Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters











Database
Language
Publication year range
1.
J Pediatr ; 248: 74-80.e1, 2022 09.
Article in English | MEDLINE | ID: mdl-35738315

ABSTRACT

OBJECTIVE: To describe cerebral abnormalities and their risk factors in a contemporary cohort of infants born extremely premature after the introduction of routine cerebral magnetic resonance imaging (cMRI) at term-equivalent age. STUDY DESIGN: All cMRI examinations performed during November 2017 and November 2020, based on a standardized neonatal cMRI protocol, were included into analysis. Pathologies were retrospectively classified into 3 categories: intraventricular hemorrhage (IVH), white matter disease, and cerebellar injuries. RESULTS: A total of 198 cMRI examinations were available for analyses; 93 (47%) showed abnormalities, most frequently IVH (n = 65, 33%), followed by cerebellar injuries (n = 41, 21%), and white matter disease (n = 28, 14%). Severe abnormalities were found in 18% of patients (n = 36). Significant clinical risk factors for abnormalities on cMRI were lower Apgar scores, lower umbilical artery and first neonatal pH, asphyxia, blood culture-proven sepsis (especially late-onset), and prolonged need of respiratory support and supplemental oxygen. CONCLUSIONS: After routine cMRI, without preconfirmed pathology by cranial ultrasonography, low-grade IVH, noncystic white matter disease, and cerebellar injuries were the most frequently found abnormalities. The clinical value and long-term benefit of the detection of these low-grade pathologies have yet to be confirmed.


Subject(s)
Infant, Premature, Diseases , Leukoencephalopathies , Cerebral Hemorrhage/diagnostic imaging , Cerebral Hemorrhage/etiology , Gestational Age , Humans , Infant , Infant, Extremely Premature , Infant, Newborn , Infant, Premature, Diseases/diagnosis , Leukoencephalopathies/complications , Leukoencephalopathies/diagnostic imaging , Magnetic Resonance Imaging/adverse effects , Oxygen , Retrospective Studies
2.
J Pediatr ; 238: 94-101.e1, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34237346

ABSTRACT

OBJECTIVE: To evaluate the association of therapeutic hypothermia with magnetic resonance imaging (MRI) findings and 30-month neurodevelopment in term neonatal encephalopathy. STUDY DESIGN: Cross-sectional analysis of 30-month neurodevelopment (IQR 19.0-31.4) in a prospective cohort of mild-to-severe neonatal encephalopathy imaged on day 4 (1993-2017 with institutional implementation of therapeutic hypothermia in 2007). MRI injury was classified as normal, watershed, or basal ganglia/thalamus. Abnormal motor outcome was defined as Bayley-II psychomotor developmental index <70, Bayley-III motor score <85 or functional motor deficit. Abnormal cognitive outcome was defined as Bayley-II mental developmental index <70 or Bayley-III cognitive score <85. Abnormal composite outcome was defined as abnormal motor and/or cognitive outcome, or death. The association of therapeutic hypothermia with MRI and outcomes was evaluated with multivariable logistic regression adjusted for propensity to receive therapeutic hypothermia. RESULTS: Follow-up was available in 317 (78%) surviving children, of whom 155 (49%) received therapeutic hypothermia. Adjusting for propensity, therapeutic hypothermia was independently associated with decreased odds of abnormal motor (OR 0.15, 95% CI 0.06-0.40, P < .001) and cognitive (OR 0.11, 95% CI 0.04-0.33, P < .001) outcomes. This association remained statistically significant after adjustment for injury pattern. The predictive accuracy of MRI pattern for abnormal composite outcome was unchanged between therapeutic hypothermia-treated (area under the receiver operating curve 0.76; 95% CI 0.61-0.91) and untreated (area under the receiver operating curve 0.74; 95% CI 0.67-0.81) infants. The negative predictive value of normal MRI was high in therapeutic hypothermia-treated and untreated infants (motor 96% vs 90%; cognitive 99% vs 95%). CONCLUSIONS: Therapeutic hypothermia is associated with lower rates of brain injury and adverse 30-month outcomes after neonatal encephalopathy. The predictive accuracy of MRI in the first week of life is unchanged by therapeutic hypothermia. Normal MRI remains reassuring for normal 30-month outcome after therapeutic hypothermia.


Subject(s)
Hypothermia, Induced/methods , Hypoxia-Ischemia, Brain/diagnostic imaging , Neurodevelopmental Disorders/prevention & control , Adult , Child, Preschool , Cross-Sectional Studies , Female , Humans , Hypoxia-Ischemia, Brain/therapy , Infant , Infant, Newborn , Infant, Newborn, Diseases/diagnostic imaging , Infant, Newborn, Diseases/therapy , Magnetic Resonance Imaging , Male , Predictive Value of Tests , Pregnancy , Prospective Studies
3.
Neuroimage Clin ; 16: 355-368, 2017.
Article in English | MEDLINE | ID: mdl-28861337

ABSTRACT

Perinatal care advances emerging over the past twenty years have helped to diminish the mortality and severe neurological morbidity of extremely and very preterm neonates (e.g., cystic Periventricular Leukomalacia [c-PVL] and Germinal Matrix Hemorrhage - Intraventricular Hemorrhage [GMH-IVH grade 3-4/4]; 22 to < 32 weeks of gestational age, GA). However, motor and/or cognitive disabilities associated with mild-to-moderate white and gray matter injury are frequently present in this population (e.g., non-cystic Periventricular Leukomalacia [non-cystic PVL], neuronal-axonal injury and GMH-IVH grade 1-2/4). Brain research studies using magnetic resonance imaging (MRI) report that 50% to 80% of extremely and very preterm neonates have diffuse white matter abnormalities (WMA) which correspond to only the minimum grade of severity. Nevertheless, mild-to-moderate diffuse WMA has also been associated with significant affectations of motor and cognitive activities. Due to increased neonatal survival and the intrinsic characteristics of diffuse WMA, there is a growing need to study the brain of the premature infant using non-invasive neuroimaging techniques sensitive to microscopic and/or diffuse lesions. This emerging need has led the scientific community to try to bridge the gap between concepts or ideas from different methodologies and approaches; for instance, neuropathology, neuroimaging and clinical findings. This is evident from the combination of intense pre-clinical and clinicopathologic research along with neonatal neurology and quantitative neuroimaging research. In the following review, we explore literature relating the most frequently observed neuropathological patterns with the recent neuroimaging findings in preterm newborns and infants with perinatal brain injury. Specifically, we focus our discussions on the use of neuroimaging to aid diagnosis, measure morphometric brain damage, and track long-term neurodevelopmental outcomes.


Subject(s)
Infant, Premature, Diseases/diagnostic imaging , Magnetic Resonance Imaging/methods , White Matter/diagnostic imaging , Humans , Infant, Newborn , Infant, Premature
SELECTION OF CITATIONS
SEARCH DETAIL