Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 218
Filter
1.
J Cell Mol Med ; 28(11): e18362, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38837666

ABSTRACT

Chimeric antigen receptor- (CAR-)modified T cells have been successfully used to treat blood cancer. With the improved research on anti-tumour adoptive cell therapy, researchers have focused on immune cells other than T lymphocytes. Natural killer (NK) cells have received widespread attention as barriers to natural immunity. Compared to T lymphocyte-related adoptive cell therapy, the use of NK cells to treat tumours does not cause graft-versus-host disease, significantly improving immunity. Moreover, NK cells have more sources than T cells, and the related modified cells are less expensive. NK cells function through several pathways in anti-tumour mechanisms. Currently, many anti-tumour clinical trials have used NK cell-related adoptive cell therapies. In this review, we have summarized the recent progress in NK cell-related adoptive cellular immunotherapy for tumour treatment and propose the current challenges faced by CAR-NK cell therapy.


Subject(s)
Immunotherapy, Adoptive , Killer Cells, Natural , Neoplasms , Receptors, Chimeric Antigen , Humans , Immunotherapy, Adoptive/methods , Killer Cells, Natural/immunology , Neoplasms/therapy , Neoplasms/immunology , Receptors, Chimeric Antigen/immunology , Animals
2.
JMA J ; 7(2): 232-239, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38721076

ABSTRACT

Introduction: Hepatocellular carcinoma (HCC) is a major global health challenge, being the fifth most prevalent neoplasm and the third leading cause of cancer-related deaths worldwide. Liver transplantation offers a potentially curative approach for HCC, yet the risk of recurrence posttransplantation remains a significant concern. This study investigates the influence of a liver immune status index (LISI) on the prognosis of patients undergoing living-donor liver transplantation for HCC. Methods: In a single-center study spanning from 2001 to 2020, 113 patients undergoing living-donor liver transplantation for HCC were analyzed. LISI was calculated for each donor liver using body mass index, serum albumin levels, and the fibrosis-4 index. This study assessed the impact of donor LISI on short-term recurrence rates and survival, with special attention to its correlation with the antitumor activity of natural killer (NK) cells in the liver. Results: The patients were divided into two grades (high donor LISI, >-1.23 [n = 43]; and low donor LISI, ≤-1.23 [n = 70]). After propensity matching to adjust the background of recipient factors, the survival rates at 1 and 3 years were 92.6% and 88.9% and 81.5% and 70.4% in the low and high donor LISI groups, respectively (p = 0.11). The 1- and 3-year recurrence-free survival were 88.9% and 85.2% and 74.1% and 55.1% in the low and high donor LISI groups, respectively (p = 0.02). Conclusions: This study underscores the potential of an LISI as a noninvasive biomarker for assessing liver NK cell antitumor capacity, with implications for living-donor liver transplantation for HCC. Donor LISI emerges as a significant predictor of early recurrence risk following living-donor liver transplantation for HCC, highlighting the role of the liver antitumor activity of liver NK cells in managing liver malignancies.

3.
Article in English | MEDLINE | ID: mdl-38722382

ABSTRACT

Chimeric antigen receptor (CAR) cell therapies utilize CARs to redirect immune cells towards cancer cells expressing specific antigens like human epidermal growth factor receptor 2 (HER2). Despite their potential, CAR T cell therapies exhibit variable response rates and adverse effects in some patients. Non-invasive molecular imaging can aid in predicting patient outcomes by tracking infused cells post-administration. CAR-T cells are typically autologous, increasing manufacturing complexity and costs. An alternative approach involves developing CAR natural killer (CAR-NK) cells as an off-the-shelf allogeneic product. In this study, we engineered HER2-targeted CAR-NK cells co-expressing the positron emission tomography (PET) reporter gene human sodium-iodide symporter (NIS) and assessed their therapeutic efficacy and PET imaging capability in a HER2 ovarian cancer mouse model.NK-92 cells were genetically modified to express a HER2-targeted CAR, the bioluminescence imaging reporter Antares, and NIS. HER2-expressing ovarian cancer cells were engineered to express the bioluminescence reporter Firefly luciferase (Fluc). Co-culture experiments demonstrated significantly enhanced cytotoxicity of CAR-NK cells compared to naive NK cells. In vivo studies involving mice with Fluc-expressing tumors revealed that those treated with CAR-NK cells exhibited reduced tumor burden and prolonged survival compared to controls. Longitudinal bioluminescence imaging demonstrated stable signals from CAR-NK cells over time. PET imaging using the NIS-targeted tracer 18F-tetrafluoroborate ([18F]TFB) showed significantly higher PET signals in mice treated with NIS-expressing CAR-NK cells.Overall, our study showcases the therapeutic potential of HER2-targeted CAR-NK cells in an aggressive ovarian cancer model and underscores the feasibility of using human-derived PET reporter gene imaging to monitor these cells non-invasively in patients.

4.
FEBS Open Bio ; 14(6): 1028-1034, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38740554

ABSTRACT

Glioblastoma (GBM) poses a significant challenge in oncology and stands as the most aggressive form of brain cancer. A primary contributor to its relentless nature is the stem-like cancer cells, called glioblastoma stem cells (GSCs). GSCs have the capacity for self-renewal and tumorigenesis, leading to frequent GBM recurrences and complicating treatment modalities. While natural killer (NK) cells exhibit potential in targeting and eliminating stem-like cancer cells, their efficacy within the GBM microenvironment is limited due to constrained infiltration and function. To address this limitation, novel investigations focusing on boosting NK cell activity against GSCs are imperative. This study presents two streamlined image-based assays assessing NK cell migration and cytotoxicity towards GSCs. It details protocols and explores the strengths and limitations of these methods. These assays could aid in identifying novel targets to enhance NK cell activity towards GSCs, facilitating the development of NK cell-based immunotherapy for improved GBM treatment.


Subject(s)
Brain Neoplasms , Glioblastoma , Killer Cells, Natural , Neoplastic Stem Cells , Killer Cells, Natural/immunology , Glioblastoma/immunology , Glioblastoma/pathology , Glioblastoma/therapy , Humans , Neoplastic Stem Cells/immunology , Neoplastic Stem Cells/metabolism , Brain Neoplasms/immunology , Brain Neoplasms/pathology , Cell Movement/immunology , Tumor Microenvironment/immunology , Cell Line, Tumor , Immunotherapy/methods
5.
Immun Inflamm Dis ; 12(4): e1255, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38652012

ABSTRACT

BACKGROUND: Natural killer (NK) cells, CD3- lymphocytes, are critical players in cancer immune surveillance. This study aimed to assess two types of CD3- NK cell classifications (subsets), that is, convectional subsets (based on CD56 and CD16 expression) and new subsets (based on CD56, CD27, and CD11b expression), and their functional molecules in the peripheral blood of patients with breast cancer (BC) in comparison with healthy donors (HDs). METHODS: Thirty untreated females with BC and 20 age-matched healthy women were enrolled. Peripheral blood samples were collected and directly incubated with fluorochrome-conjugated antibodies against CD3, CD56, CD16, CD27, CD11b, CD96, NKG2C, NKG2D, NKp44, CXCR3, perforin, and granzyme B. Red blood cells were then lysed using lysing solution, and the stained cells were acquired on four-color flow cytometer. RESULT: Our results indicated 15% of lymphocytes in peripheral blood of patients with BC and HDs had NK cells phenotype. However, the frequency of total NK cells (CD3-CD56+), and NK subsets (based on conventional and new classifications) was not significantly different between patients and HDs. We observed mean fluorescent intensity (MFI) of CXCR3 in total NK cells (p = .02) and the conventional cytotoxic (CD3-CD56dim CD16+) NK cells (p = .03) were significantly elevated in the patients with BC compared to HDs. Despite this, the MFI of granzyme B expression in conventional regulatory (CD3-CD56brightCD16- /+) NK cells and CD3-CD56-CD16+ NK cells (p = .03 and p = .004, respectively) in the patients was lower than healthy subjects. CONCLUSION: The higher expression of chemokine receptor CXCR3 on total NK cells in patients with BC may be associated with increased chemotaxis-related NK cell infiltration. However, lower expression of granzyme B in conventional regulatory NK cells and CD3-CD56-CD16+ NK cells in the patients compared to HDs suggests reduced cytotoxic activity of the NK cells in BC. These results might demonstrate accumulating NK subsets with a dysfunctional phenotype in the peripheral blood of patients with BC.


Subject(s)
Breast Neoplasms , Killer Cells, Natural , Humans , Female , Breast Neoplasms/immunology , Breast Neoplasms/blood , Killer Cells, Natural/immunology , Killer Cells, Natural/metabolism , Middle Aged , Adult , Aged , Flow Cytometry , Immunophenotyping , Lymphocyte Subsets/immunology , Lymphocyte Subsets/metabolism , Granzymes/blood , Antigens, CD/blood , Antigens, CD/immunology
6.
Zhongguo Zhong Yao Za Zhi ; 49(5): 1335-1342, 2024 Mar.
Article in Chinese | MEDLINE | ID: mdl-38621981

ABSTRACT

This study aims to investigate the regulatory effect of the Spatholobi Caulis extract from ethyl acetate(SEA) on natural killer(NK) cells under physiological conditions and elucidate the underlying mechanism. The C57BL/6 mice were randomized into NC and SEA groups, and NK-92 cells were respectively treated with 0, 25, 50, and 100 µg·mL~(-1) SEA. The body weight and immune organ index of the mice were compared between groups. The lactate dehydrogenase(LDH) assay was employed to examine the cytotoxicity of NK-92 cells treated with SEA and the killing activity of mouse NK cells against YAC-1 cells. The cell-counting kit-8(CCK-8) was used to examine the impact of SEA on the proliferation of NK-92 cells. Flow cytometry was employed to measure the number of NK cells in the peripheral blood as well as the expression levels of natural killer group 2 member A(NKG2A) and natural killer group 2 member D(NKG2D). The enzyme-linked immunosorbent assay(ELISA) was performed to determine the interferon(IFN)-γ secretion in the serum. Semi-quantitative PCR was conducted to determine the mRNA levels of NKG2A, NKG2D, and IFN-γ in spleen cells. Western blot was employed to investigate the involvement of phosphoinositide 3-kinase(PI3K)/extracellular regulated protein kinase 1(ERK1) signaling pathway. The results showed that SEA exhibited no adverse effects on the body, while significantly enhance the number of NK cells and augment the cytotoxicity of NK-92 cells against YAC-1 cells. Moreover, it suppressed the expression of NKG2A, enhanced the expression of NKG2D, promoted IFN-γ secretion, and upregulated the protein levels of PI3K and ERK. The findings suggest that SEA has the potential to enhance the immune recognition and effector function of NK cells by increasing the cell number, modulating the expression of functional receptors, and promoting IFN-γ secretion via the PI3K/ERK signaling pathway.


Subject(s)
Acetates , NK Cell Lectin-Like Receptor Subfamily K , Phosphatidylinositol 3-Kinases , Mice , Animals , NK Cell Lectin-Like Receptor Subfamily K/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Mice, Inbred C57BL , Killer Cells, Natural
7.
Iran J Immunol ; 21(2): 121-131, 2024 06 30.
Article in English | MEDLINE | ID: mdl-38583001

ABSTRACT

Background: Natural killer (NK) cells are crucial innate components in anti-tumor immunity. However, the clinical impacts and their phenotypes in bladder cancer (BC) remain unclear. Objective: To assess the clinical significance of NK cell subsets in tumor-draining lymph nodes of patients with BC. Methods: In a cross-sectional study, pelvic lymph nodes were obtained from 49 untreated patients with BC. Mononuclear cells were isolated and immunophenotyped using CD3, CD56, CD16, CD27, and CD11b markers. NK cells were then classified based on their expression patterns of CD56/CD16 (conventional) and CD27/CD11b (new). Results: On average, NK cells constituted 2.99±1.44% of the total lymphocytes in the draining lymph node of patients with BC. The CD56dim and regulatory NK subsets (CD27+CD11b+/-) were the predominant old and new NK, respectively. The NK cells significantly increased in patients with at least one involved node (LN+) compared with those with free nodes (LN-; p=0.022). Conversely, CD56dimCD16- subset significantly decreased in higher stages (p=0.032) and in tumors with muscle invasion (p=0.038). Significant variations were also observed in different T-stages (p<0.05). Regarding new classification, the frequency of CD11b+ regulatory NK cells was significantly lower in node-positive patients (p=0.025). Conclusion: These findings emphasize the dynamic nature of NK cell subsets in bladder cancer and their potential relevance in disease progression and management, suggesting potential implications for therapeutic strategies targeting these specific subsets.


Subject(s)
Immunophenotyping , Killer Cells, Natural , Lymph Nodes , Urinary Bladder Neoplasms , Humans , Urinary Bladder Neoplasms/immunology , Urinary Bladder Neoplasms/pathology , Killer Cells, Natural/immunology , Male , Female , Middle Aged , Lymph Nodes/immunology , Lymph Nodes/pathology , Aged , Cross-Sectional Studies , Lymphocyte Subsets/immunology , Lymphocyte Subsets/metabolism , Neoplasm Staging , Lymphatic Metastasis , Adult , Aged, 80 and over
8.
Cancer Cell Int ; 24(1): 106, 2024 Mar 14.
Article in English | MEDLINE | ID: mdl-38481242

ABSTRACT

BACKGROUND: Acute myeloid leukemia (AML) is a highly heterogeneous hematologic malignancy and the most frequently acute leukemia of stem cell precursors and the myeloid derivatives in adult. Longitudinal studies have indicated the therapeutic landscape and drug resistance for patients with AML are still intractable, which largely attribute to the deficiency of detailed information upon the pathogenesis. METHODS: In this study, we compared the cellular phenotype of resident NK cells (rAML-NKs, rHD-NKs) and expanded NK cells (eAML-NKs, eHD-NKs) from bone marrow of AML patients (AML) and healthy donors (HD). Then, we took advantage of the co-culture strategy for the evaluation of the in vitro cytotoxicity of NK cells upon diverse tumor cell lines (e.g., K562, Nalm6, U937). With the aid of RNA-sequencing (RNA-SEQ) and bioinformatics analyses (e.g., GOBP analysis, KEGG analysis, GSEA, volcano plot), we verified the similarities and differences of the omics features between eAML-NKs and eHD-NKs. RESULTS: Herein, we verified the sharp decline in the content of total resident NK cells (CD3-CD56+) in rAML-NKs compared to rHD-NKs. Differ from the expanded eHD-NKs, eAML-NKs revealed decline in diverse NK cell subsets (NKG2D+, CD25+, NKp44+, NKp46+) and alterations in cellular vitality but conservations in cytotoxicity. According to transcriptomic analysis, AML-NKs and HD-NKs showed multifaceted distinctions in gene expression profiling and genetic variations. CONCLUSIONS: Collectively, our data revealed the variations in the cytobiological and transcriptomic features between AML-NKs and HD-NKs in bone marrow environment. Our findings would benefit the further development of novel biomarkers for AML diagnosis and NK cell-based cytotherapy in future.

9.
Cancers (Basel) ; 16(3)2024 Jan 28.
Article in English | MEDLINE | ID: mdl-38339310

ABSTRACT

Chemokines are small molecules that function as chemotactic factors which regulate the migration, infiltration, and accumulation of immune cells. Here, we comprehensively assess the structural and functional role of chemokines, examine the effects of chemokines that are present in the pancreatic ductal adenocarcinoma (PDAC) tumor microenvironment (TME), specifically those produced by cancer cells and stromal components, and evaluate their impact on immune cell trafficking, both in promoting and suppressing anti-tumor responses. We further explore the impact of chemokines on patient outcomes in PDAC and their role in the context of immunotherapy treatments, and review clinical trials that have targeted chemokine receptors and ligands in the treatment of PDAC. Lastly, we highlight potential strategies that can be utilized to harness chemokines in order to increase cytotoxic immune cell infiltration and the anti-tumor effects of immunotherapy.

10.
Cureus ; 16(1): e51860, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38327956

ABSTRACT

Blastic plasmacytoid dendritic cell neoplasm (BPDCN) is an exceedingly rare and aggressive hematologic malignancy. In the current World Health Organization classification, it is classified among histiocytic/dendritic cell neoplasms. This report describes the case of an 85-year-old female with a complex medical history, including rheumatoid arthritis, who presented with a one-month history of low-grade fever, anorexia, and unexplained weight loss. The diagnosis of BPDCN was confirmed following an immunophenotyping analysis of a bone marrow aspirate. With this report, the authors intend to shed some light on BPDCN's clinical presentation, diagnostic journey, therapeutic approaches, and patient outcomes, and denote the significance of early detection and interdisciplinary collaboration in enhancing patient care.

11.
J Control Release ; 367: 768-778, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38341178

ABSTRACT

Immunotherapy based on adoptive transfer of natural killer (NK) cells is a promising strategy for circumventing the limitations of cancer treatments. However, components of the immunosuppressive tumor microenvironment (TME), such as transforming growth factor-beta (TGF-ß), compromise the therapeutic efficacy of NK cells significantly. To address these limitations, we developed a novel method of engineering NK cells for adaptive transfer. The method is based on nanogels that serve two functions: (1) they overcome the TGF-ß-mediated stress environment of the TME, and (2) they enhance the direct anti-tumor activity of NK cells. Previously, we demonstrated that cationic compounds such as 25 K branched polyethylenimine (25 K bPEI) prime NK cells, putting them in a 'ready-to-fight' state. Based on these findings, we designed nanogels that have two primary characteristics: (1) they encapsulate galunisertib (Gal), which is used clinically to inhibit TGF-ß receptor activity, thereby blocking TGF-ß signaling; and (2) they provide cells with a surface coating of 25 K bPEI. When grown in culture medium containing TGF-ß, nanogel-treated NK cells demonstrated greater migration ability, degranulation activity, and cytotoxicity towards cancer cells than untreated NK cells. Additionally, the in vivo efficacy of nanogel-treated NK cells against PC-3 xenografts was significantly greater than that of Chem_NK cells primed by 25 K bPEI alone. These findings suggest that Gal-loaded 25 K bPEI-coated nanogels exert anti-tumor effects via chemical priming, as well suppressing the effects of TGF-ß on NK cells. We also expect 25 K bPEI-based nanogels to have great potential to overcome the suppressive effects of the TME through their NK cell-priming activity and delivery of the desired chemicals.


Subject(s)
Cytotoxicity, Immunologic , Polyethylene Glycols , Polyethyleneimine , Transforming Growth Factor beta , Humans , Nanogels , Transforming Growth Factor beta/pharmacology , Cell Line, Tumor , Killer Cells, Natural , Tumor Microenvironment
12.
Curr Treat Options Oncol ; 25(3): 275-283, 2024 03.
Article in English | MEDLINE | ID: mdl-38270799

ABSTRACT

OPINION STATEMENT: Monoclonal antibody (mAb) therapy is now considered a main component of cancer therapy in Australia. Although traditionally thought of as pure signalling inhibitors, a large proponent of these medications function through antibody-dependent cell-mediated cytotoxicity (ADCC). Currently, most protocols and institutional guidelines for ADCC-mediated mAbs promote the use of corticosteroids as premedication: this is implemented to reduce infusion-related reactions (IRRs) and antiemesis prophylaxis and combat concurrently administered chemotherapy-related syndromes. Concerningly, the inhibitory effects of ADCC by corticosteroids are well documented; henceforth, it is possible the current standard of care is misaligned to the literature surrounding ADCC. Subsequently, clinicians' decisions to act in contrast to this literature may be reducing the efficacy of mAbs. The literature suggests that the redundant use of corticosteroids should be cautioned against when used in conjunction with ADCC-mediated mAbs-this is due to the consequent reduction in anti-tumour activity. Owing to the fact IRRs typically occur upon initial infusion, the authors advocate for individual clinicians and institutional protocols to considering augmenting their practice to corticosteroid premedication at the first dose only, unless clinically indicated. Additionally, product information (PI) and consumer medicine information (CMI) documents distributed by Australian and international regulatory agencies should consider disclosing the risk of concurrent steroids with these medications. Moreover, the authors suggest considering alternative medications for the management of side effects.


Subject(s)
Antibodies, Monoclonal , Steroids , Humans , Cell Line, Tumor , Australia , Antibodies, Monoclonal/adverse effects , Premedication , Adrenal Cortex Hormones
13.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-999166

ABSTRACT

ObjectiveTo observe the effect of Tongxie Yaofang on the function of tumor-related natural killer (NK) cells under chronic stress and explore the possible molecular mechanism. MethodFifty SPF-grade BABL/C male mice were randomized into normal, model, and low-, medium-, and high-dose (6.825, 13.65, and 27.3 g·kg-1, respectively) Tongxie Yaofang groups, with 10 mice in each group. Other groups except the blank group were subjected to 7 days of chronic restraint stress, and then forced swimming and tail suspension tests were carried out to evaluate the modeling performance. After the successful modeling, rats in Tongxie Yaofang groups were administrated with low-, medium-, and high-doses of Tongxie Yaofang by gavage, while those in the other groups were administrated with normal saline by gavage. After 14 days, each group of mice was inoculated with subcutaneous colon cancer to establish the model of colon cancer under chronic stress. The pathological changes of the tumor tissue in each group of mice were observed using hematoxylin-eosin (HE) staining. The content of CD49b-positive cells in the peripheral blood and tumor tissue of mice was measured by flow cytometry. Enzyme-linked immunosorbent assay (ELISA) was employed to measure the content of molecules associated with NK cell activation in the peripheral blood. Western blot was employed to determine the protein levels of major histocompatibility complex class Ⅰ polypeptide-related sequences A and B (MICA+MICB) and UL-16-binding protein 1 (ULBP1) in the tumor tissue. ResultCompared with the normal group, the model group showed a decrease in 5-hydroxytryptamine (5-HT) content and an increase in corticosterone (CORT) content in the serum (P<0.05). Compared with the model group, Tongxie Yaofang increased the 5-HT content and decreased the CORT content (P<0.05, P<0.01). Compared with the normal group, the modeling increased the tumor volume and weight (P<0.05), while Tongxie Yaofang inhibited such increases with no statistical significance. The tumor cells in the model group presented neat arrangement, irregular shape, uneven size, obvious atypia, common nuclear division, and small necrotic area, and blood vessels were abundant surrounding the tumor cells. Compared with the model group, Tongxie Yaofang groups showed sparse arrangement of tumor cells, different degrees of patchy necrosis areas in the tumor, and karyorrhexis, dissolution, and nuclear debris in the necrotic part. Compared with the normal group, the model group showed reduced CD49b-positive cells in the peripheral blood and tumor tissue (P<0.01). Compared with the model group, Tongxie Yaofang increased CD49b-positive cells (medium dose P<0.01, high dose P<0.05, P<0.01). Compared with the normal group, the modeling lowered the serum levels of granzymes-B (Gzms-B), perforin (PF), interferon (IFN)-γ, and tumor necrosis factor (TNF)-α (P<0.05, P<0.01). Compared with the model group, low-dose Tongxie Yaofang elevated the serum levels of PF, Gzms-B, and TNF-α (P<0.05, P<0.01), and medium-dose Tongxie Yaofang elevated the serum levels of Gzms-B, PF, IFN-γ, and TNF-α (P<0.05, P<0.01). In addition, high-dose Tongxie Yaofang elevated the serum levels of PF, IFN-γ, and TNF-α (P<0.01). Compared with the normal group, the model group presented down-regulated protein level of ULBP1 (P<0.05). Compared with the model group, low-, medium-, and high-dose Tongxie Yaofang up-regulated the protein level of ULBP1 (P<0.05, P<0.01), and medium- and high-dose Tongxie Yaofang up-regulated the protein level of MICA+MICB (P<0.05, P<0.01). ConclusionTongxie Yaofang may promote NK cell activation by up-regulating the expression of MICA+MICB and ULBP1, thereby delaying the progression of colon cancer under chronic stress.

14.
J Extracell Vesicles ; 12(12): e12387, 2023 12.
Article in English | MEDLINE | ID: mdl-38054534

ABSTRACT

Natural killer cell-derived extracellular vesicles (NK-EVs) have shown promising potential as biotherapeutics for cancer due to their unique attributes as cytotoxic nanovesicles against cancer cells and immune-modulatory activity towards immune cells. However, a biomanufacturing workflow is needed to produce clinical-grade NK-EVs for pre-clinical and clinical applications. This study established a novel biomanufacturing workflow using a closed-loop hollow-fibre bioreactor to continuously produce NK-EVs from the clinically relevant NK92-MI cell line under serum-free, Xeno-free and feeder-free conditions following GMP-compliant conditions. The NK92 cells grown in the bioreactor for three continuous production lots resulted in large quantities of both NK cell and NK-EV biotherapeutics at the end of each production lot (over 109 viable cells and 1013 EVs), while retaining their cytotoxic payload (granzyme B and perforin), pro-inflammatory cytokine (interferon-gamma) content and cytotoxicity against the human leukemic cell line K562 with limited off-target toxicity against healthy human fibroblast cells. This scalable biomanufacturing workflow has the potential to facilitate the clinical translation of adoptive NK cell-based and NK-EV-based immunotherapies for cancer with GMP considerations.


Subject(s)
Extracellular Vesicles , Neoplasms , Humans , Workflow , Killer Cells, Natural , Immunotherapy/methods , Neoplasms/therapy , Neoplasms/metabolism
15.
Cancer Cell Int ; 23(1): 312, 2023 Dec 06.
Article in English | MEDLINE | ID: mdl-38057843

ABSTRACT

The metastasis of melanoma cells to regional lymph nodes and distant sites is an important contributor to cancer-related morbidity and mortality among patients with melanoma. This intricate process entails dynamic interactions involving tumor cells, cellular constituents, and non-cellular elements within the microenvironment. Moreover, both microenvironmental and systemic factors regulate the metastatic progression. Central to immunosurveillance for tumor cells are natural killer (NK) cells, prominent effectors of the innate immune system with potent antitumor and antimetastatic capabilities. Recognizing their pivotal role, contemporary immunotherapeutic strategies are actively integrating NK cells to combat metastatic tumors. Thus, a meticulous exploration of the interplay between metastatic melanoma and NK cells along the metastatic cascade is important. Given the critical involvement of NK cells within the melanoma tumor microenvironment, this comprehensive review illuminates the intricate relationship between components of the melanoma tumor microenvironment and NK cells, delineating their multifaceted roles. By shedding light on these critical aspects, this review advocates for a deeper understanding of NK cell dynamics within the melanoma context, driving forward transformative strategies to combat this cancer.

16.
Biology (Basel) ; 12(11)2023 Nov 11.
Article in English | MEDLINE | ID: mdl-37998018

ABSTRACT

Adoptive cell therapy (ACT) has transformed the treatment landscape for cancer and infectious disease through the investigational use of chimeric antigen receptor T-cells (CAR-Ts), tumour-infiltrating lymphocytes (TILs) and viral-specific T-cells (VSTs). Whilst these represent breakthrough treatments, there are subsets of patients who fail to respond to autologous ACT products. This is frequently due to impaired patient T-cell function or "fitness" as a consequence of prior treatments and age, and can be exacerbated by complex manufacturing protocols. Further, the manufacture of autologous, patient-specific products is time-consuming, expensive and non-standardised. Induced pluripotent stem cells (iPSCs) as an allogeneic alternative to patient-specific products can potentially overcome the issues outlined above. iPSC technology provides an unlimited source of rejuvenated iPSC-derived T-cells (T-iPSCs) or natural killer (NK) cells (NK-iPSCs), and in the context of the growing field of allogeneic ACT, iPSCs have enormous potential as a platform for generating off-the-shelf, standardised, "fit" therapeutics for patients. In this review, we evaluate current and future applications of iPSC technology in the CAR-T/NK, TIL and VST space. We discuss current and next-generation iPSC manufacturing protocols, and report on current iPSC-based adoptive therapy clinical trials to elucidate the potential of this technology as the future of ACT.

17.
Front Immunol ; 14: 1271603, 2023.
Article in English | MEDLINE | ID: mdl-38035113

ABSTRACT

Given the increasing incidence of pancreatic cancer and the low survival rate, the exploration of the complex tumor microenvironment and the development of novel treatment options is urgent. NK cells, known for their cytotoxic abilities and modulation of other immune cells, are vital in recognizing and killing cancer cells. However, hypoxic conditions in the tumor microenvironment have been found to impair NK cell functionality and contribute to tumor immune escape. Therefore, we aimed to uncover the mechanism through which hypoxia mediates the immune escape of pancreatic cancer cells, focusing on the influence of miR-1275/AXIN2 on NK cells. Using a combination of GEO dataset screening, Tumor Immune Estimation Resource 2.0 immunoscore screening, and the Cancer Genome Atlas data, we identified a correlation between miR-1275 and NK cells. The down-regulation of miR-1275 was associated with decreased NK cell activity and survival in patients with pancreatic cancer. Pathway analysis further linked miR-1275 expression with the hypoxic HIF1A pathway. In vitro experiments were conducted using the NK-92 cell, revealing that hypoxia significantly reduced miR-1275 expression and correspondingly decreased the cell-killing ability of NK cells. Upregulation of miR-1275 increased perforin, IFN-γ and TNF-α expression levels and enhanced NK cell cytotoxicity. Additionally, miR-1275 was found to bind to and inhibit AXIN2 expression, which when overexpressed, partially alleviated the promotive effect of upregulated miR-1275 on NK-92 cell killing ability. In conclusion, this research underscores the critical role of the miR-1275/AXIN2 axis in hypoxia-mediated immune escape in pancreatic cancer, thus opening new potential avenues for treatment strategies.


Subject(s)
MicroRNAs , Pancreatic Neoplasms , Humans , Killer Cells, Natural , Hypoxia/genetics , Hypoxia/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , Tumor Microenvironment/genetics , Axin Protein/metabolism
18.
Placenta ; 143: 62-68, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37862735

ABSTRACT

INTRODUCTION: Endometrial receptivity is largely determined by the immunophenotype of endometrium, especially uterine NK-cells (uNK). Immune component is directly involved in the formation of favourable microenvironment for the blastocyst implantation and placenta formation, but the way it changes during the maturation of endometrial tissue in healthy fertile women is still underexplored. METHODS: The endometrium was collected from 47 healthy oocyte donors after controlled ovarian stimulation: 23 women on the day of oocytes retrieval (OR) and 24 women on the term of implantation window (IW). The OR group was analysed, published previously and used as a comparison group to show the dynamic of changes. Isolated endometrial lymphocytes and peripheral blood samples were stained with monoclonal antibodies and analysed according to the three-color flow cytometry protocol. RESULTS: The proportion of NK-cells (CD3-CD56+) in endometrium grew significantly in the implantation window compared to the oocytes retrieval day. NK-cells acquired a more differentiated phenotype from the day of OR until IW: the expression of CD8 and CD158a significantly increased, while the expression of HLA-DR significantly decreased. Significant correlations between peripheral blood and endometrial NK-cells were found in CD8 expression during OR and IW, CD335(p46)neg and CD335(p46)++ subsets during IW term. DISCUSSION: Immunophenotype of receptive endometrium forms due to the accumulation of uNK-cells, which actively proliferate, become mature, differentiative, and ready to meet the embryo. Endometrial immunophenotype is peculiar and specific but not autonomic and isolated. Differentiation (CD8 on NK-cells), and activity (p46 on NK-cells) of peripheral blood lymphocytes is reflected in endometrial lymphocytes profile, and therefore the research of peripheral blood immunophenotype is relevant.


Subject(s)
Embryo Implantation , Endometrium , Pregnancy , Female , Humans , Endometrium/metabolism , Uterus , Killer Cells, Natural , Fertility
19.
Stem Cell Res Ther ; 14(1): 295, 2023 10 15.
Article in English | MEDLINE | ID: mdl-37840146

ABSTRACT

BACKGROUND: Natural killer (NK) cells hold great promise in treating diverse hematopoietic and solid tumors. Despite their availability from peripheral blood and cord blood, stem cell-derived NK cells offer an 'off-the-shelf' solution. Hematopoietic stem and progenitor cells (HSPCs) derived from cord blood pose no risk to the newborn or mother and are virtually ideal sources for NK cell differentiation. METHODS: We developed a modified protocol to differentiate HSPCs to NK cells under serum-free conditions using defined factors. The HSPC-derived NK (HSC-NK) cells could be expanded in a K562 feeder cell-dependent manner. Furthermore, using lentivirus transduction, chimeric antigen receptor (CAR)-modified HSPCs could be differentiated into NK cells, leading to the establishment of CAR-NK cells. RESULTS: The efficiency of NK cell differentiation from HSPCs was increased through the simple modulation of osmotic pressure by the addition of sodium chloride or glucose. Furthermore, the hyperosmosis-primed HSC-NK cells exhibited enhanced proliferation capacity and maintained normal functional characteristics, including transcriptome and antitumor efficacy. The optimized protocol yielded approximately 1.8 million NK cells from a single CD34-positive cell within a 28-day cycle, which signifies more than a ten-fold increase in efficiency relative to the conventional methods. This optimized protocol was also suitable for generating CAR-NK cells with high yields compared to standard conditions. CONCLUSIONS: The results of this study establish high osmotic pressure as a simple yet powerful adjustment that significantly enhances the efficiency and functionality of HSC-NK cells, including CAR-NK cells. This optimized protocol could lead to cost-effective, high-yield NK cell therapies, potentially revolutionizing cancer immunotherapy strategies.


Subject(s)
Fetal Blood , Neoplasms , Infant, Newborn , Humans , Killer Cells, Natural , Hematopoietic Stem Cells/metabolism , Cell Differentiation , Neoplasms/metabolism
20.
Microorganisms ; 11(10)2023 Oct 15.
Article in English | MEDLINE | ID: mdl-37894222

ABSTRACT

Spore-forming probiotic bacteria, including Bacillus coagulans, are resilient and produce a variety of beneficial metabolites. We evaluated the immune-modulating effects of the novel probiotic strain Bacillus coagulans JBI-YZ6.3, where the germinated spores, metabolite fraction, and cell wall fraction were tested in parallel using human peripheral blood mononuclear cell cultures under both normal and lipopolysaccharide-induced inflamed culture conditions. The expression of CD25 and CD69 activation markers was evaluated via flow cytometry. Supernatants were tested for cytokines, interferons, chemokines, and growth factors using Luminex arrays. The germinated spores were highly immunogenic; both the cell wall and metabolite fractions contributed significantly. Under normal culture conditions, increased levels of immune activation were observed as increased expressions of CD25 and CD69 relative to natural killer cells, suggesting an increased ability to attack virus-infected target cells. On monocytes, a complex effect was observed, where the expression of CD25 increased under normal conditions but decreased under inflamed conditions. This, in combination with increased interleukin-10 (IL-10) and decreased monocyte chemoattractant protein-1 (MCP-1) production under inflamed conditions, points to anti-inflammatory effects. The production of the stem cell-related growth factor granulocyte colony-stimulating Factor (G-CSF) was enhanced. Further research is warranted to characterize the composition of the postbiotic metabolite fraction and document the characteristics of immunomodulating agents secreted by this probiotic strain.

SELECTION OF CITATIONS
SEARCH DETAIL
...