Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
J Biotechnol ; 382: 70-77, 2024 Feb 20.
Article in English | MEDLINE | ID: mdl-38295955

ABSTRACT

Deca- and dodecalactones are highly desired natural compounds that are essential for creating flavor formulations with fruity, peachy, creamy, and floral notes. Although natural ingredients are preferred by consumers, these lactones cannot be extracted from natural sources. Therefore, the biotechnological processes that produce these compounds in their natural form are crucial for the flavor industry. Here, we report a study on the biotransformation of vegetable oils into natural deca- and dodecalactones. The proposed process is performed one-pot, through the sequential use of three different biotransformation steps, namely the lipase-mediated hydrolysis of the triglycerides, the use of probiotic bacteria for the hydration of the unsaturated fatty acids and the transformation of the obtained hydroxy-fatty acids into lactones derivatives employing Yarrowia lipolytica. By using a specific vegetable oil in combination with a selected bacterial strain, it is possible to obtain a preferred lactone derivative such as γ-dodecalactone, dairy lactone, tuberose lactone, or δ-decalactone in a concentration ranging from 0.9 to 1.5 g/L. Overall, our method is suitable for the industrial production of these lactones as it is easily scalable, it can be performed in only one bioreactor and it makes use of generally recognized as safe (GRAS) microorganisms.


Subject(s)
Yarrowia , Yarrowia/metabolism , Biotechnology , Fatty Acids/metabolism , Lactones/metabolism , Biotransformation
2.
Yeast ; 32(1): 3-16, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25393382

ABSTRACT

Kluyveromyces marxianus is emerging as a new platform organism for the production of flavour and fragrance (F&F) compounds. This food-grade yeast has advantageous traits, such as thermotolerance and rapid growth, that make it attractive for cell factory applications. The major impediment to its development has been limited fundamental knowledge of its genetics and physiology, but this is rapidly changing. K. marxianus produces a wide array of volatile molecules and contributes to the flavour of a range of different fermented beverages. Advantage is now being taken of this to develop strains for the production of metabolites such as 2-phenylethanol and ethyl acetate. Strains that were selected from initial screens were used to optimize processes for production of these F&F molecules. Most developments have focused on optimizing growth conditions and the fermentation process, including product removal, with future advancement likely to involve development of new strains through the application of evolutionary or rational engineering strategies. This is being facilitated by new genomic and molecular tools. Furthermore, synthetic biology offers a route to introduce new biosynthetic pathways into this yeast for F&F production. Consumer demand for biologically-synthesized molecules for use in foods and other products creates an opportunity to exploit the unique potential of K. marxianus for this cell factory application.


Subject(s)
Flavoring Agents/metabolism , Kluyveromyces/metabolism , Volatile Organic Compounds/metabolism , Fermentation , Industrial Microbiology , Kluyveromyces/genetics
3.
J Sci Food Agric ; 95(14): 2944-50, 2015 Nov.
Article in English | MEDLINE | ID: mdl-25475589

ABSTRACT

BACKGROUND: Twenty genuine samples of industrially cold-pressed sweet orange essential oils, were analysed by gas chromatography-combustion-isotope ratio mass spectrometry to determine the values of the carbon isotope ratios (δ(13)C(VPDB)) of selected volatiles and assess the corresponding range of authenticity. Successively, four commercial orange-flavoured products were analysed under identical conditions to evaluate the authenticity of the orange flavour. The samples were extracted by solid-phase microextraction under optimised conditions. The evaluation was performed by using an internal standard procedure to neglect the contribution due to the original environment to the isotopic abundance of (13)C. The composition of the volatile fraction of the essential oils and of the flavoured products was determined by gas chromatography coupled to mass spectrometry with linear retention indices, and by gas chromatography with a flame ionisation detector. RESULTS: The δ(13)C(VPDB) values of seven secondary metabolites determined here were successfully used to characterise genuine orange essential oil. These values were used to evaluate the quality of orange-flavoured products, revealing the presence of compounds of different origin, not compatible with the values of genuine orange secondary metabolites. CONCLUSIONS: This study provides the range of authenticity of δ(13)C(VPDB) of seven different secondary metabolites in sweet orange genuine essential oil, useful for evaluating the genuineness of orange flavour. In accord with a previous study on different essential oils, the values determined here can be successfully applied for the evaluation of a large number of flavoured food stuffs and correlated with their origins.


Subject(s)
Carbon Isotopes/analysis , Carbon/analysis , Citrus sinensis/chemistry , Flavoring Agents/analysis , Fruit/chemistry , Oils, Volatile/chemistry , Plant Oils/analysis , Commerce , Gas Chromatography-Mass Spectrometry , Humans , Plant Extracts/chemistry , Taste
SELECTION OF CITATIONS
SEARCH DETAIL