Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 94
Filter
1.
Hand Clin ; 40(3): 357-367, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38972680

ABSTRACT

Processed nerve allograft is a widely accepted tool for reconstructing peripheral nerve defects. Repair parameters that need to be considered include gap length, nerve diameter, nerve type (motor, sensory, or mixed), and the soft tissue envelope. Although the use of processed nerve allograft must be considered based on each unique clinical scenario, a rough algorithm can be formed based on the available animal and clinical literature. This article critically reviews the current surgical algorithm, defines the role of processed nerve allograft compared with nerve autograft, and discusses how this role may change in the future.


Subject(s)
Allografts , Peripheral Nerves , Humans , Peripheral Nerves/transplantation , Peripheral Nerve Injuries/surgery , Algorithms , Transplantation, Homologous , Nerve Regeneration
2.
Hand Clin ; 40(3): 379-387, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38972682

ABSTRACT

Peripheral nerve injuries are prevalent and their treatments present significant challenges. Among the various reconstructive options, nerve conduits and wraps are popular choices. Advances in bioengineering and regenerative medicine have led to the development of new biocompatible materials and implant designs that offer the potential for enhanced neural recovery. Cost, nerve injury type, and implant size must be considered when deciding on the ideal reconstructive option.


Subject(s)
Biocompatible Materials , Nerve Regeneration , Peripheral Nerve Injuries , Humans , Peripheral Nerve Injuries/surgery , Tissue Scaffolds , Bioengineering , Guided Tissue Regeneration , Tissue Engineering , Prostheses and Implants
3.
J Comp Eff Res ; 13(1): e230113, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38031842

ABSTRACT

Aim: Peripheral nerve injury (PNI) is a debilitating condition with significant associated morbidity, and which places a substantial socioeconomic burden on healthcare systems worldwide. Recently, allograft has emerged as a viable surgical alternative to autograft for the treatment of PNI. This study evaluated the cost effectiveness of allograft (Avance® Nerve Graft) compared with autograft for the peripheral nerve repair, from a US payer perspective. Methods: A Markov cohort model was developed to consider the treatment pathways followed by a patient population undergoing a single transected nerve repair with either allograft, or autograft. The marginal difference in meaningful recovery (MR) (effectiveness), and costs, between the two groups were estimated over a lifetime horizon. Deterministic and probabilistic sensitivity analyses (PSA) were performed to consider the uncertainty surrounding the base-case input parameter values and their effect on the overall incremental cost-effectiveness ratio (ICER). Results: The base-case analysis indicates that there is a small difference in the average probability of MR between the two groups (75.15% vs 70.46%; +4.69% with allograft). Allograft also results in cost savings ($12,677 vs $14,023; -$-1346 with allograft) compared with autograft. Deterministic sensitivity analysis shows that the costs of the initial surgical procedures are the main drivers of incremental cost, but that the intervention is likely to be cost saving compared with autograft regardless of the parameter variations made. Conclusion: The use of allograft with the Avance Nerve Graft has the potential to be a cost-effective alternative to autograft for the surgical treatment of PNI in the USA.


Subject(s)
Cost-Effectiveness Analysis , Peripheral Nerve Injuries , Humans , Peripheral Nerve Injuries/surgery , Cost-Benefit Analysis , Allografts , Quality-Adjusted Life Years
4.
Ann Transl Med ; 11(11): 391, 2023 Oct 25.
Article in English | MEDLINE | ID: mdl-37970602

ABSTRACT

The loss of function resulting from peripheral nerve injuries confers a significant burden to the patient and society. The treatment of peripheral nerve injuries requires an accurate diagnosis and formulation of a functional reconstructive plan. Advances in peripheral nerve imaging complement electrodiagnostic studies, and provide us with detailed information regarding the status of nerve injury, repair, and regeneration in order to prognosticate recovery and determine the need for surgical intervention. When direct nerve repair is not possible, the methods for bridging a nerve gap are the nerve autograft, allograft and conduit. While current research supports the use of conduits and nerve allografts for shorter nerve gaps, the nerve autograft still remains the gold standard for bridging a nerve gap. When direct nerve repair or nerve grafting fails, or is anticipated to be insufficient, nerve transfers are an alternative for reconstruction. Knowledge of axonal counts, upper limb innervation patterns, location and clustering of upper limb peripheral nerves allows for the design of new nerve transfers. The options of nerve transfers for radial, ulnar and median nerve injuries are outlined, as well as their outcomes. Nerve transfers are an attractive option for restoring motor and sensory function while minimizing donor site morbidity. However, one must consider their limitations, and preserve donor sites for secondary tendon transfer options. This article presents the latest information regarding the imaging of peripheral nerves, methods to bridge a nerve gap, and nerve transfers to aid the peripheral nerve surgeon in choosing a reconstructive plan.

5.
J Plast Reconstr Aesthet Surg ; 87: 329-338, 2023 12.
Article in English | MEDLINE | ID: mdl-37925923

ABSTRACT

BACKGROUND: Motor function recovery following acellular nerve allograft (ANA) repair remains inferior to autologous nerve reconstruction. We investigated the functional recovery of ANAs after combined mesenchymal stem cell (MSC) delivery and surgical angiogenesis in a rat sciatic nerve defect model. METHODS: In 100 Lewis rats, unilateral sciatic nerve defects were reconstructed with (I) autografts, (II) ANAs, (III) ANAs wrapped with a superficial inferior epigastric artery fascial (SIEF) flap, combined with either (IV) undifferentiated MSCs or (V) Schwann cell-like differentiated MSCs. The tibialis anterior muscle area was evaluated during the survival period using ultrasonography. Functional recovery, histomorphometry, and immunofluorescence were assessed at 12 and 16 weeks. RESULTS: At 12 weeks, the addition of surgical angiogenesis and MSCs improved ankle contractures. The SIEF flap also significantly improved compound muscle action potential (CMAP) outcomes compared with ANAs. Autografts outperformed all groups in muscle force and weight. At 16 weeks, ankle contractures of ANAs remained inferior to autografts and SIEF, whereas the CMAP amplitude was comparable between groups. The muscle force of autografts remained superior to all other groups, and the muscle weight of ANAs remained inferior to autografts. No differences were found in histomorphometry outcomes between SIEF groups and ANAs. Vascularity, determined by CD34 staining, was significantly higher in SIEF groups compared with ANAs. CONCLUSIONS: The combination of surgical angiogenesis and MSCs did not result in a synergistic improvement in functional outcomes. In a short nerve gap model, the adipofascial flap may provide sufficient MSCs to ANAs without additional ex vivo MSC seeding.


Subject(s)
Contracture , Mesenchymal Stem Cells , Rats , Animals , Allografts , Rats, Inbred Lew , Sciatic Nerve/surgery , Sciatic Nerve/blood supply , Mesenchymal Stem Cells/physiology , Nerve Regeneration/physiology
6.
Heliyon ; 9(10): e20624, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37817996

ABSTRACT

Peripheral neurological complications are seen after SARS-CoV-2 infections. These are mostly immune-mediated such as Guillaine-Barré syndrome or chronic inflammatory demyelinating polyneuropathy. We present a 39-year-old man treated with a right sciatic nerve allotransplantation with subsequent clinical and electrophysiological improvement within 30 months of observation. After SARS-CoV-2 infection, he developed clinical deterioration with selective sciatic nerve demyelination in a nerve conduction study. Nerve conduction velocity returned to previous values within six months of treatment. Intravenous immunoglobulins were used at standard dosage. The inflammatory immune process seemed to be a cause of peripheral demyelination isolated to a nerve allograft with good reaction for intravenous immunoglobulin treatment.

7.
Res Sq ; 2023 Oct 16.
Article in English | MEDLINE | ID: mdl-37886501

ABSTRACT

Neurofibromatosis Type 2 (NF2)-related schwannomatosis is a genetic disorder that causes development of multiple types of nervous system tumors. The primary and diagnostic tumor type is bilateral vestibular schwannoma. There is no cure or drug therapy for NF2. Recommended treatments include surgical resection and radiation, both of which can leave patients with severe neurological deficits or increase the risk of future malignant tumors. Results of our previous pilot high-throughput drug screen identified phosphoinositide 3-kinase (PI3K) inhibitors as strong candidates based on loss of viability of mouse merlin-deficient Schwann cells (MD-SCs). Here we used novel human schwannoma model cells to conduct combination drug screens. We identified a class I PI3K inhibitor, pictilisib and p21 activated kinase (PAK) inhibitor, PF-3758309 as the top combination due to high synergy in cell viability assays. Both single and combination therapies significantly reduced growth of mouse MD-SCs in an orthotopic allograft mouse model. The inhibitor combination promoted cell cycle arrest and apoptosis in mouse merlin-deficient Schwann (MD-SCs) cells and cell cycle arrest in human MD-SCs. This study identifies the PI3K and PAK pathways as potential targets for combination drug treatment of NF2-related schwannomatosis.

8.
J Hand Surg Am ; 48(9): 904-913, 2023 09.
Article in English | MEDLINE | ID: mdl-37530686

ABSTRACT

PURPOSE: While there are advantages and disadvantages to both processed nerve allografts (PNA) and conduits, a large, well-controlled prospective study is needed to compare the efficacy and to delineate how each of these repair tools can be best applied to digital nerve injuries. We hypothesized that PNA digital nerve repairs would achieve superior functional recovery for longer length gaps compared with conduit-based repairs. METHODS: Patients (aged 18-69 years) presenting with suspected acute or subacute (less than 24 weeks old) digital nerve injuries were recruited to prticipate at 20 medical centers across the United States. After stratification to short (5-14 mm) and long (15-25 mm) gap subgroups, the patients were randomized (1:1) to repair with either a commercially available PNA or collagen conduit. Baseline and outcomes assessments were obtained either before or immediately after surgery and planned at 3-, 6-, 9-, and 12-months after surgery. All assessors and patients were blinded to the treatment arm. RESULTS: In total, 220 patients were enrolled, and 183 patients completed an acceptable last evaluable visit (at least 6 months and not more than 15 months postrepair). At last follow-up, for the short gap repair groups, average static two-point discrimination was 7.3 ± 2.8 mm for PNA and 7.5 ± 3.1 mm for conduit repairs. For the long gap group, average static two-point discrimination was significantly lower at 6.1 ± 3.3 mm for PNA compared with 7.5 ± 2.4 mm for conduit repairs. Normal sensation (American Society for Surgery of the Hand scale) was achieved in 40% of PNA long gap repairs, which was significantly more than the 18% observed in long conduit patients. Long gap conduits had more clinical failures (lack of protective sensation) than short gap conduits. CONCLUSIONS: Although supporting similar levels of nerve regeneration for short gap length digital nerve repairs, PNA was clinically superior to conduits for long gap reconstructions. TYPE OF STUDY/LEVEL OF EVIDENCE: Therapeutic I.


Subject(s)
Peripheral Nerve Injuries , Peripheral Nerves , Humans , Peripheral Nerves/transplantation , Prospective Studies , Peripheral Nerve Injuries/surgery , Transplantation, Homologous , Nerve Regeneration/physiology , Allografts
9.
Bioeng Transl Med ; 8(4): e10435, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37476051

ABSTRACT

Peripheral nerve regeneration after injury is still a clinical problem. The application of autologous nerve grafting, the gold standard treatment, is greatly restricted. Acellular nerve allografts (ANAs) are considered promising alternatives, but they are difficult to achieve satisfactory therapeutic outcomes, which may be attributed to their compact inherent ultrastructure and substantial loss of extracellular matrix (ECM) components. Regarding these deficiencies, this study developed an optimized multichannel ANA by a modified decellularization method. These innovative ANAs were demonstrated to retain more ECM bioactive molecules and regenerative factors, with effective elimination of cellular antigens. The presence of microchannels with larger pore size allowed ANAs to gain higher porosity and better swelling performance, which improves their internal ultrastructure. Their mechanical properties were more similar to those of native nerves. Moreover, the optimized ANAs exhibited good biocompatibility and possessed significant advantages in supporting the proliferation and migration of Schwann cells in vitro. The in vivo results further confirmed their superior capacity to promote axon regrowth and myelination as well as restore innervation of target muscles, leading to better functional recovery than the conventional ANAs. Overall, this study demonstrates that the optimized multichannel ANAs have great potential for clinical application and offer new insight into the further improvement of ANAs.

10.
Cureus ; 15(5): e39567, 2023 May.
Article in English | MEDLINE | ID: mdl-37378218

ABSTRACT

Treatment of a painful neuroma is a challenging problem for both the patient and the providers. Current surgical treatment options typically include excision of the neuroma and stump relation. However, with both treatment options, patients have high rates of persistent pain and rates of neuroma recurrence. We describe two patients with neuromas treated with our acellular nerve allograft reconstruction technique. This technique involves the excision of the neuroma and bridging the proximal nerve end to the surrounding tissue with an acellular nerve allograft. Both patients had immediate resolution of their neuropathic pain that was maintained at their final follow-up. Acellular nerve allograft reconstruction is a promising treatment option for the treatment of painful neuromas.

11.
Front Bioeng Biotechnol ; 11: 1162684, 2023.
Article in English | MEDLINE | ID: mdl-37082209

ABSTRACT

As a reliable alternative to autografts, decellularized peripheral nerve allografts (DPNAs) should mimic the complex microstructure of native nerves and be immunogenically compatible. Nevertheless, there is a current lack of decellularization methods able to remove peripheral nerve cells without significantly altering the nerve extracellular matrix (ECM). The aims of this study are firstly to characterize ex vivo, in a histological, biochemical, biomechanical and ultrastructural way, three novel chemical-enzymatic decellularization protocols (P1, P2 and P3) in rat sciatic nerves and compared with the Sondell classic decellularization method and then, to select the most promising DPNAs to be tested in vivo. All the DPNAs generated present an efficient removal of the cellular material and myelin, while preserving the laminin and collagen network of the ECM (except P3) and were free from any significant alterations in the biomechanical parameters and biocompatibility properties. Then, P1 and P2 were selected to evaluate their regenerative effectivity and were compared with Sondell and autograft techniques in an in vivo model of sciatic defect with a 10-mm gap, after 15 weeks of follow-up. All study groups showed a partial motor and sensory recovery that were in correlation with the histological, histomorphometrical and ultrastructural analyses of nerve regeneration, being P2 the protocol showing the most similar results to the autograft control group.

12.
WIREs Mech Dis ; 15(4): e1609, 2023.
Article in English | MEDLINE | ID: mdl-37102333

ABSTRACT

Peripheral nerve injury (PNI) is the most common neurological injury in civilian and military injuries, with over 360,000 PNI procedures performed in the US yearly. Segmental loss of nerve tissue results in a nerve gap precluding a tension-free primary repair, and in these cases, interpositional autologous or acellular nerve allografts are used to bridge the gap. Graft ischemia time is a critical factor in achieving satisfactory nerve regeneration. Rapid nerve graft revascularization is essential in order to sustain Schwann cell growth which in turn is crucial for axonal regeneration. Currently, nerve autografts are considered the gold standard for segmental nerve gaps but are associated with several disadvantages such as limited supply of expendable donor tissue, increased operative time, and donor site morbidity. Hence, readily available, off-the-shelf nerve allografts or scaffolds are being investigated since they provide advantages such as a virtually limitless sourcing, a wide variety of sizes to match recipient nerves, and no donor site morbidity. New, exciting advances in tissue engineering to augment revascularization of nerve allografts or conduits have been investigated. Strategies include pro-angiogenic mesenchymal stem cells, extracellular vesicles, functionalized scaffolds, bioactive peptides, and three-dimensional bioprinting. This article discusses these bioengineering advances and future strategies aimed at enhancing nerve graft and scaffold revascularization. This article is categorized under: Neurological Diseases > Biomedical Engineering Neurological Diseases > Molecular and Cellular Physiology.


Subject(s)
Biomedical Engineering , Peripheral Nerve Injuries , Humans , Peripheral Nerve Injuries/surgery , Tissue Engineering , Schwann Cells , Transplantation, Homologous/methods
13.
Neurosurg Focus Video ; 8(1): V16, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36628089

ABSTRACT

Acellularized nerve allografts (ANAs) have been developed as substitutes for nerve autograft to promote nerve regeneration after surgical repair. In this video, the authors demonstrate operative techniques for using ANAs to repair potentially functional nerve fascicles during tumor resection. A 67-year-old female with schwannomatosis requested resection of a painful enlarging mass of the left ulnar nerve proximal to the elbow. During surgery, neuromonitoring suggested that fascicles entering the tumor could be functional. Therefore, nerve allograft was used to repair the transected fascicles. The patient recovered with full strength and sensation in the ulnar distribution, with resolution of her preoperative symptoms. The video can be found here: https://stream.cadmore.media/r10.3171/2022.10.FOCVID22101.

14.
Iowa Orthop J ; 43(2): 20-24, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38213861

ABSTRACT

High-energy tibial fractures often present with associated soft tissue injuries, including neuro-vascular damage, complicating the treatment decision. A 33-year-old male presented with Gustilo Anderson type IIIA fracture of the left distal tibia and fibula with associated closed calcaneus fracture and tibial nerve transection. Amputation was discussed, but the decision was made for limb salvage with nerve allograft. The patient displayed satisfactory functional recovery at 29 months postoperatively without need for major revision, grafting, arthrodesis, or amputation. This case report provides an example of successful limb salvage utilizing tibial nerve allograft in a complex high-energy lower extremity injury. Level of Evidence: IV.


Subject(s)
Fractures, Open , Tibial Fractures , Vascular System Injuries , Male , Humans , Adult , Limb Salvage/adverse effects , Tibial Fractures/diagnostic imaging , Tibial Fractures/surgery , Tibia/surgery , Fibula/surgery , Fibula/injuries , Vascular System Injuries/surgery , Amputation, Surgical , Treatment Outcome , Retrospective Studies , Fractures, Open/surgery , Fractures, Open/complications
15.
Front Cell Neurosci ; 16: 1055490, 2022.
Article in English | MEDLINE | ID: mdl-36451654

ABSTRACT

Segmental peripheral nerve injuries (PNI) are the most common cause of enduring nervous system dysfunction. The peripheral nervous system (PNS) has an extensive and highly branching organization. While much is known about the factors that affect regeneration through sharp bisections and linear ablations of peripheral nerves, very little has been investigated or documented about PNIs that ablate branch points. Such injuries present additional complexity compared to linear segmental defects. This study compared outcomes following ablation of a branch point with branched grafts, specifically examining how graft source and orientation of the branched graft contributed to regeneration. The model system was Lewis rats that underwent a 2.5 cm ablation that started in the sciatic nerve trunk and included the peroneal/tibial branch point. Rats received grafts that were rat sciatic autograft, inbred sciatic allograft, and inbred femoral allograft, each of which was a branched graft of 2.5 cm. Allografts were obtained from Lewis rats, which is an inbred strain. Both branches of the sciatic grafts were mixed motor and sensory while the femoral grafts were smaller in diameter than sciatic grafts and one branch of the femoral graft is sensory and the other motor. All branched grafts were sutured into the defect in two orientations dictated by which branch in the graft was sutured to the tibial vs peroneal stumps in recipients. Outcome measures include compound muscle action potentials (CMAPs) and CatWalk gait analysis throughout the recovery period, with toluidine blue for intrinsic nerve morphometry and retrograde labeling conducted at the 36-week experimental end point. Results indicate that graft source and orientation does play a significant role earlier in the regenerative process but by 36 weeks all groups showed very similar indications of regeneration across multiple outcomes.

16.
Cell Tissue Res ; 390(3): 355-366, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36114915

ABSTRACT

Decellularized nerve allografts are an alternative to autograft for repairing severe nerve injuries, since they have higher availability and do not induce rejection. In this study, we have assessed the regenerative potential of a novel decellularization protocol for human and rat nerves for repairing nerve resections, compared to the gold standard autograft. A 15-mm gap in the sciatic nerve was repaired with decellularized rat allograft (DC-RA), decellularized human xenograft (DC-HX), or fresh autograft (AG). Electrophysiology tests were performed monthly to evaluate muscle reinnervation, whereas histological and immunohistochemical analyses of the grafts were evaluated at 4 months. A short-term study was also performed to compare the differences between the two decellularized grafts (DC-RA and DC-HX) in early phases of regeneration. The decellularization process eliminated cellularity while preserving the ECM and endoneurial tubules of both rat and human nerves. Higher amount of reinnervation was observed in the AG group compared to the DC-RA group, while only half of the animals of the DC-HX showed distal muscle reinnervation. The number of regenerating myelinated axons in the mid-graft was similar between AG and DC-RA and lower in DC-HX graft, but significantly lower in both DC grafts distally. At short term, fibroblasts repopulated the DC-RA graft, supporting regenerated axons, whereas an important fibrotic reaction was observed around DC-HX grafts. In conclusion, the decellularized allograft sustained regeneration through a long gap in the rat although at a slower rate compared to the ideal autograft, whereas regeneration was limited or even failed when using a decellularized xenograft.


Subject(s)
Nerve Tissue , Peripheral Nerve Injuries , Rats , Humans , Animals , Nerve Regeneration/physiology , Peripheral Nerve Injuries/surgery , Peripheral Nerve Injuries/pathology , Sciatic Nerve/injuries , Sciatic Nerve/pathology , Sciatic Nerve/physiology , Axons
17.
Oncotarget ; 13: 890-904, 2022.
Article in English | MEDLINE | ID: mdl-35875610

ABSTRACT

Neurofibromatosis Type 2 (NF2) is a rare tumor disorder caused by pathogenic variants of the merlin tumor suppressor encoded by NF2. Patients develop vestibular schwannomas (VS), peripheral schwannomas, meningiomas, and ependymomas. There are no approved drug therapies for NF2. Previous work identified phosphoinositide-3 kinase (PI3K) as a druggable target. Here we screened PI3K pathway inhibitors for efficacy in reducing viability of human schwannoma cells. The lead compound, CUDC907, a dual histone deacetylase (HDAC)/PI3K inhibitor, was further evaluated for its effects on isolated and nerve-grafted schwannoma model cells, and primary VS cells. CUDC907 (3 nM IG50) reduced human merlin deficient Schwann cell (MD-SC) viability and was 5-100 fold selective for MD over WT-SCs. CUDC907 (10 nM) promoted cell cycle arrest and caspase-3/7 activation within 24 h in human MD-SCs. Western blots confirmed a dose-dependent increase in acetylated lysine and decreases in pAKT and YAP. CUDC907 decreased tumor growth rate by 44% in a 14-day treatment regimen, modulated phospho-target levels, and decreased YAP levels. In five primary VS, CUDC907 decreased viability, induced caspase-3/7 cleavage, and reduced YAP levels. Its efficacy correlated with basal phospho-HDAC2 levels. CUDC907 has cytotoxic activity in NF2 schwannoma models and primary VS cells and is a candidate for clinical trials.


Subject(s)
Neurilemmoma , Neurofibromatosis 2 , Humans , Apoptosis , Caspase 3 , Histone Deacetylase Inhibitors/pharmacology , Histone Deacetylase Inhibitors/therapeutic use , Histone Deacetylases , Lysine , Neurilemmoma/pathology , Neurofibromatosis 2/drug therapy , Neurofibromatosis 2/metabolism , Neurofibromatosis 2/pathology , Neurofibromin 2 , Phosphatidylinositol 3-Kinases , Phosphatidylinositols/pharmacology , Phosphatidylinositols/therapeutic use , Phosphoinositide-3 Kinase Inhibitors
18.
J Plast Reconstr Aesthet Surg ; 75(8): 2821-2830, 2022 08.
Article in English | MEDLINE | ID: mdl-35570113

ABSTRACT

BACKGROUND: Mesenchymal stem cell (MSC)-supplemented acellular nerve allografts (ANA) are a potential strategy to improve the treatment of segmental nerve defects. Prior to clinical translation, optimal cell delivery methods must be defined. While two techniques, dynamic seeding and microinjection, have been described, the seeding efficiency, cell viability, and distribution of MSCs in ANAs are yet to be compared. METHODS: Sciatic nerve segments of Sprague-Dawley rats were decellularized, and MSCs were harvested from the adipose tissue of Lewis rats. Cell viability was evaluated after injection of MSCs through a 27-gauge needle at different flow rates (10, 5, and 1 µL/min). MSCs were dynamically seeded or longitudinally injected into ANAs. Cell viability, seeding efficiency, and distribution were evaluated using LIVE/DEAD and MTS assays, scanning electron microscopy, and Hoechst staining. RESULTS: No statistically significant difference in cell viability after injection at different flow rates was seen. After cell delivery, 84.1 ± 3.7% and 87.8 ± 2.8% of MSCs remained viable in the dynamic seeding and microinjection group, respectively (p = 0.41). The seeding efficiency of microinjection (100.4%±5.6) was significantly higher than dynamic seeding (48.1%±8.6) on day 1 (p = 0.001). Dynamic seeding demonstrated a significantly more uniform cell distribution over the course of the ANA compared to microinjection (p = 0.02). CONCLUSION: MSCs remain viable after both dynamic seeding and microinjection in ANAs. Higher seeding efficiency was observed with microinjection, but dynamic seeding resulted in a more uniform distribution. In vivo studies are required to assess the effect on gene expression profiles and functional motor outcomes.


Subject(s)
Mesenchymal Stem Cells , Allografts , Animals , Mesenchymal Stem Cells/physiology , Microinjections , Rats , Rats, Inbred Lew , Rats, Sprague-Dawley
19.
J Plast Reconstr Aesthet Surg ; 75(8): 2809-2820, 2022 08.
Article in English | MEDLINE | ID: mdl-35383001

ABSTRACT

BACKGROUND: Increasing evidence demonstrates an interplay between neoangiogenesis and immune cells. We investigated the immune response and revascularization of acellular nerve allografts (ANA) after combined stem cell delivery and surgical angiogenesis in a rat model. METHODS: Unilateral sciatic nerve defects in 60 Lewis rats were repaired with (I) autografts, (II) ANAs, and (III) ANAs wrapped within a pedicled superficial inferior epigastric artery fascial flap to induce surgical angiogenesis, combined with seeding of either (IV) undifferentiated mesenchymal stem cells (uMSCs) or (V) MSCs differentiated into Schwann cell-like cells. Immune cell phenotyping was performed on days 7 and 14. The vascular volume of nerves was measured by microcomputed tomography at 12 and 16 weeks. RESULTS: On day 7, helper T cells (CD4+) were significantly increased in groups IV and V compared to group I. Regulatory T cells (CD4+CD25+) were significantly higher in groups III-IV, and cytotoxic T cells (CD8+) were significantly reduced in groups IV and V compared to group II, respectively. Group II demonstrated the highest levels of natural killer cells (CD161+) compared to groups III-V. On day 14, group IV demonstrated the highest CD4/CD8 ratio. Vascular volume was significantly higher in groups III-V compared to group II at 12 weeks and groups IV and V compared to group II at 16 weeks. The CD4/CD8 ratio demonstrated a positive correlation to vascular volumes at 12 weeks. CONCLUSION: Early favorable immune responses were observed in ANAs treated with surgical angiogenesis with or without stem cell delivery and demonstrated improved vascularity at longer follow-up.


Subject(s)
Mesenchymal Stem Cells , Nerve Regeneration , Allografts , Animals , Immunity , Mesenchymal Stem Cells/physiology , Nerve Regeneration/physiology , Rats , Rats, Inbred Lew , Sciatic Nerve/transplantation , X-Ray Microtomography
20.
Cell Tissue Bank ; 23(3): 591-606, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35277795

ABSTRACT

Management of peripheral nerve defects is a complicated problem in clinical contexts. Autologous nerve grafting, a gold standard for surgical treatment, has been well known to have several limitations, such as donor site morbidity, a limited amount of available donor tissue, and size mismatches. Acellular nerve allografts (ANAs) have been developed as an alternative and have been applied clinically with favorable outcomes. However, because of the limited availability of commercialized ANAs due to supplier-related issues and high costs, efforts continue to produce alternative sources for ANAs. The present study evaluated the anatomical and histological characteristics of human peripheral nerves using 25 donated human cadavers. The length, diameter, and branching points of various peripheral nerves (median, ulnar, tibial, lateral femoral cutaneous, saphenous, and sural nerves) in both the upper and lower extremities were evaluated. The cross-sectional area (CSA), ratio of fascicular area, and numbers of fascicles were also evaluated via histologic analysis. CSA, the ratio of fascicular area, and the number of fascicles were analyzed statistically in correlation with demographic data (age, sex, height, weight, BMI). The mean length of all evaluated nerves ranged from 17.1 to 41.4 cm, and the mean diameter of all evaluated nerves ranged from 1.2 to 4.9 mm. Multiple regression analysis revealed correlations between the ratio of fascicular area and sex (p = 0.005) and BMI (p = 0.024) (R2 = 0.051). The results of the present study will be helpful in selecting necessary nerve allograft sources while considering the characteristics of each nerve in the upper and lower extremities during ANAs production.


Subject(s)
Hematopoietic Stem Cell Transplantation , Nerve Tissue , Cadaver , Humans , Peripheral Nerves/anatomy & histology , Peripheral Nerves/transplantation , Sural Nerve
SELECTION OF CITATIONS
SEARCH DETAIL
...