Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 229
Filter
1.
Bioorg Chem ; 150: 107605, 2024 Jun 29.
Article in English | MEDLINE | ID: mdl-38971095

ABSTRACT

The dorsal root ganglion (DRG) is the primary neuron responsible for transmitting peripheral pain signals to the central nervous system and plays a crucial role in pain transduction. Modulation of DRG excitability is considered a viable approach for pain management. Neuronal excitability is intricately linked to the ion channels on the neurons. The small and medium-sized DRG neurons are chiefly engaged in pain conduction and have high levels of TTX-S sodium channels, with Nav1.7 accounting for approximately 80% of the current. Voltage-gated sodium channel (VGSC or Nav) blockers are vital targets for the management of central nervous system diseases, particularly chronic pain. VGSCs play a key role in controlling cellular excitability. Clinical research has shown that Nav1.7 plays a crucial role in pain sensation, and there is strong genetic evidence linking Nav1.7 and its encoding gene SCN9A gene to painful disorders in humans. Many studies have shown that Nav1.7 plays an important role in pain management. The role of Nav1.7 in pain signaling pathways makes it an attractive target for the potential development of new pain drugs. Meanwhile, understanding the architecture of Nav1.7 may help to develop the next generation of painkillers. This review provides updates on the recently reported molecular inhibitors targeting the Nav1.7 pathway, summarizes their structure-activity relationships (SARs), and discusses their therapeutic effects on painful diseases. Pharmaceutical chemists are working to improve the therapeutic index of Nav1.7 inhibitors, achieve better analgesic effects, and reduce side effects. We hope that this review will contribute to the development of novel Nav1.7 inhibitors as potential drugs.

2.
PNAS Nexus ; 3(6): pgae222, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38894876

ABSTRACT

S-palmitoylation, a reversible lipid post-translational modification, regulates the functions of numerous proteins. Voltage-gated sodium channels (NaVs), pivotal in action potential generation and propagation within cardiac cells and sensory neurons, can be directly or indirectly modulated by S-palmitoylation, impacting channel trafficking and function. However, the role of S-palmitoylation in modulating NaV1.7, a significant contributor to pain pathophysiology, has remained unexplored. Here, we addressed this knowledge gap by investigating if S-palmitoylation influences NaV1.7 channel function. Acyl-biotin exchange assays demonstrated that heterologously expressed NaV1.7 channels are modified by S-palmitoylation. Blocking S-palmitoylation with 2-bromopalmitate resulted in reduced NaV1.7 current density and hyperpolarized steady-state inactivation. We identified two S-palmitoylation sites within NaV1.7, both located in the second intracellular loop, which regulated different properties of the channel. Specifically, S-palmitoylation of cysteine 1126 enhanced NaV1.7 current density, while S-palmitoylation of cysteine 1152 modulated voltage-dependent inactivation. Blocking S-palmitoylation altered excitability of rat dorsal root ganglion neurons. Lastly, in human sensory neurons, NaV1.7 undergoes S-palmitoylation, and the attenuation of this post-translational modification results in alterations in the voltage-dependence of activation, leading to decreased neuronal excitability. Our data show, for the first time, that S-palmitoylation affects NaV1.7 channels, exerting regulatory control over their activity and, consequently, impacting rodent and human sensory neuron excitability. These findings provide a foundation for future pharmacological studies, potentially uncovering novel therapeutic avenues in the modulation of S-palmitoylation for NaV1.7 channels.

3.
Br J Pharmacol ; 2024 May 07.
Article in English | MEDLINE | ID: mdl-38715413

ABSTRACT

BACKGROUND AND PURPOSE: The voltage-gated sodium channel isoform NaV1.7 is a high-interest target for the development of non-opioid analgesics due to its preferential expression in pain-sensing neurons. NaV1.7 is also expressed in autonomic neurons, yet its contribution to involuntary visceral reflexes has received limited attention. The small molecule inhibitor ST-2560 was advanced into pain behaviour and cardiovascular models to understand the pharmacodynamic effects of selective inhibition of NaV1.7. EXPERIMENTAL APPROACH: Potency of ST-2560 at NaV1.7 and off-target ion channels was evaluated by whole-cell patch-clamp electrophysiology. Effects on nocifensive reflexes were assessed in non-human primate (NHP) behavioural models, employing the chemical capsaicin and mechanical stimuli. Cardiovascular parameters were monitored continuously in freely-moving, telemetered NHPs following administration of vehicle and ST-2560. KEY RESULTS: ST-2560 is a potent inhibitor (IC50 = 39 nM) of NaV1.7 in primates with ≥1000-fold selectivity over other isoforms of the human NaV1.x family. Following systemic administration, ST-2560 (0.1-0.3 mg·kg-1, s.c.) suppressed noxious mechanical- and chemical-evoked reflexes at free plasma concentrations threefold to fivefold above NaV1.7 IC50. ST-2560 (0.1-1.0 mg·kg-1, s.c.) also produced changes in haemodynamic parameters, most notably a 10- to 20-mmHg reduction in systolic and diastolic arterial blood pressure, at similar exposures. CONCLUSIONS AND IMPLICATIONS: Acute pharmacological inhibition of NaV1.7 is antinociceptive, but also has the potential to impact the cardiovascular system. Further work is merited to understand the role of NaV1.7 in autonomic ganglia involved in the control of heart rate and blood pressure, and the effect of selective NaV1.7 inhibition on cardiovascular function.

4.
Biochem Biophys Res Commun ; 721: 150126, 2024 Aug 20.
Article in English | MEDLINE | ID: mdl-38776832

ABSTRACT

Voltage-gated sodium channel subtypes, Nav1.7, Nav1.8, and Nav1.9 are predominantly expressed in peripheral sensory neurons. Recent genetic studies have revealed that they are involved in pathological pain processing and that the blockade of Nav1.7, Nav1.8, or Nav1.9 will become a promising pharmacotherapy especially for neuropathic pain. A growing number of drug discovery programs have targeted either of the subtypes to obtain a selective inhibitor which can provide pain relief without affecting the cardiovascular and central nervous systems, though none of them has been approved yet. Here we describe the in vitro characteristics of ANP-230, a novel sodium channel blocker under clinical development. Surprisingly, ANP-230 was shown to block three pain-related subtypes, human Nav1.7, Nav1.8, and Nav1.9 with similar potency, but had only low inhibitory activity to human cardiac Nav1.5 channel and rat central Nav channels. The voltage clamp experiments using different step pulse protocols revealed that ANP-230 had a "tonic block" mode of action without state- and use-dependency. In addition, ANP-230 caused a depolarizing shift of the activation curve and decelerated gating kinetics in human Nav1.7-stably expressing cells. The depolarizing shift of activation curve was commonly observed in human Nav1.8-stably expressing cells as well as rat dorsal root ganglion neurons. These data suggested a quite unique mechanism of Nav channel inhibition by ANP-230. Finally, ANP-230 reduced excitability of rat dorsal root ganglion neurons in a concentration dependent manner. Collectively, these promising results indicate that ANP-230 could be a potent drug for neuropathic pain.


Subject(s)
NAV1.7 Voltage-Gated Sodium Channel , NAV1.8 Voltage-Gated Sodium Channel , NAV1.9 Voltage-Gated Sodium Channel , Sodium Channel Blockers , Humans , NAV1.8 Voltage-Gated Sodium Channel/metabolism , NAV1.8 Voltage-Gated Sodium Channel/genetics , Animals , Rats , NAV1.9 Voltage-Gated Sodium Channel/metabolism , NAV1.9 Voltage-Gated Sodium Channel/genetics , NAV1.7 Voltage-Gated Sodium Channel/metabolism , NAV1.7 Voltage-Gated Sodium Channel/genetics , Sodium Channel Blockers/pharmacology , HEK293 Cells , Voltage-Gated Sodium Channel Blockers/pharmacology , Ganglia, Spinal/metabolism , Ganglia, Spinal/drug effects , Ganglia, Spinal/cytology
5.
Exp Neurol ; 377: 114811, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38723859

ABSTRACT

Small fiber neuropathy (SFN) is a common and debilitating disease in which the terminals of small diameter sensory axons degenerate, producing sensory loss, and in many patients neuropathic pain. While a substantial number of cases are attributable to diabetes, almost 50% are idiopathic. An underappreciated aspect of the disease is its late onset in most patients. Animal models of human genetic mutations that produce SFN also display age-dependent phenotypes suggesting that aging is an important contributor to the risk of development of the disease. In this review we define how particular sensory neurons are affected in SFN and discuss how aging may drive the disease. We also evaluate how animal models of SFN can define disease mechanisms that will provide insight into early risk detection and suggest novel therapeutic interventions.


Subject(s)
Aging , Disease Models, Animal , Small Fiber Neuropathy , Animals , Humans , Small Fiber Neuropathy/pathology , Small Fiber Neuropathy/genetics , Small Fiber Neuropathy/physiopathology , Aging/pathology , Aging/physiology
6.
Biochem Biophys Res Commun ; 717: 150044, 2024 Jul 12.
Article in English | MEDLINE | ID: mdl-38718567

ABSTRACT

Pulpitis constitutes a significant challenge in clinical management due to its impact on peripheral nerve tissue and the persistence of chronic pain. Despite its clinical importance, the correlation between neuronal activity and the expression of voltage-gated sodium channel 1.7 (Nav1.7) in the trigeminal ganglion (TG) during pulpitis is less investigated. The aim of this study was to examine the relationship between experimentally induced pulpitis and Nav1.7 expression in the TG and to investigate the potential of selective Nav1.7 modulation to attenuate TG abnormal activity associated with pulpitis. Acute pulpitis was induced at the maxillary molar (M1) using allyl isothiocyanate (AITC). The mice were divided into three groups: control, pulpitis model, and pulpitis model treated with ProTx-II, a selective Nav1.7 channel inhibitor. After three days following the surgery, we conducted a recording and comparative analysis of the neural activity of the TG utilizing in vivo optical imaging. Then immunohistochemistry and Western blot were performed to assess changes in the expression levels of extracellular signal-regulated kinase (ERK), c-Fos, collapsin response mediator protein-2 (CRMP2), and Nav1.7 channels. The optical imaging result showed significant neurological excitation in pulpitis TGs. Nav1.7 expressions exhibited upregulation, accompanied by signaling molecular changes suggestive of inflammation and neuroplasticity. In addition, inhibition of Nav1.7 led to reduced neural activity and subsequent decreases in ERK, c-Fos, and CRMP2 levels. These findings suggest the potential for targeting overexpressed Nav1.7 channels to alleviate pain associated with pulpitis, providing practical pain management strategies.


Subject(s)
NAV1.7 Voltage-Gated Sodium Channel , Pulpitis , Animals , NAV1.7 Voltage-Gated Sodium Channel/metabolism , NAV1.7 Voltage-Gated Sodium Channel/genetics , Mice , Male , Pulpitis/metabolism , Pulpitis/pathology , Trigeminal Ganglion/metabolism , Neurons/metabolism , Nerve Tissue Proteins/metabolism , Proto-Oncogene Proteins c-fos/metabolism , Voltage-Gated Sodium Channel Blockers/pharmacology , Disease Models, Animal , Intercellular Signaling Peptides and Proteins
7.
Elife ; 122024 Apr 30.
Article in English | MEDLINE | ID: mdl-38687187

ABSTRACT

Nociceptive sensory neurons convey pain-related signals to the CNS using action potentials. Loss-of-function mutations in the voltage-gated sodium channel NaV1.7 cause insensitivity to pain (presumably by reducing nociceptor excitability) but clinical trials seeking to treat pain by inhibiting NaV1.7 pharmacologically have struggled. This may reflect the variable contribution of NaV1.7 to nociceptor excitability. Contrary to claims that NaV1.7 is necessary for nociceptors to initiate action potentials, we show that nociceptors can achieve similar excitability using different combinations of NaV1.3, NaV1.7, and NaV1.8. Selectively blocking one of those NaV subtypes reduces nociceptor excitability only if the other subtypes are weakly expressed. For example, excitability relies on NaV1.8 in acutely dissociated nociceptors but responsibility shifts to NaV1.7 and NaV1.3 by the fourth day in culture. A similar shift in NaV dependence occurs in vivo after inflammation, impacting ability of the NaV1.7-selective inhibitor PF-05089771 to reduce pain in behavioral tests. Flexible use of different NaV subtypes exemplifies degeneracy - achieving similar function using different components - and compromises reliable modulation of nociceptor excitability by subtype-selective inhibitors. Identifying the dominant NaV subtype to predict drug efficacy is not trivial. Degeneracy at the cellular level must be considered when choosing drug targets at the molecular level.


Subject(s)
Analgesics , Benzenesulfonamides , Nociceptors , Phenyl Ethers , Animals , Analgesics/pharmacology , Nociceptors/metabolism , Nociceptors/drug effects , NAV1.7 Voltage-Gated Sodium Channel/metabolism , NAV1.7 Voltage-Gated Sodium Channel/genetics , Mice , Action Potentials/drug effects , Pain/drug therapy , Humans , Sodium Channels/metabolism , Sodium Channels/genetics , NAV1.8 Voltage-Gated Sodium Channel/metabolism , NAV1.8 Voltage-Gated Sodium Channel/genetics
9.
ACS Chem Neurosci ; 15(6): 1063-1073, 2024 03 20.
Article in English | MEDLINE | ID: mdl-38449097

ABSTRACT

Chronic pain is a growing global health problem affecting at least 10% of the world's population. However, current chronic pain treatments are inadequate. Voltage-gated sodium channels (Navs) play a pivotal role in regulating neuronal excitability and pain signal transmission and thus are main targets for nonopioid painkiller development, especially those preferentially expressed in dorsal root ganglial (DRG) neurons, such as Nav1.6, Nav1.7, and Nav1.8. In this study, we screened in virtual hits from dihydrobenzofuran and 3-hydroxyoxindole hybrid molecules against Navs via a veratridine (VTD)-based calcium imaging method. The results showed that one of the molecules, 3g, could inhibit VTD-induced neuronal activity significantly. Voltage clamp recordings demonstrated that 3g inhibited the total Na+ currents of DRG neurons in a concentration-dependent manner. Biophysical analysis revealed that 3g slowed the activation, meanwhile enhancing the inactivation of the Navs. Additionally, 3g use-dependently blocked Na+ currents. By combining with selective Nav inhibitors and a heterozygous expression system, we demonstrated that 3g preferentially inhibited the TTX-S Na+ currents, specifically the Nav1.7 current, other than the TTX-R Na+ currents. Molecular docking experiments implicated that 3g binds to a known allosteric site at the voltage-sensing domain IV(VSDIV) of Nav1.7. Finally, intrathecal injection of 3g significantly relieved mechanical pain behavior in the spared nerve injury (SNI) rat model, suggesting that 3g is a promising candidate for treating chronic pain.


Subject(s)
Chronic Pain , Indoles , Neuralgia , Rats , Animals , Molecular Docking Simulation , NAV1.8 Voltage-Gated Sodium Channel , Neuralgia/drug therapy , Neuralgia/metabolism , Ganglia, Spinal/metabolism
10.
J Ethnopharmacol ; 326: 117996, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38431110

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Schisandra chinensis, the dried and ripe fruit of the magnolia family plant Schisandra chinensis (Turcz.) Baill, was commonly used in traditional analgesic prescription. Studies have shown that the extract of Schisandra chinensis (SC) displayed analgesic activity. However, the analgesic active component and the exact mechanisms have yet to be revealed. AIM OF THE STUDY: The present study was to investigate the anti-nociceptive constituent of Schisandra chinensis, assess its analgesic effect, and explore the potential molecular mechanisms. MATERIALS AND METHODS: The effects of a series of well-recognized compounds from SC on glycine receptors were investigated. The analgesic effect of the identified compound was evaluated in three pain models. Mechanistic studies were performed using patch clamp technique on various targets expressed in recombinant cells. These targets included glycine receptors, Nav1.7 sodium channels, Cav2.2 calcium channels et al. Meanwhile, primary cultured spinal dorsal horn (SDH) neurons and dorsal root ganglion (DRG) neurons were also utilized. RESULTS: Schisandrin B (SchB) was a positive allosteric modulator of glycine receptors in spinal dorsal horn neurons. The EC50 of SchB on glycine receptors in spinal dorsal horn neurons was 2.94 ± 0.28 µM. In three pain models, the analgesic effect of SchB was comparable to that of indomethacin at the same dose. Besides, SchB rescued PGE2-induced suppression of α3 GlyR activity and alleviated persistent pain. Notably, SchB could also potently decrease the frequency of action potentials and inhibit sodium and calcium channels in DRG neurons. Consistent with the data from DRG neurons, SchB was also found to significantly block Nav1.7 sodium channels and Cav2.2 channels in recombinant cells. CONCLUSION: Our results demonstrated that, Schisandrin B, the primary lignan component of Schisandra chinensis, may exert its analgesic effect by acting on multiple ion channels, including glycine receptors, Nav1.7 channels, and Cav2.2 channels.


Subject(s)
Lignans , Polycyclic Compounds , Schisandra , Receptors, Glycine , Lignans/pharmacology , Pain , Calcium Channels, N-Type , Analgesics/pharmacology , Analgesics/therapeutic use , Sodium Channels , Cyclooctanes
12.
J Oral Biosci ; 66(1): 145-150, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38342297

ABSTRACT

OBJECTIVES: This study aimed to elucidate the role of macrophages in the trigeminal ganglia (TG) in developing pulpitis-associated ectopic orofacial pain. METHODS: Rats underwent maxillary pulp exposure, and Fluoro-Gold (FG) was administered in the ipsilateral whisker pad (WP). Head withdrawal threshold (HWT) upon mechanical stimulation of the WP was recorded, and liposomal clodronate clophosome-A (LCCA; macrophage depletion agent) was administered to the TG at three and four days after pulp exposure. Immunohistochemically, TG sections were stained with anti-Iba1 (a macrophage marker) and anti-Nav1.7 antibodies. RESULTS: Pulp exposure decreased HWT and increased the number of Iba1-IR cells near FG-labelled TG neurons. LCCA inhibited the decrease in HWT and stopped the increase of FG-labelled Nav1.7-IR TG neurons in the pulpitis group. CONCLUSIONS: Activation of macrophages by pulpitis induces the overexpression of Nav1.7 in TG neurons receiving inputs from WP, resulting in pulpitis-induced ectopic facial mechanical allodynia.


Subject(s)
Pulpitis , Rats , Animals , Rats, Sprague-Dawley , Trigeminal Ganglion , Facial Pain , Macrophages
13.
Biochem Biophys Res Commun ; 698: 149549, 2024 Feb 26.
Article in English | MEDLINE | ID: mdl-38266311

ABSTRACT

A recently established therapeutic strategy, involving the insertion of biodegradable cog polydioxanone filaments into the quadriceps muscles using the Muscle Enhancement and Support Therapy (MEST) device, has demonstrated significant efficacy in alleviating knee osteoarthritis (OA) pain. This study investigated changes in peripheral sensitization as the potential mechanism underlying MEST-induced pain relief in monoiodoacetate (MIA) induced OA rats. The results revealed that MEST treatment potently reduces MIA-induced sensitization of L3/L4 dorsal root ganglion (DRG) neurons, the primary nociceptor pathway for the knee joint. This reduction in DRG sensitization, as elucidated by voltage-sensitive dye imaging, is accompanied by a diminished overexpression of TRPA1 and NaV1.7, key nociceptor receptors involved in mechanical pain perception. Importantly, these observed alterations strongly correlate with a decrease in mechanically-evoked pain behaviors, providing compelling neurophysiological evidence that MEST treatment alleviates OA pain by suppressing peripheral sensitization.


Subject(s)
Osteoarthritis, Knee , Rats , Animals , Osteoarthritis, Knee/metabolism , Rats, Sprague-Dawley , Polydioxanone/metabolism , Quadriceps Muscle/metabolism , Pain/drug therapy , Pain/metabolism , Disease Models, Animal , Ganglia, Spinal/metabolism
14.
Clin Auton Res ; 34(1): 191-201, 2024 02.
Article in English | MEDLINE | ID: mdl-38064009

ABSTRACT

PURPOSE: Guanfacine is an α2A-adrenergic receptor agonist, FDA-approved to treat attention-deficit hyperactivity disorder and high blood pressure, typically as an extended-release formulation up to 7 mg/day. In our dysautonomia clinic, we observed that off-label use of short-acting guanfacine at 1 mg/day facilitated symptom relief in two families with multiple members presenting with severe generalized anxiety. We also noted anecdotal improvements in associated dysautonomia symptoms such as hyperhidrosis, cognitive impairment, and palpitations. We postulated that a genetic deficit existed in these patients that might augment guanfacine susceptibility. METHODS: We used whole-exome sequencing to identify mutations in patients with shared generalized anxiety and dysautonomia symptoms. Guanfacine-induced changes in the function of voltage-gated Na+ channels were investigated using voltage-clamp electrophysiology. RESULTS: Whole-exome sequencing uncovered the p.I739V mutation in SCN9A in the proband of two nonrelated families. Moreover, guanfacine inhibited ionic currents evoked by wild-type and mutant NaV1.7 encoded by SCN9A, as well as other NaV channel subtypes to a varying degree. CONCLUSION: Our study provides further evidence for a possible pathophysiological role of NaV1.7 in anxiety and dysautonomia. Combined with off-target effects on NaV channel function, daily administration of 1 mg short-acting guanfacine may be sufficient to normalize NaV channel mutation-induced changes in sympathetic activity, perhaps aided by partial inhibition of NaV1.7 or other channel subtypes. In a broader context, expanding genetic and functional data about ion channel aberrations may enable the prospect of stratifying patients in which mutation-induced increased sympathetic tone normalization by guanfacine can support treatment strategies for anxiety and dysautonomia symptoms.


Subject(s)
Autonomic Nervous System Diseases , Guanfacine , Humans , Guanfacine/therapeutic use , NAV1.7 Voltage-Gated Sodium Channel/genetics , Mutation , Anxiety/drug therapy , Anxiety/genetics , Adrenergic alpha-Agonists
15.
Hum Mol Genet ; 33(2): 103-109, 2024 Jan 07.
Article in English | MEDLINE | ID: mdl-37721535

ABSTRACT

Erythromelalgia (EM), is a familial pain syndrome characterized by episodic 'burning' pain, warmth, and erythema. EM is caused by monoallelic variants in SCN9A, which encodes the voltage-gated sodium channel (NaV) NaV1.7. Over 25 different SCN9A mutations attributed to EM have been described to date, all identified in the SCN9A transcript utilizing exon 6N. Here we report a novel SCN9A missense variant identified in seven related individuals with stereotypic episodes of bilateral lower limb pain presenting in childhood. The variant, XM_011511617.3:c.659G>C;p.(Arg220Pro), resides in the exon 6A of SCN9A, an exon previously shown to be selectively incorporated by developmentally regulated alternative splicing. The mutation is located in the voltage-sensing S4 segment of domain I, which is important for regulating channel activation. Functional analysis showed the p.Arg220Pro mutation altered voltage-dependent activation and delayed channel inactivation, consistent with a NaV1.7 gain-of-function molecular phenotype. These results demonstrate that alternatively spliced isoforms of SCN9A should be included in all genomic testing of EM.


Subject(s)
Erythromelalgia , Humans , Erythromelalgia/genetics , Mutation, Missense/genetics , NAV1.7 Voltage-Gated Sodium Channel/genetics , Pain/genetics , Mutation , Exons/genetics
16.
Am J Physiol Cell Physiol ; 326(1): C1-C9, 2024 01 01.
Article in English | MEDLINE | ID: mdl-37955124

ABSTRACT

Airway smooth muscle (ASM) cells from mouse bronchus express a fast sodium current mediated by NaV1.7. We present evidence that this current is regulated by cAMP. ASM cells were isolated by enzymatic dispersal and studied using the whole cell patch clamp technique at room temperature. A fast sodium current, INa, was observed on holding cells under voltage clamp at -100 mV and stepping to -20 mV. This current was reduced in a concentration-dependent manner by denopamine (10 and 30 µM), a ß-adrenergic agonist. Forskolin (1 µM), an activator of adenylate cyclase, reduced the current by 35%, but 6-MB-cAMP (300 µM), an activator of protein kinase A (PKA), had no effect. In contrast, 8-pCPT-2-O-Me-cAMP-AM (007-AM, 10 µM), an activator of exchange protein directly activated by cAMP (Epac), reduced the current by 48%. The inhibitory effect of 007-AM was still observed in the presence of dantrolene (10 µM), an inhibitor of ryanodine receptors, and when cytosolic [Ca2+] was buffered by inclusion of 1,2-bis(o-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid, Sigma (BAPTA) (50 µM) in the pipette solution, suggesting that the inhibition of INa was not due to Ca2+-release from intracellular stores. When 007-AM was tested on the current-voltage relationship, it reduced the current at potentials from -30 to 0 mV, but had no effect on the steady-state activation curve. However, the steady-state inactivation V1/2, the voltage causing inactivation of 50% of the current, was shifted in the negative direction from -76.6 mV to -89.7 mV. These findings suggest that cAMP regulates INa in mouse ASM via Epac, but not PKA.NEW & NOTEWORTHY ß-adrenergic agonists are commonly used in inhalers to treat asthma and chronic obstructive pulmonary disease. These work by causing bronchodilation and reducing inflammation. The present study provides evidence that these drugs have an additional action, namely, to reduce sodium influx into airway smooth muscle cells via fast voltage-dependent channels. This may have the dual effect of promoting bronchodilation and reducing remodeling of the airways, which has a detrimental effect in these diseases.


Subject(s)
Cyclic AMP , Sodium , Mice , Animals , Sodium/metabolism , Cyclic AMP/metabolism , Guanine Nucleotide Exchange Factors/metabolism , Myocytes, Smooth Muscle/metabolism , Adrenergic beta-Agonists
17.
J Physiol ; 601(23): 5341-5366, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37846879

ABSTRACT

We show here that hyperpolarization-activated current (Ih ) unexpectedly acts to inhibit the activity of dorsal root ganglion (DRG) neurons expressing WT Nav1.7, the largest inward current and primary driver of DRG neuronal firing, and hyperexcitable DRG neurons expressing a gain-of-function Nav1.7 mutation that causes inherited erythromelalgia (IEM), a human genetic model of neuropathic pain. In this study we created a kinetic model of Ih and used it, in combination with dynamic-clamp, to study Ih function in DRG neurons. We show, for the first time, that Ih increases rheobase and reduces the firing probability in small DRG neurons, and demonstrate that the amplitude of subthreshold oscillations is reduced by Ih . Our results show that Ih , due to slow gating, is not deactivated during action potentials (APs) and has a striking damping action, which reverses from depolarizing to hyperpolarizing, close to the threshold for AP generation. Moreover, we show that Ih reverses the hyperexcitability of DRG neurons expressing a gain-of-function Nav1.7 mutation that causes IEM. In the aggregate, our results show that Ih unexpectedly has strikingly different effects in DRG neurons as compared to previously- and well-studied cardiac cells. Within DRG neurons where Nav1.7 is present, Ih reduces depolarizing sodium current inflow due to enhancement of Nav1.7 channel fast inactivation and creates additional damping action by reversal of Ih direction from depolarizing to hyperpolarizing close to the threshold for AP generation. These actions of Ih limit the firing of DRG neurons expressing WT Nav1.7 and reverse the hyperexcitability of DRG neurons expressing a gain-of-function Nav1.7 mutation that causes IEM. KEY POINTS: Hyperpolarization-activated cyclic nucleotide-gated (HCN) channels, the molecular determinants of hyperpolarization-activated current (Ih ) have been characterized as a 'pain pacemaker', and thus considered to be a potential molecular target for pain therapeutics. Dorsal root ganglion (DRG) neurons express Nav1.7, a channel that is not present in central neurons or cardiac tissue. Gain-of-function mutations (GOF) of Nav1.7 identified in inherited erythromelalgia (IEM), a human genetic model of neuropathic pain, produce DRG neuron hyperexcitability, which in turn produces severe pain. We found that Ih increases rheobase and reduces firing probability in small DRG neurons expressing WT Nav1.7, and demonstrate that the amplitude of subthreshold oscillations is reduced by Ih . We also demonstrate that Ih reverses the hyperexcitability of DRG neurons expressing a GOF Nav1.7 mutation (L858H) that causes IEM. Our results show that, in contrast to cardiac cells and CNS neurons, Ih acts to stabilize DRG neuron excitability and prevents excessive firing.


Subject(s)
Erythromelalgia , Neuralgia , Animals , Humans , Erythromelalgia/genetics , Nociceptors , Rodentia , Ganglia, Spinal/physiology , NAV1.7 Voltage-Gated Sodium Channel/genetics , Neuralgia/genetics , Neurons/physiology , Action Potentials
18.
J Neurophysiol ; 130(3): 684-693, 2023 09 01.
Article in English | MEDLINE | ID: mdl-37584077

ABSTRACT

Action potential (AP) conduction depends on voltage-gated sodium channels, of which there are nine subtypes. The vagus nerve, comprising sensory afferent fibers and efferent parasympathetic fibers, provides autonomic regulation of visceral organs, but the voltage-gated sodium channels (NaV1) subtypes involved in its AP conduction are poorly defined. We studied the A- and C-waves of electrically stimulated compound action potentials (CAPs) of the mouse and rat vagus nerves with and without NaV1 inhibitor administration: tetrodotoxin (TTX), PF-05089771 (mouse NaV1.7), ProTX-II (NaV1.7), ICA-121341 (NaV1.1, NaV1.3, and NaV1.6), LSN-3049227 (NaV1.2, NaV1.6, and NaV1.7), and A-803467 (NaV1.8). We show that TTX-sensitive NaV1 channels are essential for all vagal AP conduction. PF-05089771 but not ICA-121341 inhibited the mouse A-wave, which was abolished by LSN-3049227, suggesting roles for NaV1.7 and NaV1.2. The mouse C-wave was abolished by LSN-3049227 and a combination of PF-05089771 and ICA-121341, suggesting roles for NaV1.7 and NaV1.6. The rat A-wave was inhibited by ProTX-II, ICA-121341, and a combination of these inhibitors but only abolished by LSN-3049227, suggesting roles for NaV1.7, NaV1.6, and NaV1.2. The rat C-wave was abolished by LSN-3049227 and a combination of ProTX-II and ICA-121341, suggesting roles for NaV1.7 and NaV1.6. A-803467 also inhibited the mouse and rat CAP suggesting a cooperative role for the TTX-resistant NaV1.8. Overall, our data demonstrate that multiple NaV1 subtypes contribute to vagal CAPs, with NaV1.7 and NaV1.8 playing predominant roles and NaV1.6 and NaV1.2 contributing to a different extent based on nerve fiber type and species. Inhibition of these NaV1 may impact autonomic regulation of visceral organs.NEW & NOTEWORTHY Distinct NaV1 channels are involved in action potential (AP) initiation and conduction from afferent terminals within specific organs. Here, we have identified the NaV1 necessary for AP conduction in the entire murine and rat vagus nerve. We show TTX-sensitive channels are essential for all AP conduction, predominantly NaV1.7 with NaV1.2 and NaV1.6 playing lesser roles depending on the species and fiber type. In addition, we show that NaV1.8 is also essential for most axonal AP conduction.


Subject(s)
Voltage-Gated Sodium Channels , Mice , Rats , Animals , Action Potentials/physiology , Voltage-Gated Sodium Channels/physiology , Tetrodotoxin/pharmacology , Vagus Nerve/physiology
19.
J Peripher Nerv Syst ; 28(4): 597-607, 2023 12.
Article in English | MEDLINE | ID: mdl-37555797

ABSTRACT

BACKGROUND AND AIMS: Voltage-gated sodium channel Nav1.7, encoded by the SCN9A gene, has been linked to diverse painful peripheral neuropathies, represented by the inherited erythromelalgia (EM) and paroxysmal extreme pain disorder (PEPD). The aim of this study was to determine the genetic etiology of patients experiencing neuropathic pain, and shed light on the underlying pathogenesis. METHODS: We enrolled eight patients presenting with early-onset painful peripheral neuropathies, consisting of six cases exhibiting EM/EM-like disorders and two cases clinically diagnosed with PEPD. We conducted a gene-panel sequencing targeting 18 genes associated with hereditary sensory and/or autonomic neuropathy. We introduced novel SCN9A mutation (F1624S) into a GFP-2A-Nav1.7rNS plasmid, and the constructs were then transiently transfected into HEK293 cells. We characterized both wild-type and F1624S Nav1.7 channels using an automated high-throughput patch-clamp system. RESULTS: From two patients displaying EM-like/EM phenotypes, we identified two SCN9A mutations, I136V and P1308L. Among two patients diagnosed with PEPD, we found two additional mutations in SCN9A, F1624S (novel) and A1632E. Patch-clamp analysis of Nav1.7-F1624S revealed depolarizing shifts in both steady-state fast inactivation (17.4 mV, p < .001) and slow inactivation (5.5 mV, p < .001), but no effect on channel activation was observed. INTERPRETATION: Clinical features observed in our patients broaden the phenotypic spectrum of SCN9A-related pain disorders, and the electrophysiological analysis enriches the understanding of genotype-phenotype association caused by Nav1.7 gain-of-function mutations.


Subject(s)
Erythromelalgia , Peripheral Nervous System Diseases , Humans , HEK293 Cells , NAV1.7 Voltage-Gated Sodium Channel/genetics , Erythromelalgia/genetics , Erythromelalgia/pathology , Pain , Mutation/genetics
20.
Proc Natl Acad Sci U S A ; 120(32): e2217800120, 2023 08 08.
Article in English | MEDLINE | ID: mdl-37498871

ABSTRACT

Small molecules directly targeting the voltage-gated sodium channel (VGSC) NaV1.7 have not been clinically successful. We reported that preventing the addition of a small ubiquitin-like modifier onto the NaV1.7-interacting cytosolic collapsin response mediator protein 2 (CRMP2) blocked NaV1.7 function and was antinociceptive in rodent models of neuropathic pain. Here, we discovered a CRMP2 regulatory sequence (CRS) unique to NaV1.7 that is essential for this regulatory coupling. CRMP2 preferentially bound to the NaV1.7 CRS over other NaV isoforms. Substitution of the NaV1.7 CRS with the homologous domains from the other eight VGSC isoforms decreased NaV1.7 currents. A cell-penetrant decoy peptide corresponding to the NaV1.7-CRS reduced NaV1.7 currents and trafficking, decreased presynaptic NaV1.7 expression, reduced spinal CGRP release, and reversed nerve injury-induced mechanical allodynia. Importantly, the NaV1.7-CRS peptide did not produce motor impairment, nor did it alter physiological pain sensation, which is essential for survival. As a proof-of-concept for a NaV1.7 -targeted gene therapy, we packaged a plasmid encoding the NaV1.7-CRS in an AAV virus. Treatment with this virus reduced NaV1.7 function in both rodent and rhesus macaque sensory neurons. This gene therapy reversed and prevented mechanical allodynia in a model of nerve injury and reversed mechanical and cold allodynia in a model of chemotherapy-induced peripheral neuropathy. These findings support the conclusion that the CRS domain is a targetable region for the treatment of chronic neuropathic pain.


Subject(s)
Chronic Pain , Neuralgia , Animals , Hyperalgesia/chemically induced , Chronic Pain/genetics , Chronic Pain/therapy , Macaca mulatta/metabolism , Neuralgia/genetics , Neuralgia/therapy , NAV1.7 Voltage-Gated Sodium Channel/genetics , NAV1.7 Voltage-Gated Sodium Channel/metabolism , Ganglia, Spinal/metabolism , NAV1.8 Voltage-Gated Sodium Channel
SELECTION OF CITATIONS
SEARCH DETAIL
...