion of alien plants while decreasing that of native communities in the absence of nutrient addition. Furthermore, we also found that the negative effect of enemy suppression on the evenness of the native community and the root-to-shoot ratio of alien target species was greatest under nutrient addition. Therefore, nutrient-poor and natural enemies might promote the invasive success of alien species in native communities, whereas nutrient addition and enemy suppression can better enhance the resistance of native plant communities to invasion.

16.
Neotrop Entomol ; 53(1): 1-17, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37947969

ABSTRACT

Drosophila suzukii (Matsumura) (Diptera: Drosophilidae), commonly known as spotted-wing drosophila or SWD, is an invasive, severe, and damaging pest, which is able to inflict huge economic losses on soft thin-skinned fruits worldwide. Argentina was not excluded from the rapid invasion of this new and aggressive pest. Berries and cherries are among the most economically important fruits, showing an increasing demand from both domestic and export markets, which make necessary the application of effective and early protection measures. Although SWD is currently established almost everywhere in Argentina, the scarcity of research on and rapid regulatory actions against this pest have probably contributed to its fast spread throughout the country. In view of that, the article reviews first the current threat status of SWD in Argentina, provides summarized information on crop and non-crop host fruits, seasonal variation and population dynamics, resident natural enemy assemblages, and describes control actions implemented to date. Finally, the need to focus local control actions within an integrated national SWD management program is emphasized. The development and application of complementary eco-friendly strategies, such as Sterile Insect Technique, biological control, mass trapping, and the use of innovative lactone-derived synthetic insecticides with extremely low toxicity for SWD parasitoids, in environmentally distinguishable Argentinian regions is also highlighted.


Subject(s)
Drosophila , Insecticides , Animals , Insect Control/methods , Argentina , Population Dynamics , Fruit
17.
J Med Entomol ; 61(2): 512-516, 2024 Mar 13.
Article in English | MEDLINE | ID: mdl-38150320

ABSTRACT

Ticks (Family Ixodidae) spend most of their life cycle as immature stages in the soil and litter, and as any other soil invertebrates, are likely to be controlled top-down by soil-dwelling predators. To date, the ability of soil invertebrate predators to control ixodid tick population remains little known, partly due to methodological difficulties. In the current study, we developed and successfully tested a novel method of labeling live Ixodes ricinus (L., 1758) (Ixodida: Ixodidae) nymphs with a 15N isotope label. Labeled ticks were used in a small-scale 8-day-long microcosm experiment to reveal soil predators attacking nymphs. Only a small fraction (4.1% of all samples) of soil generalist predators preyed upon nymphs. A strong 15N label was found in 5 predator species, namely 2 spiders (Pachygnatha listeri Sundevall, 1830, Tetragnathidae and Ozyptila sp., Theridiidae), 2 gamasid mites (Pergamasus beklemischevi Sellnick, 1929 and Pergamasus quisquiliarum [Canestrini, 1882], Parasitidae), and 1 staphylinid beetle (Geostiba circellaris [Gravenhorst, 1806], Staphylinidae). The isotopic labeling can be a useful tool in revealing a range of invertebrate predators that can control tick populations in soil.


Subject(s)
Coleoptera , Ixodes , Ixodidae , Animals , Soil , Isotope Labeling , Nymph
18.
Ecol Evol ; 13(12): e10763, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38058520

ABSTRACT

Brassicaceae plants have the glucosinolate-myrosinase defense system, jointly active against herbivory. However, constitutive glucosinolate (GLS) defense is observed to occur at levels that do not deter all insects from feeding. That prompts the question of why Brassicaceae plants have not evolved a higher constitutive defense. The answer may lie in the contrasting relationship between plant defense and host plant preference of specialist and generalist herbivores. GLS content increases a plant's susceptibility to specialist insects. In contrast, generalists are deterred by the plant GLSs. Although GLSs can attract the natural enemies (predators and parasitoids) of these herbivores, enemies can reduce herbivore pressure to some extent only. So, plants can be overrun by specialists if GLS content is too high, whereas generalists can invade the plants if it is too low. Therefore, an optimal constitutive plant defense can minimize the overall herbivore pressure. To explain the optimal defense theoretically, we model the contrasting host selection behavior of insect herbivores and the emergence of their natural enemies by non-autonomous ordinary differential equations, where the independent variable is the plant GLS concentration. From the model, we quantify the optimal amount of GLSs, which minimizes total herbivore (specialists and generalists) pressure. That quite successfully explains the evolution of constitutive defense in plants from the perspective of optimality theory.

19.
Insects ; 14(11)2023 Nov 04.
Article in English | MEDLINE | ID: mdl-37999057

ABSTRACT

Whitefly species of Aleurocanthus spiniferus (Quaintance) and A. woglumi Ashby (Hemiptera: Aleyrodidae) are serious pests of citrus and other important fruit crops. The problem of citrus has initiated the successful introduction of several natural enemies for biocontrol programs in Hawaii and many other countries. Here, we summarized the history of infestation and biocontrol efforts of the two whiteflies in Hawaii for possible parasitoid importation into Greece. Two Platygasteridae (Amitus hesperidum Silvestri, A. spiniferus (Brethes), and three Aphelinidae (Encarsia clypealis (Silvestri), E. smithi (Silvestri), E. perplexa Huang, and Polaszek) were released in Hawaii for biocontrol of the citrus whiteflies during the period 1974-1999. The aphelinid Cales noacki Howard, purposely released for Aleurothrixus flococcus (Maskell) in 1982, was also reported to attack other whiteflies, including Aleurocanthus species, on citrus. An additional aphelinid parasitoid, Encarsia nipponica Silvestri, native to Japan and China, was accidentally introduced and found to attack both citrus whiteflies on the islands. Since the colonization of introduced parasitoids in infested fields on four Hawaiian Islands, no survey has been conducted to evaluate their potential impact. We conducted two short surveys during September-November 2022 on the islands of Kauai, Hawaii, and Oahu to introduce the dominant parasitoids to Greece for the biocontrol of A. spiniferus. Results showed that the infestation level was very low on Kauai, Hawaii, and Oahu Islands, with a mean infestation level range of 1.4-3.1 on Hawaii and Oahu Islands, mostly on pummelo and sweet orange, with no detection on the island of Kauai. The dominant parasitoid was characterized as Encarsia perplexa, using molecular analysis. Its parasitism rates ranged from 0 to 28% on the island of Hawaii and 11 to 65% on the island of Oahu. Emerged parasitoids have been reared in Greece for evaluation. This was the first field survey of Hawaii since the introduction and release of citrus whitefly natural enemies.

20.
Insects ; 14(11)2023 Nov 18.
Article in English | MEDLINE | ID: mdl-37999089

ABSTRACT

Nature-based solutions, such as biological control, can strongly contribute to reducing the use of plant protection products. In our study, we assessed the effect of augmentative releases of the European earwig (Forficula auricularia) to control the woolly apple aphid (Eriosoma lanigerum), a worldwide pest that causes serious damage to apple trees. The trials were carried out in two organic apple orchards located in Catalonia (NE Spain) from 2017 to 2020. Two treatments were compared: with vs. without earwig release. For the treatment, 30 earwigs per tree were released by means of a corrugated cardboard shelter. These releases were performed once per season and were repeated every year. We periodically assessed the length of the woolly apple aphid colonies, the number of colonies per tree, the percentage of aphids parasitized by Aphelinus mali, and the number of earwigs per shelter. Our results showed that earwig releases reduced the length of the colonies, but this effect was noticeable only for the second year onwards. Moreover, we found that those releases were compatible with A. mali. Overall, we demonstrated the positive impact of earwig releases on the woolly apple aphid control and the importance of considering time on augmentative biological control strategies.

SELECTION OF CITATIONS
SEARCH DETAIL
...