Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 403
Filter
1.
J Med Virol ; 96(7): e29768, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38978388

ABSTRACT

The vagus nerve circuit, operating through the alpha-7 nicotinic acetylcholine receptor (α7 nAChR), regulates the inflammatory response by influencing immune cells. However, the role of vagal-α7 nAChR signaling in influenza virus infection is unclear. In particular, does vagal-α7 nAChR signaling impact the infection of alveolar epithelial cells (AECs), the primary target cells of influenza virus? Here, we demonstrated a distinct role of α7 nAChR in type II AECs compared to its role in immune cells during influenza infection. We found that deletion of Chrna7 (encoding gene of α7 nAChR) in type II AECs or disruption of vagal circuits reduced lung influenza infection and protected mice from influenza-induced lung injury. We further unveiled that activation of α7 nAChR enhanced influenza infection through PTP1B-NEDD4L-ASK1-p38MAPK pathway. Mechanistically, activation of α7 nAChR signaling decreased p38MAPK phosphorylation during infection, facilitating the nuclear export of influenza viral ribonucleoproteins and thereby promoting infection. Taken together, our findings reveal a mechanism mediated by vagal-α7 nAChR signaling that promotes influenza viral infection and exacerbates disease severity. Targeting vagal-α7 nAChR signaling may offer novel strategies for combating influenza virus infections.


Subject(s)
Lung , Orthomyxoviridae Infections , Signal Transduction , Vagus Nerve , alpha7 Nicotinic Acetylcholine Receptor , Animals , alpha7 Nicotinic Acetylcholine Receptor/metabolism , alpha7 Nicotinic Acetylcholine Receptor/genetics , Vagus Nerve/metabolism , Mice , Orthomyxoviridae Infections/virology , Lung/virology , Lung/pathology , Mice, Inbred C57BL , Alveolar Epithelial Cells/virology , Alveolar Epithelial Cells/metabolism , Humans , Mice, Knockout
2.
Clin Sci (Lond) ; 138(14): 883-900, 2024 Jul 17.
Article in English | MEDLINE | ID: mdl-38959295

ABSTRACT

Hypertension is a leading risk factor for disease burden worldwide. Vascular contraction and remodeling contribute to the development of hypertension. Glutathione S-transferase P1 (Gstp1) plays several critical roles in both normal and neoplastic cells. In this study, we investigated the effect of Gstp1 on hypertension as well as on vascular smooth muscle cell (VSMC) contraction and phenotypic switching. We identified the higher level of Gstp1 in arteries and VSMCs from hypertensive rats compared with normotensive rats for the first time. We then developed Adeno-associated virus 9 (AAV9) mediated Gstp1 down-regulation and overexpression in rats and measured rat blood pressure by using the tail-cuff and the carotid catheter method. We found that the blood pressure of spontaneously hypertensive rats (SHR) rose significantly with Gstp1 down-regulation and reduced apparently after Gstp1 overexpression. Similar results were obtained from the observations of 2-kidney-1-clip renovascular (2K1C) hypertensive rats. Gstp1 did not influence blood pressure of normotensive Wistar-Kyoto (WKY) rats and Sprague-Dawley (SD) rats. Further in vitro study indicated that Gstp1 knockdown in SHR-VSMCs promoted cell proliferation, migration, dedifferentiation and contraction, while Gstp1 overexpression showed opposite effects. Results from bioinformatic analysis showed that the Apelin/APLNR system was involved in the effect of Gstp1 on SHR-VSMCs. The rise in blood pressure of SHR induced by Gstp1 knockdown could be reversed by APLNR antagonist F13A. We further found that Gstp1 enhanced the association between APLNR and Nedd4 E3 ubiquitin ligases to induce APLNR ubiquitination degradation. Thus, in the present study, we discovered a novel anti-hypertensive role of Gstp1 in hypertensive rats and provided the experimental basis for designing an effective anti-hypertensive therapeutic strategy.


Subject(s)
Blood Pressure , Glutathione S-Transferase pi , Hypertension , Muscle, Smooth, Vascular , Nedd4 Ubiquitin Protein Ligases , Rats, Inbred SHR , Rats, Inbred WKY , Rats, Sprague-Dawley , Ubiquitination , Animals , Male , Rats , Cell Proliferation , Glutathione S-Transferase pi/metabolism , Glutathione S-Transferase pi/genetics , Hypertension/metabolism , Hypertension/physiopathology , Muscle, Smooth, Vascular/metabolism , Myocytes, Smooth Muscle/metabolism , Nedd4 Ubiquitin Protein Ligases/metabolism , Nedd4 Ubiquitin Protein Ligases/genetics
3.
Biochem Pharmacol ; 226: 116338, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38848780

ABSTRACT

ITFG2, as an immune-modulatory intracellular protein that modulate the fate of B cells and negatively regulates mTORC1 signaling. ITFG2 is highly expressed in the heart, but its pathophysiological function in heart disease is unclear. In this study, we found that in MI mice, overexpression of ITFG2 via an AAV9 vector significantly reduced the infarct size and ameliorated cardiac function. Knockdown of endogenous ITFG2 by shRNA partially aggravated ischemia-induced cardiac dysfunction. In cardiac-specific ITFG2 transgenic (TG) mice, myocardial infarction size was smaller, eject fraction (EF) and fractional shortening (FS) was higher compared to those in wild-type (WT) mice, suggesting ITFG2 reversed cardiac dysfunction induced by MI. In hypoxic neonatal cardiomyocytes (NMCMs), overexpression of ITFG2 maintained mitochondrial function by increasing intracellular ATP production, reducing ROS levels, and preserving the mitochondrial membrane potential (MMP). Overexpression of ITFG2 reversed the mitochondrial respiratory dysfunction in NMCMs induced by hypoxia. Knockdown of endogenous ITFG2 by siRNA did the opposite. Mechanism, ITFG2 formed a complex with NEDD4-2 and ATP 5b and inhibited the binding of NEDD4-2 with ATP 5b leading to the reduction ubiquitination of ATP 5b. Our findings reveal a previously unknown ability of ITFG2 to protect the heart against ischemic injury by interacting with ATP 5b and thereby regulating mitochondrial function. ITFG2 has promise as a novel strategy for the clinical management of MI.


Subject(s)
Mice, Inbred C57BL , Mice, Transgenic , Mitochondria, Heart , Myocardial Infarction , Myocytes, Cardiac , Animals , Myocardial Infarction/metabolism , Myocardial Infarction/pathology , Myocardial Infarction/immunology , Mice , Mitochondria, Heart/metabolism , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/pathology , Male , Cells, Cultured
4.
Mol Ther ; 2024 May 31.
Article in English | MEDLINE | ID: mdl-38822526

ABSTRACT

Vagus nerve regulates viral infection and inflammation via the alpha 7 nicotinic acetylcholine receptor (α7 nAChR); however, the role of α7 nAChR in ZIKA virus (ZIKV) infection, which can cause severe neurological diseases such as microcephaly and Guillain-Barré syndrome, remains unknown. Here, we first examined the role of α7 nAChR in ZIKV infection in vitro. A broad effect of α7 nAChR activation was identified in limiting ZIKV infection in multiple cell lines. Combined with transcriptomics analysis, we further demonstrated that α7 nAChR activation promoted autophagy and ferroptosis pathways to limit cellular ZIKV viral loads. Additionally, activation of α7 nAChR prevented ZIKV-induced p62 nucleus accumulation, which mediated an enhanced autophagy pathway. By regulating proteasome complex and an E3 ligase NEDD4, activation of α7 nAChR resulted in increased amount of cellular p62, which further enhanced the ferroptosis pathway to reduce ZIKV infection. Moreover, utilizing in vivo neonatal mouse models, we showed that α7 nAChR is essential in controlling the disease severity of ZIKV infection. Taken together, our findings identify an α7 nAChR-mediated effect that critically contributes to limiting ZIKV infection, and α7 nAChR activation offers a novel strategy for combating ZIKV infection and its complications.

5.
Adv Sci (Weinh) ; : e2400560, 2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38874331

ABSTRACT

Intrinsic plasticity, a fundamental process enabling neurons to modify their intrinsic properties, plays a crucial role in shaping neuronal input-output function and is implicated in various neurological and psychiatric disorders. Despite its importance, the underlying molecular mechanisms of intrinsic plasticity remain poorly understood. In this study, a new ubiquitin ligase adaptor, protein tyrosine phosphatase receptor type N (PTPRN), is identified as a regulator of intrinsic neuronal excitability in the context of temporal lobe epilepsy. PTPRN recruits the NEDD4 Like E3 Ubiquitin Protein Ligase (NEDD4L) to NaV1.2 sodium channels, facilitating NEDD4L-mediated ubiquitination, and endocytosis of NaV1.2. Knockout of PTPRN in hippocampal granule cells leads to augmented NaV1.2-mediated sodium currents and higher intrinsic excitability, resulting in increased seizure susceptibility in transgenic mice. Conversely, adeno-associated virus-mediated delivery of PTPRN in the dentate gyrus region decreases intrinsic excitability and reduces seizure susceptibility. Moreover, the present findings indicate that PTPRN exerts a selective modulation effect on voltage-gated sodium channels. Collectively, PTPRN plays a significant role in regulating intrinsic excitability and seizure susceptibility, suggesting a potential strategy for precise modulation of NaV1.2 channels' function.

6.
Exp Neurol ; 379: 114876, 2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38942265

ABSTRACT

BACKGROUND: Hydrogen (H2) has emerged as a potential therapeutic intervention for traumatic brain injury (TBI). However, the precise mechanism underlying H2's neuroprotective effects in TBI remain incompletely understood. METHODS: TBI mouse model was induced using the controlled cortical impact (CCI) method, and a cell model was established by exposing astrocytes to lipopolysaccharide (LPS). Cell viability was detected by CCK-8 kits. Cell apoptosis was measured by flow cytometry. ELISA was used to detect cytokine quantification. Protein and gene expression was detected by western blot and RT-PCR analysis. Co-immunoprecipitation (CO-IP) were employed for protein-protein interactions. Morris water maze test and rotarod test were applied for TBI mice. RESULTS: H2 treatment effectively inhibited the LPS-induced cell injury and cell apoptosis in astrocytes. NEDD4 expression was increased following H2 treatment coupled with enhanced mitophagy in LPS-treated astrocytes. Overexpression of NEDD4 and down-regulation of connexin 43 (CX43) mirrored the protective effects of H2 treatment in LPS-exposed astrocytes. NEDD4 interacts CX43 to regulates the ubiquitinated degradation of CX43. While overexpression of CX43 reversed the protective effects of H2 treatment in LPS-exposed astrocytes. In addition, H2 treatment significantly alleviated brain injury in TBI mouse model. CONCLUSION: H2 promoted NEDD4-CX43 mediated mitophagy to protect brain injury induced by TBI, highlighting a novel pathway underlying the therapeutic effects of H2 in TBI.

7.
Cell Commun Signal ; 22(1): 302, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38831335

ABSTRACT

The ubiquitination-mediated protein degradation exerts a vital role in the progression of multiple tumors. NEDD4L, which belongs to the E3 ubiquitin ligase NEDD4 family, is related to tumor genesis, metastasis and drug resistance. However, the anti-tumor role of NEDD4L in esophageal carcinoma, and the potential specific recognition substrate remain unclear. Based on public esophageal carcinoma database and clinical sample data, it was discovered in this study that the expression of NEDD4L in esophageal carcinoma was apparently lower than that in atypical hyperplastic esophageal tissue and esophageal squamous epithelium. Besides, patients with high expression of NEDD4L in esophageal carcinoma tissue had longer progression-free survival than those with low expression. Experiments in vivo and in vitro also verified that NEDD4L suppressed the growth and metastasis of esophageal carcinoma. Based on co-immunoprecipitation and proteome analysis, the NEDD4L ubiquitination-degraded protein ITGB4 was obtained. In terms of the mechanism, the HECT domain of NEDD4L specifically bound to the Galx-ß domain of ITGB4, which modified the K915 site of ITGB4 in an ubiquitination manner, and promoted the ubiquitination degradation of ITGB4, thus suppressing the malignant phenotype of esophageal carcinoma.


Subject(s)
Disease Progression , Esophageal Neoplasms , Integrin beta4 , Nedd4 Ubiquitin Protein Ligases , Proteolysis , Ubiquitination , Esophageal Neoplasms/pathology , Esophageal Neoplasms/metabolism , Esophageal Neoplasms/genetics , Humans , Nedd4 Ubiquitin Protein Ligases/metabolism , Nedd4 Ubiquitin Protein Ligases/genetics , Animals , Cell Line, Tumor , Integrin beta4/metabolism , Integrin beta4/genetics , Mice, Nude , Mice , Cell Proliferation , Male , Gene Expression Regulation, Neoplastic , Female
8.
Environ Toxicol ; 2024 May 11.
Article in English | MEDLINE | ID: mdl-38733337

ABSTRACT

Osteoarthritis (OA) is a prevalent degenerative joint disease with a lack of effective therapeutic. Chondrocyte ferroptosis contributes to the progression of OA. PUM2 is shown to exacerbate ischemia-reperfusion-induced neuroinflammation by promoting ferroptosis, but its role in OA remains unexplored. Here, primary mouse chondrocytes were stimulated with IL-1ß to mimic OA chondrocyte injury in vitro. And PUM2 was upregulated in OA cartilage tissues and IL-1ß-induced chondrocytes. Silencing PUM2 alleviated IL-1ß-induced chondrocyte inflammation and ECM degradation. Mechanistically, PUM2 facilitated the degradation of NEDD4 mRNA by binding to the 3'UTR of NEDD4 mRNA, which in turn inhibited NEDD4 induced PTEN ubiquitination and degradation. Consistently, NEDD4 silencing reversed the ameliorative effect of PUM2 knockdown on chondrocyte injury, and overexpression of PTEN abolished the improved role of NEDD4 in chondrocyte injury. Moreover, PTEN aggravated IL-1ß-induced ferroptosis in chondrocytes through the Nrf2/HO-1 pathway by increasing the levels of Fe2+, ROS, MDA, and ACSL4 protein, decreasing the activity of SOD and the levels of GSH and GPX4 protein, and aggravating mitochondrial damage. Additionally, destabilized medial meniscus (DMM) were conducted to establish the OA mouse model, and adenovirus-mediated PUM2 shRNA was administered intra-articularly. Silencing PUM2 attenuated OA-induced cartilage damage in vivo. In conclusion, PUM2 promoted OA progression through PTEN-mediated chondrocyte ferroptosis by facilitating NEDD4 mRNA degradation.

9.
Biomolecules ; 14(5)2024 May 13.
Article in English | MEDLINE | ID: mdl-38785984

ABSTRACT

Protein ubiquitination is an enzymatic cascade reaction and serves as an important protein post-translational modification (PTM) that is involved in the vast majority of cellular life activities. The key enzyme in the ubiquitination process is E3 ubiquitin ligase (E3), which catalyzes the binding of ubiquitin (Ub) to the protein substrate and influences substrate specificity. In recent years, the relationship between the subfamily of neuron-expressed developmental downregulation 4 (NEDD4), which belongs to the E3 ligase system, and digestive diseases has drawn widespread attention. Numerous studies have shown that NEDD4 and NEDD4L of the NEDD4 family can regulate the digestive function, as well as a series of related physiological and pathological processes, by controlling the subsequent degradation of proteins such as PTEN, c-Myc, and P21, along with substrate ubiquitination. In this article, we reviewed the appropriate functions of NEDD4 and NEDD4L in digestive diseases including cell proliferation, invasion, metastasis, chemotherapeutic drug resistance, and multiple signaling pathways, based on the currently available research evidence for the purpose of providing new ideas for the prevention and treatment of digestive diseases.


Subject(s)
Nedd4 Ubiquitin Protein Ligases , Ubiquitination , Humans , Nedd4 Ubiquitin Protein Ligases/metabolism , Nedd4 Ubiquitin Protein Ligases/genetics , Digestive System Diseases/metabolism , Digestive System Diseases/pathology , Animals , Signal Transduction , Cell Proliferation , Ubiquitin-Protein Ligases/metabolism , Ubiquitin-Protein Ligases/genetics
10.
Mol Med ; 30(1): 69, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38783226

ABSTRACT

BACKGROUND: The Enoyl-CoA hydratase/isomerase family plays a crucial role in the metabolism of tumors, being crucial for maintaining the energy balance and biosynthetic needs of cancer cells. However, the enzymes within this family that are pivotal in gastric cancer (GC) remain unclear. METHODS: We employed bioinformatics techniques to identify key Enoyl-CoA hydratase/isomerase in GC. The expression of ECHDC2 and its clinical significance were validated through tissue microarray analysis. The role of ECHDC2 in GC was further assessed using colony formation assays, CCK8 assay, EDU assay, Glucose and lactic acid assay, and subcutaneous tumor experiments in nude mice. The mechanism of action of ECHDC2 was validated through Western blotting, Co-immunoprecipitation, and immunofluorescence experiments. RESULTS: Our analysis of multiple datasets indicates that low expression of ECHDC2 in GC is significantly associated with poor prognosis. Overexpression of ECHDC2 notably inhibits aerobic glycolysis and proliferation of GC cells both in vivo and in vitro. Further experiments revealed that overexpression of ECHDC2 suppresses the P38 MAPK pathway by inhibiting the protein level of MCCC2, thereby restraining glycolysis and proliferation in GC cells. Ultimately, it was discovered that ECHDC2 promotes the ubiquitination and subsequent degradation of MCCC2 protein by binding with NEDD4. CONCLUSIONS: These findings underscore the pivotal role of the ECHDC2 in regulating aerobic glycolysis and proliferation in GC cells, suggesting ECHDC2 as a potential therapeutic target in GC.


Subject(s)
Cell Proliferation , Nedd4 Ubiquitin Protein Ligases , Stomach Neoplasms , Animals , Female , Humans , Male , Mice , Cell Line, Tumor , Enoyl-CoA Hydratase/metabolism , Enoyl-CoA Hydratase/genetics , Gene Expression Regulation, Neoplastic , Glycolysis , Mice, Nude , Nedd4 Ubiquitin Protein Ligases/metabolism , Nedd4 Ubiquitin Protein Ligases/genetics , Protein Binding , Proteolysis , Stomach Neoplasms/metabolism , Stomach Neoplasms/pathology , Stomach Neoplasms/genetics , Ubiquitination , Warburg Effect, Oncologic
11.
Int J Neurosci ; : 1-10, 2024 May 13.
Article in English | MEDLINE | ID: mdl-38712596

ABSTRACT

BACKGROUND: The underlying mechanism of SENP5 influences neuronal regeneration and apoptosis in the context of TBI remains largely unexplored. METHODS: In the present study, PC12 cells treated with scratch for 24 h were regarded as a TBI cell model. The expression of SENP5 in PC12 cells was measured via Quantitative Real-Time PCR (qRT-PCR) and western blot assays. Cell Counting Kit 8 (CCK-8) and Flow cytometry assays were used to evaluate the activity of TBI cells. In addition, we assessed the effect of inhibiting SENP5 in vivo on neurological function deficits and apoptosis in the hippocampal tissues of TBI rats. The relationship between SENP5 and NEDD4L/TCF3 axis was proved via immunoprecipitation (IP) and double luciferase assays. RESULTS: Following TBI cell modeling, an increase in SENP5 expression has been found. Moreover, TBI modeling resulted in reduced cell viability and increased apoptosis, which was rescue by inhibition of SENP5. In vivo experiments demonstrated that SENP5 inhibition could mitigate TBI-induced brain injury in rats. Specifically, this inhibition led to lower neurological impairment scores, improved neuronal morphology and structure, and decreased neuronal apoptosis. In addition, NEDD4L has been proved to be relevant to the enhanced stability of the transcription factor TCF3, which in turn promoted the expression of SENP5. CONCLUSIONS: This study reveals that inhibiting SENP5 can alleviate brain injury following TBI. NEDD4L/TCF3 axis can regulate the expression of SENP5 to affect the development of TBI. However, SENP5 regulates downstream targets of TBI and important mechanisms need to be further explored.

12.
Int J Biol Macromol ; 269(Pt 2): 131976, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38697427

ABSTRACT

Idiopathic pulmonary fibrosis (IPF) is a chronic and lethal lung disease characterized by progressive lung scarring. This study aims to elucidate the role of the E3 ubiquitin ligase NEDD4 in the ubiquitination of YY1 and its subsequent impact on TAB1 transcription, revealing a possible molecular mechanism in the development of IPF. Through bioinformatics analysis and both in vitro and in vivo experiments, we observed differential expression levels of NEDD4 and YY1 between normal and IPF samples, identifying NEDD4 as an upstream E3 ubiquitin ligase of YY1. Furthermore, binding sites for the transcription factor YY1 on the promoter region of TAB1 were discovered, indicating a direct interaction. In vitro experiments using HEPF cells showed that NEDD4 mediates the ubiquitination and degradation of YY1, leading to suppressed TAB1 transcription, thereby inhibiting cell proliferation and fibrogenesis. These findings were corroborated by in vivo experiments in an IPF mouse model, where the ubiquitination pathway facilitated by NEDD4 attenuated IPF progression through the downregulation of YY1 and TAB1 transcription. These results suggest that NEDD4 plays a crucial role in the development of IPF by modulating YY1 ubiquitination and TAB1 transcription, providing new insights into potential therapeutic targets for treating IPF.


Subject(s)
Idiopathic Pulmonary Fibrosis , Nedd4 Ubiquitin Protein Ligases , Ubiquitination , YY1 Transcription Factor , Nedd4 Ubiquitin Protein Ligases/metabolism , Nedd4 Ubiquitin Protein Ligases/genetics , YY1 Transcription Factor/metabolism , YY1 Transcription Factor/genetics , Humans , Animals , Idiopathic Pulmonary Fibrosis/metabolism , Idiopathic Pulmonary Fibrosis/pathology , Idiopathic Pulmonary Fibrosis/genetics , Mice , Cell Proliferation , Adaptor Proteins, Signal Transducing/metabolism , Adaptor Proteins, Signal Transducing/genetics , Disease Models, Animal , Male
13.
Am J Cancer Res ; 14(4): 1523-1544, 2024.
Article in English | MEDLINE | ID: mdl-38726263

ABSTRACT

Although sorafenib is the first-line therapeutic agent for advanced hepatocellular carcinoma (HCC), the development of drug resistance in HCC cells limits its clinical efficacy. However, the key factors involved in mediating the sorafenib resistance of HCC cells and the underlying mechanisms have not been elucidated. In this study, we generated sorafenib-resistant HCC cell lines, and our data demonstrate that HLA-F locus-adjacent transcript 10 (FAT10), a ubiquitin-like protein, is markedly upregulated in sorafenib-resistant HCC cells and that reducing the expression of FAT10 in sorafenib-resistant HCC cells increases sensitivity to sorafenib. Mechanistically, FAT10 stabilizes the expression of the PTEN-specific E3 ubiquitin ligase NEDD4 that causes downregulation of PTEN, thereby inducing AKT-mediated autophagy and promoting the resistance of HCC cells to sorafenib. Moreover, we screened the small molecule Compound 7695-0983, which increases the sensitivity of sorafenib-resistant HCC cells to sorafenib by inhibiting the expression of FAT10 to inhibit NEDD4-PTEN/AKT axis-mediated autophagy. Collectively, our preclinical findings identify FAT10 as a key factor in the sorafenib resistance of HCC cells and elucidate its underlying mechanism. This study provides new mechanistic insight for the exploitation of novel sorafenib-based tyrosine kinase inhibitor (TKI)-targeted drugs for treating advanced HCC.

14.
J Transl Med ; 22(1): 465, 2024 May 16.
Article in English | MEDLINE | ID: mdl-38755664

ABSTRACT

Disturbance in mitochondrial homeostasis within proximal tubules is a critical characteristic associated with diabetic kidney disease (DKD). CaMKKß/AMPK signaling plays an important role in regulating mitochondrial homeostasis. Despite the downregulation of CaMKKß in DKD pathology, the underlying mechanism remains elusive. The expression of NEDD4L, which is primarily localized to renal proximal tubules, is significantly upregulated in the renal tubules of mice with DKD. Coimmunoprecipitation (Co-IP) assays revealed a physical interaction between NEDD4L and CaMKKß. Moreover, deletion of NEDD4L under high glucose conditions prevented rapid CaMKKß protein degradation. In vitro studies revealed that the aberrant expression of NEDD4L negatively influences the protein stability of CaMKKß. This study also explored the role of NEDD4L in DKD by using AAV-shNedd4L in db/db mice. These findings confirmed that NEDD4L inhibition leads to a decrease in urine protein excretion, tubulointerstitial fibrosis, and oxidative stress, and mitochondrial dysfunction. Further in vitro studies demonstrated that si-Nedd4L suppressed mitochondrial fission and reactive oxygen species (ROS) production, effects antagonized by si-CaMKKß. In summary, the findings provided herein provide strong evidence that dysregulated NEDD4L disturbs mitochondrial homeostasis by negatively modulating CaMKKß in the context of DKD. This evidence underscores the potential of therapeutic interventions targeting NEDD4L and CaMKKß to safeguard renal tubular function in the management of DKD.


Subject(s)
Calcium-Calmodulin-Dependent Protein Kinase Kinase , Diabetic Nephropathies , Down-Regulation , Homeostasis , Mitochondria , Nedd4 Ubiquitin Protein Ligases , Animals , Nedd4 Ubiquitin Protein Ligases/metabolism , Nedd4 Ubiquitin Protein Ligases/genetics , Diabetic Nephropathies/metabolism , Diabetic Nephropathies/pathology , Mitochondria/metabolism , Calcium-Calmodulin-Dependent Protein Kinase Kinase/metabolism , Mice, Inbred C57BL , Mice , Humans , Reactive Oxygen Species/metabolism , Male , Oxidative Stress , Mitochondrial Dynamics , Protein Stability , Proteolysis
15.
Elife ; 122024 May 15.
Article in English | MEDLINE | ID: mdl-38747706

ABSTRACT

Quiescence (G0) maintenance and exit are crucial for tissue homeostasis and regeneration in mammals. Here, we show that methyl-CpG binding protein 2 (Mecp2) expression is cell cycle-dependent and negatively regulates quiescence exit in cultured cells and in an injury-induced liver regeneration mouse model. Specifically, acute reduction of Mecp2 is required for efficient quiescence exit as deletion of Mecp2 accelerates, while overexpression of Mecp2 delays quiescence exit, and forced expression of Mecp2 after Mecp2 conditional knockout rescues cell cycle reentry. The E3 ligase Nedd4 mediates the ubiquitination and degradation of Mecp2, and thus facilitates quiescence exit. A genome-wide study uncovered the dual role of Mecp2 in preventing quiescence exit by transcriptionally activating metabolic genes while repressing proliferation-associated genes. Particularly disruption of two nuclear receptors, Rara or Nr1h3, accelerates quiescence exit, mimicking the Mecp2 depletion phenotype. Our studies unravel a previously unrecognized role for Mecp2 as an essential regulator of quiescence exit and tissue regeneration.


Subject(s)
Methyl-CpG-Binding Protein 2 , Animals , Methyl-CpG-Binding Protein 2/metabolism , Methyl-CpG-Binding Protein 2/genetics , Mice , Mice, Knockout , Receptors, Cytoplasmic and Nuclear/metabolism , Receptors, Cytoplasmic and Nuclear/genetics , Cell Cycle , Liver Regeneration/genetics , Gene Expression Regulation
16.
J Invest Dermatol ; 2024 Apr 04.
Article in English | MEDLINE | ID: mdl-38580105

ABSTRACT

IL-6 signaling plays a crucial role in the survival and metastasis of skin cancer. NEDD4L acts as a suppressor of IL-6 signaling by targeting GP130 degradation. However, the effects of the NEDD4L-regulated IL-6/GP130 signaling pathway on skin cancer remain unclear. In this study, protein expression levels of NEDD4L and GP130 were measured in tumor tissues from patients with cutaneous squamous cell carcinoma. Skin tumors were induced in wild-type and Nedd4l-knockout mice, and activation of the IL-6/GP130/signal transducer and activator of transcription 3 signaling pathway was detected. The results indicated a negative correlation between the protein expression levels of NEDD4L and GP130 in cutaneous squamous cell carcinoma tissues from patients. Nedd4l deficiency significantly promoted 7,12-dimethylbenz[a]anthracene/12-O-tetradecanoylphorbol-13-acetate-induced skin tumorigenesis and benign-to-malignant conversion by activating the IL-6/GP130/signal transducer and activator of transcription 3 signaling pathway, which was abrogated by supplementation with the GP130 inhibitor SC144. Furthermore, our findings suggested that NEDD4L can interact with GP130 and promote its ubiquitination in skin tumors. In conclusion, our results indicate that NEDD4L could act as a tumor suppressor in skin cancer, and inhibition of GP130 could be a potential therapeutic method for treating this disease.

17.
CNS Neurosci Ther ; 30(4): e14685, 2024 04.
Article in English | MEDLINE | ID: mdl-38634270

ABSTRACT

OBJECTIVE: Neuronal precursor cells expressed developmentally down-regulated 4 (Nedd4) are believed to play a critical role in promoting the degradation of substrate proteins and are involved in numerous biological processes. However, the role of Nedd4 in intracerebral hemorrhage (ICH) remains unknown. This study aims to investigate the regulatory role of Nedd4 in the ICH model. METHODS: Male C57BL/6J mice were induced with ICH. Subsequently, the levels of glutathione peroxidase 4 (GPX4), malondialdehyde (MDA) concentration, iron content, mitochondrial morphology, as well as the expression of divalent metal transporter 1 (DMT1) and Nedd4 were assessed after ICH. Furthermore, the impact of Nedd4 overexpression was evaluated through analyses of hematoma area, ferroptosis, and neurobehavioral function. The mechanism underlying Nedd4-mediated degradation of DMT1 was elecidated using immunoprecipitation (IP) after ICH. RESULTS: Upon ICH, the level of DMT1 in the brain increased, but decreased when Nedd4 was overexpressed using Lentivirus, suggesting a negative correlation between Nedd4 and DMT1. Additionally, the degradation of DMT1 was inhibited after ICH. Furthermore, it was found that Nedd4 can interact with and ubiquitinate DMT1 at lysine residues 6, 69, and 277, facilitating the degradation of DMT1. Functional analysis indicated that overexpression of Nedd4 can alleviate ferroptosis and promote recovery following ICH. CONCLUSION: The results demonstrated that ferroptosis occurs via the Nedd4/DMT1 pathway during ICH, suggesting it potential as a valuable target to inhibit ferroptosis for the treatment of ICH.


Subject(s)
Cation Transport Proteins , Cerebral Hemorrhage , Ferroptosis , Nedd4 Ubiquitin Protein Ligases , Animals , Male , Mice , Brain/metabolism , Cerebral Hemorrhage/metabolism , Cerebral Hemorrhage/pathology , Ferroptosis/genetics , Mice, Inbred C57BL , Ubiquitination , Nedd4 Ubiquitin Protein Ligases/metabolism , Cation Transport Proteins/metabolism
18.
Cell Mol Life Sci ; 81(1): 171, 2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38597989

ABSTRACT

Intercellular communication via gap junctions has a fundamental role in regulating cell growth and tissue homeostasis, and its dysregulation may be involved in cancer development and radio- and chemotherapy resistance. Connexin43 (Cx43) is the most ubiquitously expressed gap junction channel protein in human tissues. Emerging evidence indicates that dysregulation of the sorting of Cx43 to lysosomes is important in mediating the loss of Cx43-based gap junctions in cancer cells. However, the molecular basis underlying this process is currently poorly understood. Here, we identified the E3 ubiquitin ligase ITCH as a novel regulator of intercellular communication via gap junctions. We demonstrate that ITCH promotes loss of gap junctions in cervical cancer cells, which is associated with increased degradation of Cx43 in lysosomes. The data further indicate that ITCH interacts with and regulates Cx43 ubiquitination and that the ITCH-induced loss of Cx43-based gap junctions requires its catalytic HECT (homologous to E6-AP C-terminus) domain. The data also suggest that the ability of ITCH to efficiently promote loss of Cx43-based gap junctions and degradation of Cx43 depends on a functional PY (PPXY) motif in the C-terminal tail of Cx43. Together, these data provide new insights into the molecular basis underlying the degradation of Cx43 and have implications for the understanding of how intercellular communication via gap junctions is lost during cancer development.


Subject(s)
Connexin 43 , Ubiquitin-Protein Ligases , Humans , Cell Communication , Connexin 43/genetics , Connexins , Gap Junctions , Lysosomes , Ubiquitin-Protein Ligases/genetics
19.
J Neurochem ; 2024 Mar 18.
Article in English | MEDLINE | ID: mdl-38497582

ABSTRACT

Stressful life events contribute to the onset of major depressive disorder (MDD). We recently demonstrated abnormalities in ubiquitination in the pathophysiology of MDD. However, the underlying molecular mechanisms remain unclear. We investigated the involvement of the ubiquitination system-mediated glutamatergic dysfunction in social impairment induced by chronic social defeat stress (CSDS). Adult C57BL/6J mice were exposed to aggressor ICR male mice for 10 consecutive days. Social impairment was induced by CSDS in the social interaction test 1 days after the last stress exposure. In terms of brain microdialysis, CSDS reduced depolarization-evoked glutamate release in the prefrontal cortex (PFC), which was reversed by a glutamate transporter 1 (GLT-1) inhibitor. Interestingly, the expression of ubiquitinated, but not total GLT-1, was decreased in the PFC of mice exposed to CSDS. The expression of neural precursor cells expressing developmentally downregulated gene 4-like (Nedd4L: E3 ligase for GLT-1), and ubiquitin-conjugating enzyme E2D2 (Ube2d2: E2 ubiquitin-conjugating enzyme for Nedd4L) was also reduced in CSDS mice. Furthermore, the downregulation of the Nedd4L-GLT-1 ubiquitination pathway decreased SIT ratio, but up-regulation increased it even in non-CSDS mice. Taken together, the decrease in GLT-1 ubiquitination may reduce the release of extracellular glutamate induced by high-potassium stimulation, which may lead to social impairment, while we could not find differences in GLT-1 ubiquitination between susceptible and resistant CSDS mice. In conclusion, GLT-1 ubiquitination could play a crucial role in the pathophysiology of MDD and is an attractive target for the development of novel antidepressants.

20.
J Cell Mol Med ; 28(8): 1-11, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38526036

ABSTRACT

Dysregulated angiogenesis leads to neovascularization, which can promote or exacerbate various diseases. Previous studies have proved that NEDD4L plays an important role in hypertension and atherosclerosis. Hence, we hypothesized that NEDD4L may be a critical regulator of endothelial cell (EC) function. This study aimed to define the role of NEDD4L in regulating EC angiogenesis and elucidate their underlying mechanisms. Loss- and gain-of-function of NEDD4L detected the angiogenesis and mobility role in human umbilical vein endothelial cells (HUVECs) using Matrigel tube formation assay, cell proliferation and migration. Pharmacological pathway inhibitors and western blot were used to determine the underlying mechanism of NEDD4L-regulated endothelial functions. Knockdown of NEDD4L suppressed tube formation, cell proliferation and cell migration in HUVECs, whereas NEDD4L overexpression promoted these functions. Moreover, NEDD4L-regulated angiogenesis and cell progression are associated with the phosphorylation of Akt, Erk1/2 and eNOS and the expression of VEGFR2 and cyclin D1 and D3. Mechanically, further evidence was confirmed by using Akt blocker MK-2206, Erk1/2 blocker U0126 and eNOS blocker L-NAME. Overexpression NEDD4L-promoted angiogenesis, cell migration and cell proliferation were restrained by these inhibitors. In addition, overexpression NEDD4L-promoted cell cycle-related proteins cyclin D1 and D3 were also suppressed by Akt blocker MK-2206, Erk1/2 blocker U0126 and eNOS blocker L-NAME. Our results demonstrated a novel finding that NEDD4L promotes angiogenesis and cell progression by regulating the Akt/Erk/eNOS pathways.


Subject(s)
Butadienes , Cyclin D1 , Nitriles , Signal Transduction , Humans , Human Umbilical Vein Endothelial Cells/metabolism , Cyclin D1/metabolism , Proto-Oncogene Proteins c-akt/metabolism , NG-Nitroarginine Methyl Ester , Angiogenesis , Neovascularization, Physiologic/genetics , Cell Proliferation , Cell Movement/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...