Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Language
Publication year range
1.
Toxicol Appl Pharmacol ; 332: 52-63, 2017 10 01.
Article in English | MEDLINE | ID: mdl-28733205

ABSTRACT

(+)-Dehydrofukinone (DHF), isolated from Nectandra grandiflora (Lauraceae) essential oil, induces sedation and anesthesia by modulation of GABAa receptors. However, no study has addressed whether DHF modulates other cellular events involved in the control of cellular excitability, such as seizure behavior. Therefore, the aim of the present study was to investigate the effect of DHF on cellular excitability and seizure behavior in mice. For this purpose, we used isolated nerve terminals (synaptosomes) to examine the effect of DHF on the plasma membrane potential, the involvement of GABAa receptors and the downstream activation of Ca2+ mobilization. Finally, we performed an in vivo assay in order to verify whether DHF could impact on seizures induced by pentylenetetrazole (PTZ) in mice. The results showed that DHF induced a GABA-dependent sustained hyperpolarization, sensitive to flumazenil and absent in low-[Cl-] medium. Additionally, (1-100µM) DHF decreased KCl-evoked calcium mobilization over time in a concentration-dependent manner and this effect was prevented by flumazenil. DHF increased the latency to myoclonic jerks (10mg/kg), delayed the onset of generalized tonic-clonic seizures (10, 30 and 100mg/kg), and these effects were also blocked by the pretreatment with flumazenil. Our data indicate that DHF has anticonvulsant properties and the molecular target underlying this effect is likely to be the facilitation of GABAergic neuronal inhibition. The present study highlights the therapeutic potential of the natural compound DHF as a suppressor of neuronal excitability.


Subject(s)
GABA Modulators/pharmacology , Membrane Potentials/drug effects , Receptors, GABA-A/metabolism , Seizures/drug therapy , Sesquiterpenes/pharmacology , Animals , Anticonvulsants/pharmacology , Female , Flumazenil/pharmacology , Mice , Pentylenetetrazole , Seizures/chemically induced
2.
Braz. j. med. biol. res ; 49(1): e4872, 2016. tab, graf
Article in English | LILACS | ID: biblio-951644

ABSTRACT

(+)-Dehydrofukinone (DHF) is a major component of the essential oil of Nectandra grandiflora (Lauraceae), and exerts a depressant effect on the central nervous system of fish. However, the neuronal mechanism underlying DHF action remains unknown. This study aimed to investigate the action of DHF on GABAA receptors using a silver catfish (Rhamdia quelen) model. Additionally, we investigated the effect of DHF exposure on stress-induced cortisol modulation. Chemical identification was performed using gas chromatography-mass spectrometry and purity was evaluated using gas chromatography with a flame ionization detector. To an aquarium, we applied between 2.5 and 50 mg/L DHF diluted in ethanol, in combination with 42.7 mg/L diazepam. DHF within the range of 10-20 mg/L acted collaboratively in combination with diazepam, but the sedative action of DHF was reversed by 3 mg/L flumazenil. Additionally, fish exposed for 24 h to 2.5-20 mg/L DHF showed no side effects and there was sustained sedation during the first 12 h of drug exposure with 10-20 mg/L DHF. DHF pretreatment did not increase plasma cortisol levels in fish subjected to a stress protocol. Moreover, the stress-induced cortisol peak was absent following pretreatment with 20 mg/L DHF. DHF proved to be a relatively safe sedative or anesthetic, which interacts with GABAergic and cortisol pathways in fish.


Subject(s)
Animals , Sesquiterpenes/pharmacology , Stress, Physiological/drug effects , Catfishes/metabolism , Hydrocortisone/metabolism , Oils, Volatile/administration & dosage , Lauraceae/chemistry , Hydrocortisone/blood , Plant Extracts/chemistry , Flumazenil/pharmacology , GABA Modulators/pharmacology , Diazepam/pharmacology , Flame Ionization , Hypnotics and Sedatives/pharmacology , Anesthetics/pharmacology , Gas Chromatography-Mass Spectrometry
SELECTION OF CITATIONS
SEARCH DETAIL
...