Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 594
Filter
1.
Zhongguo Yi Xue Ke Xue Yuan Xue Bao ; 46(3): 402-408, 2024 Jun.
Article in Chinese | MEDLINE | ID: mdl-38953264

ABSTRACT

There are mutual neural projections between the ventral tegmental area (VTA) and the medial prefrontal cortex (mPFC),which form a circuit.Recent studies have shown that this circuit is vital in regulating arousal from sleep and general anesthesia.This paper introduces the anatomical structures of VTA and mPFC and the roles of various neurons and projection pathways in the regulation of arousal,aiming to provide new ideas for further research on the mechanism of arousal from sleep and general anesthesia.


Subject(s)
Arousal , Prefrontal Cortex , Ventral Tegmental Area , Prefrontal Cortex/physiology , Ventral Tegmental Area/physiology , Arousal/physiology , Humans , Animals , Neural Pathways/physiology
2.
J Biol Phys ; 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38958893

ABSTRACT

External electric and mechanical stimuli can induce shape deformation in excitable media because of its intrinsic flexible property. When the signals propagation in the media is described by a neural network, creation of heterogeneity or defect is considered as the effect of shape deformation due to accumulation or release of energy in the media. In this paper, a temperature-light sensitive neuron model is developed from a nonlinear circuit composed of a phototube and a thermistor, and the physical energy is kept in capacitive and inductive terms. Furthermore, the Hamilton energy for this function neuron is obtained in theoretical way. A regular neural network is built on a square array by activating electric synapse between adjacent neurons, and a few of neurons in local area is excited by noisy disturbance, which induces local energy diversity, and continuous coupling enables energy propagation and diffusion. Initially, the Hamilton energy function for a temperature-light sensitive neuron can be obtained. Then, the finite neurons are applied noise to obtain energy diversity to explore the energy spread between neurons in the network. For keeping local energy balance, one intrinsic parameter is regulated adaptively until energy diversity in this local area is decreased greatly. Regular pattern formation indicates that local energy balance creates heterogeneity or defects and a few of neurons show continuous parameter shift for keeping energy balance in a local area, which supports gradient energy distribution for propagating waves in the network.

3.
Front Neurosci ; 18: 1427384, 2024.
Article in English | MEDLINE | ID: mdl-38948926

ABSTRACT

The nucleus tractus solitarii (NTS) plays a critical role in the homeostatic regulation of respiration, blood pressure, sodium consumption and metabolic processes. Despite their significance, the circuitry mechanisms facilitating these diverse physiological functions remain incompletely understood. In this study, we present a whole-brain mapping of both the afferent and efferent connections of Phox2b-expressing and GABAergic neurons within the NTS. Our findings reveal that these neuronal populations not only receive monosynaptic inputs primarily from the medulla oblongata, pons, midbrain, supra-midbrain and cortical areas, but also mutually project their axons to these same locales. Moreover, intense monosynaptic inputs are received from the central amygdala, the paraventricular nucleus of the hypothalamus, the parasubthalamic nucleus and the intermediate reticular nucleus, along with brainstem nuclei explicitly engaged in respiratory regulation. In contrast, both neuronal groups extensively innervate brainstem nuclei associated with respiratory functions, although their projections to regions above the midbrain are comparatively limited. These anatomical findings provide a foundational platform for delineating an anatomical framework essential for dissecting the specific functional mechanisms of these circuits.

4.
CNS Neurosci Ther ; 30(6): e14808, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38887205

ABSTRACT

OBJECTIVE: Phenylethanolamine N-methyltransferase (PNMT)-expressing neurons in the nucleus tractus solitarii (NTS) contribute to the regulation of autonomic functions. However, the neural circuits linking these neurons to other brain regions remain unclear. This study aims to investigate the connectivity mechanisms of the PNMT-expressing neurons in the NTS (NTSPNMT neurons). METHODS: The methodologies employed in this study included a modified rabies virus-based retrograde neural tracing technique, conventional viral anterograde tracing, and immunohistochemical staining procedures. RESULTS: A total of 43 upstream nuclei projecting to NTSPNMT neurons were identified, spanning several key brain regions including the medulla oblongata, pons, midbrain, cerebellum, diencephalon, and telencephalon. Notably, dense projections to the NTSPNMT neurons were observed from the central amygdaloid nucleus, paraventricular nucleus of the hypothalamus, area postrema, and the gigantocellular reticular nucleus. In contrast, the ventrolateral medulla, lateral parabrachial nucleus, and lateral hypothalamic area were identified as the primary destinations for axon terminals originating from NTSPNMT neurons. Additionally, reciprocal projections were evident among 21 nuclei, primarily situated within the medulla oblongata. CONCLUSION: Our research findings demonstrate that NTSPNMT neurons form extensive connections with numerous nuclei, emphasizing their essential role in the homeostatic regulation of vital autonomic functions.


Subject(s)
Neurons , Phenylethanolamine N-Methyltransferase , Solitary Nucleus , Animals , Phenylethanolamine N-Methyltransferase/metabolism , Phenylethanolamine N-Methyltransferase/genetics , Solitary Nucleus/enzymology , Solitary Nucleus/metabolism , Solitary Nucleus/cytology , Neurons/metabolism , Neurons/enzymology , Male , Efferent Pathways/enzymology , Afferent Pathways/enzymology , Rats, Sprague-Dawley , Brain Mapping/methods , Rats
5.
Proc Natl Acad Sci U S A ; 121(26): e2322978121, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38900791

ABSTRACT

MDGA (MAM domain containing glycosylphosphatidylinositol anchor) family proteins were previously identified as synaptic suppressive factors. However, various genetic manipulations have yielded often irreconcilable results, precluding precise evaluation of MDGA functions. Here, we found that, in cultured hippocampal neurons, conditional deletion of MDGA1 and MDGA2 causes specific alterations in synapse numbers, basal synaptic transmission, and synaptic strength at GABAergic and glutamatergic synapses, respectively. Moreover, MDGA2 deletion enhanced both N-methyl-D-aspartate (NMDA) receptor- and α-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA) receptor-mediated postsynaptic responses. Strikingly, ablation of both MDGA1 and MDGA2 abolished the effect of deleting individual MDGAs that is abrogated by chronic blockade of synaptic activity. Molecular replacement experiments further showed that MDGA1 requires the meprin/A5 protein/PTPmu (MAM) domain, whereas MDGA2 acts via neuroligin-dependent and/or MAM domain-dependent pathways to regulate distinct postsynaptic properties. Together, our data demonstrate that MDGA paralogs act as unique negative regulators of activity-dependent postsynaptic organization at distinct synapse types, and cooperatively contribute to adjustment of excitation-inhibition balance.


Subject(s)
Hippocampus , Synapses , Synaptic Transmission , Animals , Synapses/metabolism , Mice , Hippocampus/metabolism , Hippocampus/cytology , Synaptic Transmission/physiology , Neurons/metabolism , Receptors, N-Methyl-D-Aspartate/metabolism , Receptors, N-Methyl-D-Aspartate/genetics , Mice, Knockout , Receptors, AMPA/metabolism , Receptors, AMPA/genetics , Cell Adhesion Molecules, Neuronal/metabolism , Cell Adhesion Molecules, Neuronal/genetics , Nerve Tissue Proteins/metabolism , Nerve Tissue Proteins/genetics , Membrane Proteins/metabolism , Membrane Proteins/genetics , Cells, Cultured
6.
ACS Chem Neurosci ; 15(13): 2432-2444, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38916052

ABSTRACT

Chronic neuropathic pain and comorbid depression syndrome (CDS) is a major worldwide health problem that affects the quality of life of patients and imposes a tremendous socioeconomic burden. More than half of patients with chronic neuropathic pain also suffer from moderate or severe depression. Due to the complex pathogenesis of CDS, there are no effective therapeutic drugs available. The lack of research on the neural circuit mechanisms of CDS limits the development of treatments. The purpose of this article is to provide an overview of the various circuits involved in CDS. Notably, activating some neural circuits can alleviate pain and/or depression, while activating other circuits can exacerbate these conditions. Moreover, we discuss current and emerging pharmacotherapies for CDS, such as ketamine. Understanding the circuit mechanisms of CDS may provide clues for the development of novel drug treatments for improved CDS management.


Subject(s)
Chronic Pain , Neuralgia , Humans , Neuralgia/therapy , Neuralgia/drug therapy , Neuralgia/epidemiology , Animals , Chronic Pain/epidemiology , Chronic Pain/physiopathology , Chronic Pain/therapy , Chronic Pain/drug therapy , Ketamine/therapeutic use , Ketamine/pharmacology , Depression/drug therapy , Depression/therapy , Comorbidity , Depressive Disorder/drug therapy , Depressive Disorder/epidemiology , Depressive Disorder/therapy , Depressive Disorder/physiopathology
7.
Front Neurol ; 15: 1399925, 2024.
Article in English | MEDLINE | ID: mdl-38938783

ABSTRACT

Recently, there has been increasing attention on the impact of acupuncture on the dysregulated neural circuits in different disease. This has led to new understandings of how acupuncture works. This review presents a comprehensive analysis of research that have examined the impact of acupuncture on abnormal neural circuits associated with pain, anxiety, Parkinson's disease, addiction disorders, cognitive problems, and gastrointestinal disorders. These studies have shown that acupuncture's therapeutic effects are mediated by specific brain areas and neurons involved in neural circuit mechanisms, emphasising its wide-ranging influence. The positive impacts of acupuncture can be ascribed to its ability to modify the functioning of neurocircuits in various physiological conditions. Nevertheless, contemporary studies on acupuncture neural circuits frequently overlook the comprehensive circuit mechanism including the periphery, central nervous system, and target organ. Additionally, the scope of diseases studied is restricted. Future study should focus on broadening the range of diseases studied and exploring the neural circuit mechanisms of these diseases in depth in order to enhance our understanding of acupuncture's neurobiological impacts.

8.
Neurosci Bull ; 2024 May 03.
Article in English | MEDLINE | ID: mdl-38700806

ABSTRACT

Behavioral studies play a crucial role in unraveling the mechanisms underlying brain function. Recent advances in optogenetics, neuronal typing and labeling, and circuit tracing have facilitated the dissection of the neural circuitry involved in various important behaviors. The identification of monosynaptic connections, both upstream and downstream of specific neurons, serves as the foundation for understanding complex neural circuits and studying behavioral mechanisms. However, the practical implementation and mechanistic understanding of monosynaptic connection tracing techniques and functional identification remain challenging, particularly for inexperienced researchers. Improper application of these methods and misinterpretation of results can impede experimental progress and lead to erroneous conclusions. In this paper, we present a comprehensive description of the principles, specific operational details, and key steps involved in tracing anterograde and retrograde monosynaptic connections. We outline the process of functionally identifying monosynaptic connections through the integration of optogenetics and electrophysiological techniques, providing practical guidance for researchers.

9.
Curr Biol ; 34(12): 2644-2656.e7, 2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38810638

ABSTRACT

An epidemic of sleep loss currently affects modern societies worldwide and is implicated in numerous physiological disorders, including pain sensitization, although few studies have explored the brain pathways affected by active sleep deprivation (ASD; e.g., due to recreation). Here, we describe a neural circuit responsible for pain sensitization in mice treated with 9-h non-stress ASD. Using a combination of advanced neuroscience methods, we found that ASD stimulates noradrenergic inputs from locus coeruleus (LCNA) to glutamatergic neurons of the hindlimb primary somatosensory cortex (S1HLGlu). Moreover, artificial inhibition of this LCNA→S1HLGlu pathway alleviates ASD-induced pain sensitization in mice, while chemogenetic activation of this pathway recapitulates the pain sensitization observed following ASD. Our study thus implicates activation of the LCNA→S1HLGlu pathway in ASD-induced pain sensitization, expanding our fundamental understanding of the multisystem interplay involved in pain processing.


Subject(s)
Locus Coeruleus , Pain , Sleep Deprivation , Somatosensory Cortex , Animals , Mice , Sleep Deprivation/physiopathology , Locus Coeruleus/metabolism , Locus Coeruleus/physiopathology , Pain/physiopathology , Somatosensory Cortex/physiopathology , Male , Norepinephrine/metabolism , Mice, Inbred C57BL , Adrenergic Neurons/metabolism , Adrenergic Neurons/physiology , Neurons/physiology , Neurons/metabolism , Neural Pathways/physiopathology
10.
Adv Healthc Mater ; : e2400836, 2024 May 17.
Article in English | MEDLINE | ID: mdl-38757738

ABSTRACT

Implantable neural electrodes are indispensable tools for recording neuron activity, playing a crucial role in neuroscience research. However, traditional neural electrodes suffer from limited electrochemical performance, compromised biocompatibility, and tentative stability, posing great challenges for reliable long-term studies in free-moving animals. In this study, a novel approach employing a hybrid film composed of poly(3,4-ethylenedioxythiophene)/functional gold nanoparticles (PEDOT/3-MPA-Au) to improve the electrode-neural interface is presented. The deposited PEDOT/3-MPA-Au demonstrates superior cathodal charge storage capacity, reduced electrochemical impedance, and remarkable electrochemical and mechanical stability. Upon implantation into the cortex of mice for a duration of 12 weeks, the modified electrodes exhibit notably decreased levels of glial fibrillary acidic protein and increased neuronal nuclei immunostaining compared to counterparts utilizing poly(3,4-ethylenedioxythiophene)/poly(styrene sulfonate). Additionally, the PEDOT/3-MPA-Au modified electrodes consistently capture high-quality, stable long-term electrophysiological signals in vivo, enabling continuous recording of target neurons for up to 16 weeks. This innovative modification strategy offers a promising solution for fabricating low-impedance, tissue-friendly, and long-term stable neural interfaces, thereby addressing the shortcomings of conventional neural electrodes. These findings mark a significant advancement toward the development of more reliable and efficacious neural interfaces, with broad implications for both research and clinical applications.

11.
ACS Nano ; 18(20): 13333-13345, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38717602

ABSTRACT

A persistent inflammatory response, intrinsic limitations in axonal regenerative capacity, and widespread presence of extrinsic axonal inhibitors impede the restoration of motor function after a spinal cord injury (SCI). A versatile treatment platform is urgently needed to address diverse clinical manifestations of SCI. Herein, we present a multifunctional nanoplatform with anisotropic bimodal mesopores for effective neural circuit reconstruction after SCI. The hierarchical nanoplatform features of a Janus structure consist of dual compartments of hydrophilic mesoporous silica (mSiO2) and hydrophobic periodic mesoporous organosilica (PMO), each possessing distinct pore sizes of 12 and 3 nm, respectively. Unlike traditional hierarchical mesoporous nanomaterials with dual-mesopores interlaced with each other, the two sets of mesopores in this Janus nanoplatform are spatially independent and possess completely distinct chemical properties. The Janus mesopores facilitate controllable codelivery of dual drugs with distinct properties: the hydrophilic macromolecular enoxaparin (ENO) and the hydrophobic small molecular paclitaxel (PTX). Anchoring with CeO2, the resulting mSiO2&PMO-CeO2-PTX&ENO nanoformulation not only effectively alleviates ROS-induced neuronal apoptosis but also enhances microtubule stability to promote intrinsic axonal regeneration and facilitates axonal extension by diminishing the inhibitory effect of extracellular chondroitin sulfate proteoglycans. We believe that this functional dual-mesoporous nanoplatform holds significant potential for combination therapy in treating severe multifaceted diseases.


Subject(s)
Spinal Cord Injuries , Spinal Cord Injuries/drug therapy , Spinal Cord Injuries/physiopathology , Animals , Porosity , Silicon Dioxide/chemistry , Paclitaxel/pharmacology , Paclitaxel/chemistry , Anisotropy , Nerve Regeneration/drug effects , Hydrophobic and Hydrophilic Interactions , Apoptosis/drug effects , Rats , Nanostructures/chemistry , Mice , Particle Size , Organosilicon Compounds/chemistry , Organosilicon Compounds/pharmacology
12.
Front Neural Circuits ; 18: 1409994, 2024.
Article in English | MEDLINE | ID: mdl-38742089

ABSTRACT

Pheromones are specialized chemical messengers used for inter-individual communication within the same species, playing crucial roles in modulating behaviors and physiological states. The detection mechanisms of these signals at the peripheral organ and their transduction to the brain have been unclear. However, recent identification of pheromone molecules, their corresponding receptors, and advancements in neuroscientific technology have started to elucidate these processes. In mammals, the detection and interpretation of pheromone signals are primarily attributed to the vomeronasal system, which is a specialized olfactory apparatus predominantly dedicated to decoding socio-chemical cues. In this mini-review, we aim to delineate the vomeronasal signal transduction pathway initiated by specific vomeronasal receptor-ligand interactions in mice. First, we catalog the previously identified pheromone ligands and their corresponding receptor pairs, providing a foundational understanding of the specificity inherent in pheromonal communication. Subsequently, we examine the neural circuits involved in processing each pheromone signal. We focus on the anatomical pathways, the sexually dimorphic and physiological state-dependent aspects of signal transduction, and the neural coding strategies underlying behavioral responses to pheromonal cues. These insights provide further critical questions regarding the development of innate circuit formation and plasticity within these circuits.


Subject(s)
Pheromones , Signal Transduction , Vomeronasal Organ , Animals , Pheromones/physiology , Mice , Signal Transduction/physiology , Vomeronasal Organ/physiology
13.
CNS Neurosci Ther ; 30(5): e14743, 2024 May.
Article in English | MEDLINE | ID: mdl-38780008

ABSTRACT

AIMS: Nerve growth factor (NGF) loss is a potential factor for the degeneration of basal forebrain cholinergic neurons (BFCNs) in Alzheimer's disease (AD), and Rab5a is a key regulatory molecule of NGF signaling transduction. Here, we investigated the changes of Rab5a in 5 × FAD mice and further explored the mechanism of Electroacupuncture (EA) treatment in improving cognition in the early stage of AD. METHODS: The total Rab5a and Rab5a-GTP in 5-month-old 5 × FAD mice and wild-type mice were detected using WB and IP technologies. 5 × FAD mice were treated with EA at the Bai hui (DU20) and Shen ting (DU24) acupoints for 4 weeks and CRE/LOXP technology was used to confirm the role of Rab5a in AD mediated by EA stimulation. The Novel Object Recognition and Morris water maze tests were used to evaluate the cognitive function of 5 × FAD mice. The Nissl, immunohistochemistry, and Thioflavin S staining were used to observe pathological morphological changes in the basal forebrain circuit. The Golgi staining was used to investigate the synaptic plasticity of the basal forebrain circuit and WB technology was used to detect the expression levels of cholinergic-related and NGF signal-related proteins. RESULTS: The total Rab5a was unaltered, but Rab5a-GTP increased and the rab5a-positive early endosomes appeared enlarged in the hippocampus of 5 × FAD mice. Notably, EA reduced Rab5a-GTP in the hippocampus in the early stage of 5 × FAD mice. EA could improve object recognition memory and spatial learning memory by reducing Rab5a activity in the early stage of 5 × FAD mice. Moreover, EA could reduce Rab5a activity to increase NGF transduction and increase the levels of phosphorylated TrkA, AKT, and ERK in the basal forebrain and hippocampus, and increase the expression of cholinergic-related proteins, such as ChAT, vAchT, ChT1, m1AchR, and m2AchR in the basal forebrain and ChAT, m1AchR, and m2AchR in the hippocampus, improving synaptic plasticity in the basal forebrain hippocampal circuit in the early stage of 5 × FAD mice. CONCLUSIONS: Rab5a hyperactivation is an early pathological manifestation of 5 × FAD mice. EA could suppress Rab5a-GTP to promote the transduction of NGF signaling, and enhance the synaptic plasticity of the basal forebrain hippocampal circuit improving cognitive impairment in the early stage of 5 × FAD mice.


Subject(s)
Alzheimer Disease , Electroacupuncture , Mice, Transgenic , Nerve Growth Factor , rab5 GTP-Binding Proteins , Animals , rab5 GTP-Binding Proteins/metabolism , Nerve Growth Factor/metabolism , Mice , Electroacupuncture/methods , Alzheimer Disease/therapy , Alzheimer Disease/metabolism , Signal Transduction/physiology , Male , Memory/physiology , Learning/physiology , Maze Learning/physiology , Mice, Inbred C57BL , Neuronal Plasticity/physiology
14.
Front Neurosci ; 18: 1362899, 2024.
Article in English | MEDLINE | ID: mdl-38784088

ABSTRACT

Central 5-hydroxytryptaminergic dorsal raphe nucleus (5-HTDRN)-bed nucleus of stria terminalis (BNST) neural circuit dysfunction is one of the important neurobiological basis of anxiety and fear disorders. Under stress, 5-hydroxytryptamine (5-HT) neurons act on BNST receptors to attenuate anxiety and fear responses or enhance anxiety and fear. In BNST, corticotropin releasing factor neurons play a role in regulating emotions by reversely regulating excitatory or inhibitory 5-HT neurons. The composition of 5-HTDRN-BNST neural circuit, the pathological changes of 5-HTDRN-BNST neural circuit function damage under stress, and the effects of 5-HTDRN-BNST neural circuit on anxiety disorder, panic disorder and post-traumatic stress disorder were analyzed and are summarized in this paper. The characteristics of functional changes of the neural circuit and its effects on brain functional activities provide a basis and ideas for the treatment of anxiety and fear disorders through the regulation of 5-HTDRN-BNST neural circuit, and they also provide a new perspective for understanding the pathological mechanism of such diseases.

15.
Cogn Neurodyn ; 18(2): 673-684, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38699608

ABSTRACT

One-layer membrane separates the gradient field in and out of the cell, while some two-layer membranes filled with excitable media/material are important to regulate the energy flow when ions are propagated and diffused. The intracellular and extracellular media can be effectively separated by the membrane. It is important to clarify and describe the biophysical function and then the capacitive property can be reproduced in equivalent neural circuit. Here, we suggest the cell membrane has certain thickness and becomes flexible under external stimuli, therefore, it is considered as a kind of nonlinear media. To mimic the physical property of the two-layer cell membrane, a nonlinear resistor is used to connect two linear circuits, which is used to describe the electrical characteristic of two sides of the cell membrane, respectively. The combination of two linear circuits via a nonlinear resistor can describe the energy characteristic and firing mode in the flexible membrane of biophysical neurons. Circuit equations are defined and converted into equivalent nonlinear oscillator like a neuron. The voltage difference for the two capacitors can be consistent with the membrane potential for the neuron. The Hamilton energy function for this neuron can be mapped from the field energy in the electronic components, and it is also derived by using Helmholtz's theorem. The neuron can show similar spiking and bursting firing patterns, and uncertain diversity in membrane potentials is effective to support continuous firing patterns and mode transition under external stimulus. Furthermore, noisy disturbance is applied to induce coherence resonance. The results indicate that the lower coefficient variability and higher average energy level supports periodic firing in the neuron under coherence resonance. Therefore, this neuron model with nonlinear membranes (or two-layer form) is more suitable for identifying the biophysical property of biological neuron.

16.
Sci Rep ; 14(1): 11224, 2024 05 16.
Article in English | MEDLINE | ID: mdl-38755234

ABSTRACT

The present study examined the effects of transcutaneous auricular vagus nerve stimulation (taVNS) on short-latency afferent inhibition (SAI), as indirect biomarker of cholinergic system activation. 24 healthy adults underwent intermittent taVNS (30 s on/30 s off, 30 min) or continuous taVNS at a frequency of 25 Hz (15 min) along with earlobe temporary stimulation (15 min or 30 min) were performed in random order. The efficiency with which the motor evoked potential from the abductor pollicis brevis muscle by transcranial magnetic stimulation was attenuated by the preceding median nerve conditioning stimulus was compared before taVNS, immediately after taVNS, and 15 min after taVNS. Continuous taVNS significantly increased SAI at 15 min post-stimulation compared to baseline. A positive correlation (Pearson coefficient = 0.563, p = 0.004) was observed between baseline SAI and changes after continuous taVNS. These results suggest that 15 min of continuous taVNS increases the activity of the cholinergic nervous system, as evidenced by the increase in SAI. In particular, the increase after taVNS was more pronounced in those with lower initial SAI. This study provides fundamental insight into the clinical potential of taVNS for cholinergic dysfunction.


Subject(s)
Transcutaneous Electric Nerve Stimulation , Vagus Nerve Stimulation , Humans , Male , Female , Adult , Vagus Nerve Stimulation/methods , Transcutaneous Electric Nerve Stimulation/methods , Young Adult , Evoked Potentials, Motor/physiology , Transcranial Magnetic Stimulation/methods , Vagus Nerve/physiology
17.
Front Immunol ; 15: 1353747, 2024.
Article in English | MEDLINE | ID: mdl-38751431

ABSTRACT

Pathogen avoidance behaviour has been observed across animal taxa as a vital host-microbe interaction mechanism. The nematode Caenorhabditis elegans has evolved multiple diverse mechanisms for pathogen avoidance under natural selection pressure. We summarise the current knowledge of the stimuli that trigger pathogen avoidance, including alterations in aerotaxis, intestinal bloating, and metabolites. We then survey the neural circuits involved in pathogen avoidance, transgenerational epigenetic inheritance of pathogen avoidance, signalling crosstalk between pathogen avoidance and innate immunity, and C. elegans avoidance of non-Pseudomonas bacteria. In this review, we highlight the latest advances in understanding host-microbe interactions and the gut-brain axis.


Subject(s)
Caenorhabditis elegans , Host-Pathogen Interactions , Immunity, Innate , Animals , Caenorhabditis elegans/immunology , Caenorhabditis elegans/microbiology , Host-Pathogen Interactions/immunology , Epigenesis, Genetic , Signal Transduction , Neurons/immunology , Neurons/metabolism
18.
Zhongguo Zhong Yao Za Zhi ; 49(9): 2489-2500, 2024 May.
Article in Chinese | MEDLINE | ID: mdl-38812153

ABSTRACT

This study aims to reveal the molecular mechanism of Chaijin Jieyu Anshen Tablets(CJJYAS) in regulating the abnormal anterior cingulate cortex(ACC)-ventral hippocampus(vHPC) glutaminergic neural circuit to alleviate synaptic remodeling of ventral hippocampal neurons in depressed rats. Firstly, the study used chemogenetics to localize glutaminergic adeno-associated virus(AAV) into the ACC brain region of rats. The model of depressed rats was established by chronic unpredictable mild stress(CUMS) combined with independent feeding. The rats were randomly divided into control group, model group, AAV empty group, AAV group, AAV+ glucocorticoid receptors(GR) blocker group, AAV+chemokine receptor 1(CX3CR1) blocker group, and AAV+CJJYAS group. Depressive-like behaviors of rats were evaluated by open-field, forced-swimming, and Morris water maze tests, combined with an animal behavior analysis system. The morphological and structural changes of ACC and vHPC neurons in rats were observed by hematoxylin-eosin(HE) staining. Immunofluorescence and nuclear phosphoprotein(c-Fos) were used to detect glutaminergic neural circuit activation of ACC-vHPC in rats. The changes in dendrites, synaptic spines, and synaptic submicrostructure of vHPC neurons were observed by Golgi staining and transmission electron microscopy, respectively. The expressions of synaptic remodeling-related proteins N-methyl-D-asprtate receptor 2A(GRIN2A), N-methyl-D-asprtate receptor 2B(GRIN2B), Ca~(2+)/calmodulin-dependent protein kinase Ⅱ(CaMKⅡ), mitogen-activated protein kinase-activated protein kinase 2(MK2), and a ubiquitous actin-binding protein(cofilin) in vHPC glutaminergic neurons of rats were detected by immunofluorescence and Western blot, respectively. The results indicated that the activated glutaminergic AAV aggravated the depressive-like behaviors phenotype of rats in the model group and deteriorated the damage of morphology and structure of ACC and vHPC neurons and synaptic ultrastructure. However, both GR and CX3CR1 bloc-kers could reverse the abnormal changes to varying degrees, suggesting that the abnormal activation of ACC-vHPC glutaminergic neural circuit mediated by GR/CX3CR1 signals in gliocytes in the ACC brain region may be closely related to the occurrence and development of depression. Interestingly, CJJYAS significantly inhibited the activation of the ACC-vHPC glutaminergic neural circuit induced by AAV and the elevated Glu level. Furthermore, CJJYAS could also effectively reverse the aggravation of depressive-like behaviors and synaptic remodeling of vHPC neurons of rats in the model group induced by the activated AAV. Additionally, the findings suggested that the molecular mechanism of CJJYAS in improving synaptic damage of vHPC neurons might be related to the regulation of synaptic remodeling-related signals such as NR/CaMKⅡ and MK2/cofilin. In conclusion, this research confirms that CJJYAS effectively regulates the abnormal ACC-vHPC glutaminergic neural circuit and alleviates the synaptic remodeling of vHPC glutaminergic neurons in depressed rats, and the molecular mechanism might be associated with the regulation of synapse-related NR/CaMKⅡ and MK2/cofilin signaling pathways, which may be the crucial mechanism of its antidepressant effect.


Subject(s)
Depression , Drugs, Chinese Herbal , Gyrus Cinguli , Hippocampus , Neurons , Rats, Sprague-Dawley , Animals , Rats , Male , Neurons/metabolism , Hippocampus/metabolism , Depression/metabolism , Depression/physiopathology , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/administration & dosage , Gyrus Cinguli/metabolism , Gyrus Cinguli/physiopathology , Synapses/metabolism , Neuronal Plasticity , Humans
19.
Curr Biol ; 34(10): 2066-2076.e3, 2024 05 20.
Article in English | MEDLINE | ID: mdl-38657610

ABSTRACT

Flies groom in response to competing mechanosensory cues in an anterior-to-posterior order using specific legs. From behavior screens, we identified a pair of cholinergic command-like neurons, Mago-no-Te (MGT), whose optogenetic activation elicits thoracic grooming by the back legs. Thoracic grooming is typically composed of body sweeps and leg rubs in alternation, but clonal analysis coupled with amputation experiments revealed that MGT activation only commands the body sweeps: initiation of leg rubbing requires contact between the leg and thorax. With new electron microscopy (EM) connectome data for the ventral nerve cord (VNC), we uncovered a circuit-based explanation for why stimulation of posterior thoracic mechanosensory bristles initiates cleaning by the back legs. Our previous work showed that flies weigh mechanosensory inputs across the body to select which part to groom, but we did not know why the thorax was always cleaned last. Here, the connectome for the VNC enabled us to identify a pair of GABAergic inhibitory neurons, UMGT1, that receives diverse sensory inputs and synapses onto both MGT and components of its downstream circuits. Optogenetic activation of UMGT1 suppresses thoracic cleaning, representing a mechanism by which mechanosensory stimuli on other body parts could take precedence in the grooming hierarchy. We also anatomically mapped the pre-motor circuit downstream of MGT, including inhibitory feedback connections that may enable rhythmicity and coordination of limb movement during thoracic grooming. The combination of behavioral screens and connectome analysis allowed us to identify a neural circuit connecting sensory-to-motor neurons that contributes to thoracic grooming.


Subject(s)
Drosophila melanogaster , Grooming , Animals , Grooming/physiology , Drosophila melanogaster/physiology , Extremities/physiology , Connectome , Optogenetics , Mechanoreceptors/physiology , Mechanotransduction, Cellular
20.
Neuron ; 112(12): 2062-2078.e7, 2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38614102

ABSTRACT

Prefrontal cortical (PFC) circuits provide top-down control of threat reactivity. This includes ventromedial PFC (vmPFC) circuitry, which plays a role in suppressing fear-related behavioral states. Dynorphin (Dyn) has been implicated in mediating negative affect and maladaptive behaviors induced by severe threats and is expressed in limbic circuits, including the vmPFC. However, there is a critical knowledge gap in our understanding of how vmPFC Dyn-expressing neurons and Dyn transmission detect threats and regulate expression of defensive behaviors. Here, we demonstrate that Dyn cells are broadly activated by threats and release Dyn locally in the vmPFC to limit passive defensive behaviors. We further demonstrate that vmPFC Dyn-mediated signaling promotes a switch of vmPFC networks to a fear-related state. In conclusion, we reveal a previously unknown role of vmPFC Dyn neurons and Dyn neuropeptidergic transmission in suppressing defensive behaviors in response to threats via state-driven changes in vmPFC networks.


Subject(s)
Dynorphins , Fear , Neurons , Prefrontal Cortex , Animals , Dynorphins/metabolism , Prefrontal Cortex/physiology , Prefrontal Cortex/metabolism , Fear/physiology , Mice , Male , Neurons/physiology , Neurons/metabolism , Behavior, Animal/physiology , Nerve Net/physiology , Nerve Net/metabolism , Mice, Inbred C57BL
SELECTION OF CITATIONS
SEARCH DETAIL
...