Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters











Database
Type of study
Language
Publication year range
1.
Sci Total Environ ; 952: 175938, 2024 Nov 20.
Article in English | MEDLINE | ID: mdl-39218118

ABSTRACT

Seabirds have become biovectors of plastic pollutants between marine and terrestrial ecosystems, and transport of plastics to their nesting sites becomes relevant due to increasing levels of pollution. To determine the pathways by which plastic reaches their colonies, we analysed the abundance of plastics at the nesting sites of five seabird species (Humboldt penguin Spheniscus humboldti, Peruvian booby Sula variegata, kelp gull Larus dominicanus, grey gull Leucophaeus modestus, Markham's storm-petrel Hydrobates markhami) nesting in northern Chile. Seabirds were primarily grouped according to their nesting behaviour, but two species foraging in contrasting habitats (kelp gull and Markham's storm-petrel) were also compared directly. The abundance, type, and polymer of macro-, meso- and microplastics were analysed in the soil of colonies and control sites, and microplastic ingestion was evaluated for selected species. Densities of plastics in colonies of surface-nesting seabirds ranged from 0 to 21.4 items m-2 (mainly plastic bags and thin films), and 0.002 to 19.7 items m-2 (mainly hard fragments) in colonies of burrow-nesting seabirds. Mean microplastic loads in the stomachs of seabirds were between 3.7 ± 4.2 plastic items individual-1. Overall, the abundances of plastic items in all seabird colonies were low, suggesting a limited transfer of plastics from sea to land. For kelp gulls, the results indicate transfer of macroplastic items to colonies, reaching the colony via regurgitates, with landfills considered as the main plastic source. Our results suggest that contrasting nesting behaviour and foraging habitats among species can explain differential plastic accumulation in seabird colonies, but also other factors, such as wind, contribute to the accumulation of plastic debris in colonies. Proper management of sanitary landfills are key to reduce plastic contamination of coastal seabirds and their colonies.


Subject(s)
Birds , Ecosystem , Environmental Monitoring , Plastics , Animals , Plastics/analysis , Chile , Charadriiformes/physiology , Waste Products/analysis , Water Pollutants, Chemical/analysis , Microplastics/analysis
2.
Entropy (Basel) ; 25(12)2023 Dec 08.
Article in English | MEDLINE | ID: mdl-38136514

ABSTRACT

Entropy indices are commonly used to evaluate the heterogeneity of spatially arranged data by exploiting various approaches capable of including spatial information. Unfortunately, in practical studies, difficulties can arise regarding both the availability of computational tools for fast and easy implementation of these indices and guidelines supporting the correct interpretation of the results. The present work addresses such issues for the most known spatial entropy measures: the approach based on area partitions, the one based on distances between observations, and the decomposable spatial entropy. The newly released version of the R package SpatEntropy is introduced here and we show how it properly supports researchers in real case studies. This work also answers practical questions about the spatial distribution of nesting sites of an endangered species of gorillas in Cameroon. Such data present computational challenges, as they are marked points in continuous space over an irregularly shaped region, and covariates are available. Several aspects of the spatial heterogeneity of the nesting sites are addressed, using both the original point data and a discretised pixel dataset. We show how the diversity of the nesting habits is related to the environmental covariates, while seemingly not affected by the interpoint distances. The issue of scale dependence of the spatial measures is also discussed over these data. A motivating example shows the power of the SpatEntropy package, which allows for the derivation of results in seconds or minutes with minimum effort by users with basic programming abilities, confirming that spatial entropy indices are proper measures of diversity.

3.
Article in English | MEDLINE | ID: mdl-33801498

ABSTRACT

Avian haemosporidians are a common and widespread group of vector-borne parasites capable of infecting most bird species around the world. They can negatively affect host condition and fitness. Vultures are assumed to have a very low prevalence of these blood parasites, likely due to their strong immunity; however, factors contributing to variation in host exposure and susceptibility to haemosporidians are complex, and supporting evidence is still very limited. We analyzed blood samples collected from nestlings of three vulture species in Spain over 18 years, and used updated nested-PCR protocols capable of detecting all haesmosporidian cytochrome b lineages typical for diurnal birds of prey (Accipitriformes). Similarly to previous studies, we found low haemosporidian prevalence in cliff-breeding species, with Leucocytozoon as the only represented blood parasite genus: 3.1% in griffon vultures (Gyps fulvus) (n = 128) and 5.3% in Egyptian vultures (Neophron percnopterus) (n = 114). In contrast, the tree-breeding cinereous vulture (Aegypius monachus) had a substantially higher prevalence: 10.3% (n = 146). By far the most common lineage in Spanish scavenging raptors was the Leucocytozoon lineage CIAE02. No effects of nestling age and sex, or temporal trends in prevalence were found, but an effect of nest habitat (tree-nest vs. cliff-nest) was found in the griffon vulture. These patterns may be explained by a preference of vectors to forage in and around trees rather than on cliffs and wide open spaces. We found an apparent detrimental effect of haemosporidians on body mass of nestling cinereous vultures. Further research is needed to evaluate the pathogenicity of each haemosporidian lineage and their interaction with the immune system of nestlings, especially if compromised due to pollution with pharmaceuticals and infection by bacterial and mycotic pathogens.


Subject(s)
Bird Diseases , Parasites , Animals , Bird Diseases/epidemiology , Birds , Habits , Plant Breeding , Spain/epidemiology
4.
Naturwissenschaften ; 107(5): 45, 2020 Oct 01.
Article in English | MEDLINE | ID: mdl-33001285

ABSTRACT

Many arthropods modify parts of plants through the construction of domiciles or by consuming plant tissues that, after abandoned, can be used as shelter by other arthropods in a facilitating interaction process. We examined, for the first time, the potential of leaf-rolling mites to indirectly influence arthropod communities in natural forests by providing shelter sites. In early June 2019, we found a high density of leaves of Amphitecna tuxtlensis (Bignoniaceae) rolled by an undetermined leaf-rolling mite species in a tropical rainforest, in Mexico. We tested whether the species richness, abundance, and colonization frequency of arthropods was greater in rolled compared with expanded leaves. We collected 5 rolled leaves and 5 fully expanded leaves from 15 A. tuxtlensis trees (N = 150 sampled leaves) and recorded all arthropods on each leaf. We recorded 1421 arthropods from 67 unique morphospecies. We found 39 individuals from 23 morphospecies of arthropods in expanded leaves, and 1382 individuals from 56 morphospecies in rolled leaves. Ants were the most abundant and frequent group and utilized the rolled leaves mainly as nesting sites; 1260 ant individuals were found in 30 nests from three species. Arthropod species richness, abundance, and colonization frequency were greater in rolled leaves compared with expanded leaves. We concluded that the ecosystem engineering effect of leaf-rolling mites may be an important structuring element for arthropod communities on plants through an increase of high quality food resources and shelter sites for other arthropods, as well as nesting sites for ants.


Subject(s)
Arthropods/physiology , Biodiversity , Mites/physiology , Plant Leaves , Animals , Ecosystem , Mexico , Rainforest
5.
J Arthropod Borne Dis ; 11(1): 78-85, 2017 Mar.
Article in English | MEDLINE | ID: mdl-29026854

ABSTRACT

BACKGROUND: The different features of scorpions can be successfully described by their nesting and burrowing behaviors. There is little information about burrowing activity of Iranian scorpions. METHODS: The current study was performed to compare the burrowing behavior between two burrowing Iranian scorpions, Scorpio maurus and Odonthubutus bidentatus by describing 30 nests of each species regarding collecting the scorpions. RESULTS: Scorpio maurus and O. bidentatus have a tendency to make nest with elliptical, round-like entrance and oval shape with arch at the top, respectively. There was not any significant difference between nest entrance properties of two scorpions. One-way ANOVA test showed that the height and diameter of two species nests were not significantly different. A Pearson correlation also showed a relative strong direct relationship between height and diameter of S. maurus nests than O. bidentatus. This correlation was not significant in the case of O. bidentatus. The results provided additional habitat information of scorpions. CONCLUSION: The nests morphology characteristics of two Iranian scorpions including shape, depth, length and diameter depend are different from each other based on the following factors: species, soil texture, soil moisture and region conditions.

SELECTION OF CITATIONS
SEARCH DETAIL