Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.644
Filter
1.
Acta Vet Scand ; 66(1): 29, 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38965607

ABSTRACT

BACKGROUND: Chiari malformation type II (CMII) was originally reported in humans as a rare disorder characterized by the downward herniation of the hindbrain and towering cerebellum. The congenital brain malformation is usually accompanied by spina bifida, a congenital spinal anomaly resulting from incomplete closure of the dorsal aspect of the spinal neural tube, and occasionally by other lesions. A similar disorder has been reported in several animal species, including cattle, particularly as a congenital syndrome. A cause of congenital syndromic Chiari-like malformation (CSCM) in cattle has not been reported to date. We collected a series of 14 CSCM-affected Holstein calves (13 purebred, one Red Danish Dairy F1 cross) and performed whole-genome sequencing (WGS). WGS was performed on 33 cattle, including eight cases with parents (trio-based; group 1), three cases with one parent (group 2), and three single cases (solo-based; group 3). RESULTS: Sequencing-based genome-wide association study of the 13 Holstein calves with CSCM and 166 controls revealed no significantly associated genome region. Assuming a single Holstein breed-specific recessive allele, no region of shared homozygosity was detected suggesting heterogeneity. Subsequent filtering for protein-changing variants that were only homozygous in the genomes of the individual cases allowed the identification of two missense variants affecting different genes, SHC4 in case 4 in group 1 and WDR45B in case 13 in group 3. Furthermore, these two variants were only observed in Holstein cattle when querying WGS data of > 5,100 animals. Alternatively, potential de novo mutational events were assessed in each case. Filtering for heterozygous private protein-changing variants identified one DYNC1H1 frameshift variant as a candidate causal dominant acting allele in case 12 in group 3. Finally, the presence of larger structural DNA variants and chromosomal abnormalities was investigated in all cases. Depth of coverage analysis revealed two different partial monosomies of chromosome 2 segments in cases 1 and 7 in group 1 and a trisomy of chromosome 12 in the WDR45B homozygous case 13 in group 3. CONCLUSIONS: This study presents for the first time a detailed genomic evaluation of CSCM in Holstein cattle and suggests an unexpected genetic and allelic heterogeneity considering the mode of inheritance, as well as the type of variant. For the first time, we propose candidate causal variants that may explain bovine CSCM in a certain proportion of affected calves. We present cattle as a large animal model for human CMII and propose new genes and genomic variants as possible causes for related diseases in both animals and humans.


Subject(s)
Arnold-Chiari Malformation , Cattle Diseases , Genome-Wide Association Study , Animals , Cattle/genetics , Cattle Diseases/genetics , Cattle Diseases/congenital , Cattle Diseases/pathology , Arnold-Chiari Malformation/veterinary , Arnold-Chiari Malformation/genetics , Female , Genome-Wide Association Study/veterinary , Male , Whole Genome Sequencing/veterinary
2.
Int J Epidemiol ; 53(4)2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38981140

ABSTRACT

BACKGROUND: Our aim was to evaluate the prevalence, mortality, regional and sex distribution of neural tube defects (NTDs) in Finland. METHODS: Data for this population-based study were collected from 1987 to 2018 from the national health and social welfare registers. RESULTS: There were in total 1634 cases of NTDs, of which 511 were live births, 72 pregnancies ended in stillbirth and 1051 were terminations of pregnancy due to fetal anomaly (TOPFA). The total prevalence of NTDs was 8.6 per 10 000 births and it increased slightly annually (OR 1.008; 95% CI: 1.002, 1.013) during the 32-year study period. The birth prevalence of NTDs decreased (OR 0.979; 95% CI: 0.970, 0.987), but the prevalence of TOPFA increased annually (OR 1.024; 95% CI 1.017, 1.031). The perinatal mortality of NTD children was 260.7 per 1000 births and the infant mortality was 184.0 per 1000 live births, whereas these measures in the general population were 4.6 per 1000 births and 3.3 per 1000 live births, respectively. There was no difference in the NTD prevalence between males and females (P-value 0.77). The total prevalence of NTDs varied from 7.1 to 9.4 per 10 000 births in Finland by region. CONCLUSIONS: Although the majority of NTDs are preventable with an adequate folic acid supplementation, the total prevalence increased in Finland during the study period when folic acid supplementation was mainly recommended to high-risk families and to women with folic acid deficiency. NTDs remain an important cause of infant morbidity and mortality in Finland.


Subject(s)
Neural Tube Defects , Registries , Stillbirth , Humans , Finland/epidemiology , Female , Neural Tube Defects/epidemiology , Male , Prevalence , Infant, Newborn , Pregnancy , Stillbirth/epidemiology , Infant , Sex Distribution , Live Birth/epidemiology , Infant Mortality/trends , Adult , Perinatal Mortality/trends
3.
Iran J Child Neurol ; 18(3): 103-115, 2024.
Article in English | MEDLINE | ID: mdl-38988851

ABSTRACT

Objectives: Maternal smoking is a potent teratogen among congenital malformations, however its role in the development of Neural Tube Defects (NTDs) is still unclear. In this systematic review, we intend to further investigate the interaction of smoking during pregnancy and the incidence of NTDs. Materials & Methods: This article was written according to PRISMA criteria from February 2015 and August 2022. After examining the four stages of PRISMA criteria, we selected clinical articles. These articles were selected from PubMed, Scopus and Google scholar (for results follow-up) databases. We gathered NTDs effect and types, smoking type and habit of parents, from neonates. Results: Eventually, 8 articles were included by two separated authors, Smoking was associated with an increase NTDs in the population of pregnant mothers and also among children whose fathers smoked. The main side effects that were considered to be the cause of NTDs besides smoking were alcohol and BMI (18.5-24.9). Smoking also affects the level of folic acid as a substance with an essential role that affects the closure of the neural tube. folic acid available to infants changing along with the level of other blood elements such as zinc, that necessary prevent for NTDs condition. Conclusion: Parental smoking can be considered as one of the strong teratogens in the occurrence of NTDs. Smoking, whether active or passive by the mother, or by the father, is associated with the occurrence of NTDs, In order to reduce the prevalence this disorder, we advise pregnant mothers and neonate's fathers to quit smoking.

4.
Stem Cell Res Ther ; 15(1): 212, 2024 Jul 18.
Article in English | MEDLINE | ID: mdl-39020391

ABSTRACT

BACKGROUND: Sciatic nerve repair becomes a focus of research in neurological aspect to restore the normal physical ability of the animal to stand and walk. Tissue engineered nerve grafts (TENGs) provide a promising alternative therapy for regeneration of large gap defects. The present study investigates the regenerative capacity of PRP, ADSCs, and PRP mixed ADSCs on a long sciatic nerve defect (40-mm) bridged by a polyglycolic polypropylene (PGA-PRL) mesh which acts as a neural scaffold. MATERIALS AND METHODS: The study was conducted on 12 adult male mongrel dogs that were randomly divided into 4 groups: Group I (scaffold group); where the sciatic defect was bridged by a (PGA-PRL) mesh only while the mesh was injected with ADSCs in Group II (ADSCs group), PRP in Group III (PRP group). Mixture of PRP and ADSCs was allocated in Group IV (PRP + ADSCs group). Monthly, all animals were monitored for improvement in their gait and a numerical lameness score was recorded for all groups. 6 months-post surgery, the structural and functional recovery of sciatic nerve was evaluated electrophysiologically, and on the level of gene expression, and both sciatic nerve and the gastrocnemius muscle were evaluated morphometrically, histopathologically. RESULTS: Numerical lameness score showed improvement in the motor activities of both Group II and Group III followed by Group IV and the scaffold group showed mild improvement even after 6 months. Histopathologically, all treated groups showed axonal sprouting and numerous regenerated fascicles with obvious angiogenesis in proximal cut, and distal portion where Group IV exhibited a significant remyelination with the MCOOL technique. The regenerative ratio of gastrocnemius muscle was 23.81%, 56.68%, 52.06% and 40.69% for Group I, II, III and IV; respectively. The expression of NGF showed significant up regulation in the proximal portion for both Group III and Group IV (P ≤ 0.0001) while Group II showed no significant difference. PDGF-A, and VEGF expressions were up-regulated in Group II, III, and IV whereas Group I showed significant down-regulation for NGF, PDGF-A, and VEGF (P ≤ 0.0001). CONCLUSION: ADSCs have a great role in restoring the damaged nerve fibers by secreting several types of growth factors like NGF that have a proliferative effect on Schwann cells and their migration. In addition, PRP therapy potentiates the effect of ADSCs by synthesis another growth factors such as PDGF-A, VEGF, NGF for better healing of large sciatic gap defects.


Subject(s)
Nerve Regeneration , Polypropylenes , Sciatic Nerve , Animals , Dogs , Nerve Regeneration/physiology , Sciatic Nerve/injuries , Male , Polypropylenes/chemistry , Platelet-Rich Plasma/metabolism , Adipose Tissue/cytology , Polyglycolic Acid/chemistry , Stem Cells/cytology , Stem Cells/metabolism , Disease Models, Animal , Tissue Scaffolds/chemistry , Stem Cell Transplantation/methods , Tissue Engineering/methods
5.
J Ethnopharmacol ; 334: 118587, 2024 Jul 19.
Article in English | MEDLINE | ID: mdl-39025160

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: jinkui Shenqi Pill (JSP) is a classic traditional Chinese medicine used to treat "Kidney Yang Deficiency" disease. Previous studies indicate a protective effect of JSP on apoptosis in mouse neurons. AIM OF THE STUDY: This research, combining network pharmacology with in vivo experiments, explores the mechanism of JSP in preventing neural tube defects (NTDs) in mice. MATERIALS AND METHODS: Network pharmacology analyzed JSP components and targets, identifying common genes with NTDs and exploring potential pathways. Molecular docking assessed interactions between key JSP components and pathway proteins. In an all-trans retinoic acid (atRA)-induced NTDs mouse model, histopathological changes were observed using HE staining, neuronal apoptosis was detected using TUNEL, and Western Blot assessed changes in the PI3K/AKT signaling pathway and apoptosis-related proteins. RESULTS: Different concentrations of JSP led to varying degrees of reduction in the occurrence of neural tube defects in mouse embryos, with the highest dose showing the most significant decrease. Furthermore, it showed a better reduction in NTDs rates compared to folic acid (FA). Network pharmacology constructed a Drug-Active Ingredient-Gene Target network, suggesting key active ingredients such as Quercetin, Wogonin, Beta-Sitosterol, Kaempferol, and Stigmasterol, possibly acting on the PI3K/Akt signaling pathway. Molecular docking confirmed stable binding structures. Western Blot analysis demonstrated increased expression of p-PI3K, p-Akt, p-Akt1, p-Akt2, p-Akt3, downregulation of cleaved caspase-3 and Bax, and upregulation of Bcl-2, indicating prevention of NTDs through anti-apoptotic effects. CONCLUSION: We have identified an effective dosage of JSP for preventing NTDs, revealing its potential by activating the PI3K/Akt signaling pathway and inhibiting cell apoptosis in atRA-induced mouse embryonic NTDs.

6.
Childs Nerv Syst ; 2024 Jul 22.
Article in English | MEDLINE | ID: mdl-39037454

ABSTRACT

The primary purpose of this study was to enhance the understanding of diastematomyelia, with a particular focus on adult-onset cases, which are infrequent and not fully elucidated. Additionally, the study sought to analyse the clinical features, diagnostic characteristics, and surgical interventions employed to manage the condition. This retrospective case series aimed to investigate diastematomyelia, a rare congenital deformation affecting the spinal cord. The study included 16 patients diagnosed with diastematomyelia, consisting of 13 pediatric cases (mean age: 7.6 years, age range: 5 months to 13 years) and 3 adult cases (mean age: 36 years, age range: 26 to 48 years). Among the paediatric cases, 9 were females, and 4 were males, while the adult cohort comprised 2 males and 1 female. The study design involved a thorough review of medical records, imaging reports, and surgical outcomes without specific inclusion or exclusion criteria. Surgical intervention emerged as the primary treatment modality for all cases, except one. Following surgical intervention, significant improvements were observed in pain management, motor function, and bladder control. Furthermore, additional findings indicated the presence of Dural Ectasia and Vertebral segmentation defects among the study population. This retrospective case series sheds light on the clinical features and surgical outcomes of diastematomyelia in both pediatric and adult patients. The findings underscore the importance of surgical intervention in alleviating symptoms and enhancing motor coordination and bladder control.

7.
Birth Defects Res ; 116(6): e2370, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38888449

ABSTRACT

BACKGROUND: Associations between maternal periconceptional exposure to disinfection by-products (DBPs) in drinking water and neural tube defects (NTDs) in offspring are inconclusive, limited in part by exposure misclassification. METHODS: Maternal interview reports of drinking water sources and consumption from the National Birth Defects Prevention Study were linked with DBP concentrations in public water system monitoring data for case children with an NTD and control children delivered during 2000-2005. DBPs analyzed were total trihalomethanes, the five most common haloacetic acids combined, and individual species. Associations were estimated for all NTDs combined and selected subtypes (spina bifida, anencephaly) with maternal periconceptional exposure to DBPs in public water systems and with average daily periconceptional ingestion of DBPs accounting for individual-level consumption and filtration information. Mixed effects logistic regression models with maternal race/ethnicity and educational attainment at delivery as fixed effects and study site as a random intercept were applied. RESULTS: Overall, 111 case and 649 control children were eligible for analyses. Adjusted odds ratios for maternal exposure to DBPs in public water systems ranged from 0.8-1.5 for all NTDs combined, 0.6-2.0 for spina bifida, and 0.7-1.9 for anencephaly; respective ranges for average daily maternal ingestion of DBPs were 0.7-1.1, 0.5-1.5, and 0.6-1.8. Several positive estimates (≥1.2) were observed, but all confidence intervals included the null. CONCLUSIONS: Using community- and individual-level data from a large, US, population-based, case-control study, we observed statistically nonsignificant associations between maternal periconceptional exposure to total and individual DBP species in drinking water and NTDs and subtypes.


Subject(s)
Disinfection , Drinking Water , Maternal Exposure , Neural Tube Defects , Humans , Female , Drinking Water/adverse effects , Neural Tube Defects/etiology , Neural Tube Defects/epidemiology , Pregnancy , Maternal Exposure/adverse effects , Maternal Exposure/statistics & numerical data , Disinfection/methods , Adult , Case-Control Studies , Disinfectants/adverse effects , Disinfectants/analysis , Water Purification/methods , Trihalomethanes/analysis , Trihalomethanes/adverse effects , Male , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/adverse effects , Prenatal Exposure Delayed Effects , Spinal Dysraphism/etiology , Spinal Dysraphism/epidemiology
8.
Birth Defects Res ; 116(6): e2372, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38877667

ABSTRACT

OBJECTIVE: To determine the effect of maternal status in (plasma and red blood cell) folate, vitamin B12, homocysteine, and vitamin D, as well as their interaction with MTHFR (C677T and A1298C) and MTRR A66G polymorphisms, on maternal plasma docosahexaenoic acid (DHA), eicosapentaenoic acid (EPA), and arachidonic acid (ARA) levels and the risk of neural tube defects (NTDs). METHODS: ARA, EPA, and DHA composition was assessed using capillary gas chromatography. RESULTS: ARA and DHA levels were higher in controls than in case mothers for low plasma folate status. For low red blood cell folate status, DHA levels were higher in controls than in case mothers. For high homocysteine levels, ARA and DHA levels were higher in controls than in case mothers. NTD mothers had lower EPA and DHA levels for low vitamin B12 levels. NTD mothers had lower DHA levels for low vitamin D levels. For low plasma folate status, DHA levels in the MTHFR C677T gene and ARA and EPA levels in MTHFR A1298C gene were different among the three genotypes in case mothers. DHA levels in the MTHFR C677T gene were different among the three genotypes in case mothers for both low and high homocysteine levels. For low vitamin B12 levels, ARA and DHA levels were different among the three genotypes of the MTHFR C677T gene in case mothers. In the MTHFR C677T gene, ARA and DHA levels were different among the three genotypes in case mothers for low vitamin D levels. CONCLUSIONS: More advanced research is required to verify a suitable biochemical parameter status in relation to the genotypes in pregnant women.


Subject(s)
Arachidonic Acid , Docosahexaenoic Acids , Eicosapentaenoic Acid , Folic Acid , Methylenetetrahydrofolate Reductase (NADPH2) , Neural Tube Defects , Humans , Eicosapentaenoic Acid/blood , Docosahexaenoic Acids/blood , Female , Neural Tube Defects/genetics , Arachidonic Acid/blood , Arachidonic Acid/metabolism , Folic Acid/blood , Adult , Tunisia , Methylenetetrahydrofolate Reductase (NADPH2)/genetics , Homocysteine/blood , Homocysteine/genetics , Pregnancy , Vitamin B 12/blood , Case-Control Studies , Genotype , Vitamin D/blood , Vitamin D/genetics
9.
Phenomics ; 4(2): 187-202, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38884059

ABSTRACT

The Shroom (Shrm) family of actin-binding proteins has a unique and highly conserved Apx/Shrm Domain 2 (ASD2) motif. Shroom protein directs the subcellular localization of Rho-associated kinase (ROCK), which remodels the actomyosin cytoskeleton and changes cellular morphology via its ability to phosphorylate and activate non-muscle myosin II. Therefore, the Shrm-ROCK complex is critical for the cellular shape and the development of many tissues, including the neural tube, eye, intestines, heart, and vasculature system. Importantly, the structure and expression of Shrm proteins are also associated with neural tube defects, chronic kidney disease, metastasis of carcinoma, and X-link mental retardation. Therefore, a better understanding of Shrm-mediated signaling transduction pathways is essential for the development of new therapeutic strategies to minimize damage resulting in abnormal Shrm proteins. This paper provides a comprehensive overview of the various Shrm proteins and their roles in morphogenesis and disease.

10.
Int J Mol Sci ; 25(11)2024 May 21.
Article in English | MEDLINE | ID: mdl-38891790

ABSTRACT

Derived from axial structures, Sonic Hedgehog (Shh) is secreted into the paraxial mesoderm, where it plays crucial roles in sclerotome induction and myotome differentiation. Through conditional loss-of-function in quail embryos, we investigate the timing and impact of Shh activity during early formation of sclerotome-derived vertebrae and ribs, and of lateral mesoderm-derived sternum. To this end, Hedgehog interacting protein (Hhip) was electroporated at various times between days 2 and 5. While the vertebral body and rib primordium showed consistent size reduction, rib expansion into the somatopleura remained unaffected, and the sternal bud developed normally. Additionally, we compared these effects with those of locally inhibiting BMP activity. Transfection of Noggin in the lateral mesoderm hindered sternal bud formation. Unlike Hhip, BMP inhibition via Noggin or Smad6 induced myogenic differentiation of the lateral dermomyotome lip, while impeding the growth of the myotome/rib complex into the somatic mesoderm, thus affirming the role of the lateral dermomyotome epithelium in rib guidance. Overall, these findings underscore the continuous requirement for opposing gradients of Shh and BMP activity in the morphogenesis of proximal and distal flank skeletal structures, respectively. Future research should address the implications of these early interactions to the later morphogenesis and function of the musculo-skeletal system and of possible associated malformations.


Subject(s)
Hedgehog Proteins , Ribs , Spine , Animals , Hedgehog Proteins/metabolism , Hedgehog Proteins/genetics , Ribs/metabolism , Ribs/embryology , Spine/metabolism , Spine/embryology , Gene Expression Regulation, Developmental , Mesoderm/metabolism , Mesoderm/embryology , Quail , Somites/metabolism , Somites/embryology , Bone Morphogenetic Proteins/metabolism , Bone Morphogenetic Proteins/genetics , Carrier Proteins
11.
Adv Exp Med Biol ; 1441: 125-143, 2024.
Article in English | MEDLINE | ID: mdl-38884708

ABSTRACT

This chapter discusses the role of cardiac neural crest cells in the formation of the septum that divides the cardiac arterial pole into separate systemic and pulmonary arteries. Further, cardiac neural crest cells directly support the normal development and patterning of derivatives of the caudal pharyngeal arches, including the great arteries, thymus, thyroid, and parathyroids. Recently, cardiac neural crest cells have also been shown to indirectly influence the development of the secondary heart field, another derivative of the caudal pharynx, by modulating signaling in the pharynx. The contribution and function of the cardiac neural crest cells has been learned in avian models; most of the genes associated with cardiac neural crest function have been identified using mouse models. Together these studies show that the neural crest cells may not only critical for normal cardiovascular development but also may be involved secondarily because they represent a major component in the complex tissue interactions in the caudal pharynx and outflow tract. Cardiac neural crest cells span from the caudal pharynx into the outflow tract, and therefore may be susceptible to any perturbation in or by other cells in these regions. Thus, understanding congenital cardiac outflow malformations in human sequences of malformations resulting from genetic and/or environmental insults necessarily requires better understanding the role of cardiac neural crest cells in cardiac development.


Subject(s)
Neural Crest , Neural Crest/embryology , Neural Crest/cytology , Neural Crest/metabolism , Animals , Humans , Heart/embryology , Mice
12.
Vet Res Commun ; 2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38884867

ABSTRACT

Two 1-day-old full-term female calves from different farms located in the Brazilian state of Rio Grande do Sul were unable to stand due to paresis of the pelvic limbs. Both calves had spina bifida on the spinal lumbar segment and were submitted to euthanasia due to poor prognosis. Postmortem examination revealed cerebellar herniation, caudal displacement of the brainstem, rostral deviation of the cranial nerves, caudal extension of occipital lobes, absence of dorsal lamina of lumbar vertebrae with exposed spinal cord, myelodysplasia, kyphosis, segmental spinal agenesis, renal fusion, muscular atrophy, and arthrogryposis. Histology highlighted myelodysplasia (syringomyelia and diplomyelia) and muscular atrophy. The reverse transcription-polymerase chain reactions for ruminant pestivirus were negative. Based on these lesions, the diagnosis of complex neural tube and skeletal malformations was made. A review of previous publications on calves diagnosed with these malformations, originally called Chiari or Arnold-Chiari malformations, revealed a wide range of nervous system and skeletal lesions. These variations amplified the uncertainty regarding whether all cases represent the same disorder and reinforced the importance of reconfiguring the terminology.

13.
Dev Dyn ; 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38877839

ABSTRACT

BACKGROUND: The Wnt signaling pathway is highly conserved in metazoans and regulates a large array of cellular processes including motility, polarity and fate determination, and stem cell homeostasis. Modulation of the actin cytoskeleton via the non-canonical Wnt pathway regulate cell polarity and cell migration that are required for proper vertebrate gastrulation and subsequent neurulation. However, the mechanism(s) of how the non-canonical pathway mediates actin cytoskeleton modulation is not fully understood. RESULTS: Herein, we characterize the role of the Formin-homology protein; dishevelled associated activator of morphogenesis 2 (Daam2) protein in the Wnt signaling pathway. Co-immunoprecipitation assays confirm the binding of Daam2 to dishevelled2 (Dvl2) as well as the domains within these proteins required for interaction; additionally, the interaction between Daam2 and Dvl2 was Wnt-regulated. Sub-cellular localization studies reveal Daam2 is cytoplasmic and regulates the cellular actin cytoskeleton by modulating actin filament formation. During Xenopus development, a knockdown or loss of Daam2 specifically produces neural tube closure defects indicative of a role in non-canonical signaling. Additionally, our studies did not identify any role for Daam2 in canonical Wnt signaling in mammalian culture cells or the Xenopus embryo. CONCLUSIONS: Our studies together identify Daam2 as a component of the non-canonical Wnt pathway and Daam2 is a regulator of neural tube morphogenesis during vertebrate development.

14.
bioRxiv ; 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38915513

ABSTRACT

IRF6 is a key genetic determinant of syndromic and non-syndromic cleft lip and palate. The ability to interrogate post-embryonic requirements of Irf6 has been hindered, as global Irf6 ablation in the mouse causes neonatal lethality. Prior work analyzing Irf6 in mouse models defined its role in the embryonic surface epithelium and periderm where it is required to regulate cell proliferation and differentiation. Several reports have also described Irf6 gene expression in other cell types, such as muscle, and neuroectoderm. However, analysis of a functional role in non-epithelial cell lineages has been incomplete due to the severity and lethality of the Irf6 knockout model and the paucity of work with a conditional Irf6 allele. Here we describe the generation and characterization of a new Irf6 floxed mouse model and analysis of Irf6 ablation in periderm and neural crest lineages. This work found that loss of Irf6 in periderm recapitulates a mild Irf6 null phenotype, suggesting that Irf6-mediated signaling in periderm plays a crucial role in regulating embryonic development. Further, conditional ablation of Irf6 in neural crest cells resulted in an anterior neural tube defect of variable penetrance. The generation of this conditional Irf6 allele allows for new insights into craniofacial development and new exploration into the post-natal role of Irf6.

15.
Toxicol Appl Pharmacol ; 489: 117009, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38906509

ABSTRACT

INTRODUCTION: Aripiprazole (ARI) is a recently developed antipsychotic medication that belongs to the second generation of antipsychotics. The literature has contradictory information regarding ARI, which has been classified as pregnant use category C by the FDA. METHODS: 125 pathogen-free fertilized eggs were incubated for 28 h and divided into five groups of 25 eggs each (including the control group), and 18 eggs with intact integrity were selected from each group. After the experimental groups were divided, ARI was administered subblastodermally with a Hamilton micro-injector at 4 different doses (1 mg/kg, 5 mg/kg, 10 mg/kg, 20 mg/kg). At the 48th hour of incubation, all eggs were hatched and embryos were removed from the embryonic membranes. And then morphologic (position of the neural tube (open or closed), crown-rump length, number of somites, embryological development status), histopathologic (apoptosis (caspase 3), cell proliferation (PCNA), in situ recognition of DNA breaks (tunnel)), genetic (BRE gene expression) analyzes were performed. RESULTS: According to the results of the morphological analysis, when the frequency of neural tube patency was evaluated among the experimental groups, a statistically significant difference was determined between the control group and all groups (p < 0.001). In addition, the mean crown-rump length and somite number of the embryos decreased in a dose-dependent manner compared to the control group. It was determined that mRNA levels of the BRE gene decreased in embryos exposed to ARI compared to the control group (p < 0.001). CONCLUSION: Morphologically, histopathologically, and genetically, aripiprazole exposure delayed neurogenesis and development in early chick embryos. These findings suggest its use in pregnant women may be teratogenic. We note that these results are preliminary for pregnant women, but they should be expanded and studied with additional and other samples.


Subject(s)
Aripiprazole , Neural Tube , Animals , Aripiprazole/toxicity , Neural Tube/drug effects , Chick Embryo , Antipsychotic Agents/toxicity , Apoptosis/drug effects , Cell Proliferation/drug effects , Embryonic Development/drug effects , Dose-Response Relationship, Drug , Gene Expression Regulation, Developmental/drug effects , Proliferating Cell Nuclear Antigen/metabolism , Caspase 3/metabolism , Caspase 3/genetics
16.
Toxicol Appl Pharmacol ; 489: 117011, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38906510

ABSTRACT

The critical developmental stages of the embryo are strongly influenced by the dietary composition of the mother. Acrylamide is a food contaminant that can form in carbohydrate-rich foods that are heat-treated. The aim of this study was to investigate the toxicity of a relatively low dose of acrylamide on the development of the neural tube in the early stage chick embryos. Specific pathogen-free fertilized eggs (n = 100) were treated with acrylamide (0.1, 0.5, 2.5, 12.5 mg/kg) between 28-30th hours of incubation and dissected at 48th hours. In addition to morphological and histopathological examinations, proliferating cell nuclear antigen (PCNA) and caspase 3 were analyzed immunohistochemically. The brain and reproductive expression gene (BRE) was analyzed by RT-PCR. Acrylamide exposure had a negative effect on neural tube status even at a very low dose (0.1 mg/kg) (p < 0.05). Doses of 0.5 mg/kg and above caused a delay in neural tube development (p < 0.05). Crown-rump length and somite count decreased dose-dependently, while this decrease was not significant in the very low dose group (p > 0.05), which was most pronounced at doses of 2.5 and 12.5 mg/kg (p < 0.001). Acrylamide exposure dose-dependently decreased PCNA and increased caspase 3, with this change being significant at doses of 0.5 mg/kg and above (p < 0.001). BRE was downregulated at all acrylamide exposures except in the very low dose group (0.1 mg/kg). In conclusion, we find that acrylamide exposure (at 0.5 mg/kg and above) in post-gastrulation delays neural tube closure in chicken embryos by suppressing proliferation and apoptosis induction and downregulating BRE gene expression.


Subject(s)
Acrylamide , Dose-Response Relationship, Drug , Embryonic Development , Proliferating Cell Nuclear Antigen , Animals , Chick Embryo , Acrylamide/toxicity , Proliferating Cell Nuclear Antigen/metabolism , Embryonic Development/drug effects , Neural Tube/drug effects , Neural Tube/embryology , Caspase 3/metabolism , Caspase 3/genetics , Gene Expression Regulation, Developmental/drug effects
17.
Front Mol Neurosci ; 17: 1394058, 2024.
Article in English | MEDLINE | ID: mdl-38828282

ABSTRACT

During the first month of pregnancy, the brain and spinal cord are formed through a process called neurulation. However, this process can be altered by low serum levels of folic acid, environmental factors, or genetic predispositions. In 2018, a surveillance study in Botswana, a country with a high incidence of human immunodeficiency virus (HIV) and lacking mandatory food folate fortification programs, found that newborns whose mothers were taking dolutegravir (DTG) during the first trimester of pregnancy had an increased risk of neural tube defects (NTDs). As a result, the World Health Organization and the U.S. Food and Drug Administration have issued guidelines emphasizing the potential risks associated with the use of DTG-based antiretroviral therapies during pregnancy. To elucidate the potential mechanisms underlying the DTG-induced NTDs, we sought to assess the potential neurotoxicity of DTG in stem cell-derived brain organoids. The gene expression of brain organoids developed in the presence of DTG was analyzed by RNA sequencing, Optical Coherence Tomography (OCT), Optical Coherence Elastography (OCE), and Brillouin microscopy. The sequencing data shows that DTG induces the expression of the folate receptor (FOLR1) and modifies the expression of genes required for neurogenesis. The Brillouin frequency shift observed at the surface of DTG-exposed brain organoids indicates an increase in superficial tissue stiffness. In contrast, reverberant OCE measurements indicate decreased organoid volumes and internal stiffness.

18.
J Surg Res ; 300: 231-240, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38824853

ABSTRACT

INTRODUCTION: Spina bifida (SB) occurs in 3.5/10,000 live births and is associated with significant long-term neurologic and urologic morbidity. We explored the characteristics and outcomes of pediatric patients with SB and the facilities that treat them in Texas. METHODS: We retrospectively reviewed a statewide hospital inpatient discharge database (2013-2021) to identify patients aged <18 y with SB using International Classification of Diseases 9/10 codes. Patients transferred to outside hospitals were excluded to avoid double-counting. Descriptive statistics and chi-square test were performed. RESULTS: Seven thousand five hundred thirty one inpatient hospitalizations with SB were analyzed. Most SB care is provided by a few facilities. Two facilities (1%) averaged >100 SB admissions per year (33% of patients), while 15 facilities (8%) treat 10-100 patients per year (51% of patients). Most facilities (145/193, 75%) average less than one patient per year. Infants tended to be sicker (17% extreme illness severity, P < 0.001). Overall mortality is low (1%), primarily occurring in the neonatal period (8%, P < 0.001). Most admissions are associated with surgical intervention, with 63% of encounters having operating room charges with an average cost of $25,786 ± 24,884. Admissions for spinal procedures were more common among infants, whereas admissions for genitourinary procedures were more common among older patients (P < 0.001). The average length of stay was 8 ± 16 d with infants having the longest length of stay (19 ± 33, P < 0.001). CONCLUSIONS: Patients have significant long-term health needs with evolving pediatric surgical indications as they grow. Pediatric SB care is primarily provided by a small number of facilities in Texas. Longitudinal care coordination of their multidisciplinary surgical care is needed to optimize patient care.


Subject(s)
Spinal Dysraphism , Humans , Spinal Dysraphism/therapy , Spinal Dysraphism/mortality , Texas/epidemiology , Retrospective Studies , Female , Child , Male , Infant , Adolescent , Child, Preschool , Infant, Newborn , Length of Stay/statistics & numerical data , Length of Stay/economics , Hospitalization/statistics & numerical data , Hospitalization/economics , Treatment Outcome
19.
Dev Growth Differ ; 66(5): 320-328, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38925637

ABSTRACT

During the formation of the neural tube, the primordium of the vertebrate central nervous system, the actomyosin activity of cells in different regions drives neural plate bending. However, how the stiffness of the neural plate and surrounding tissues is regulated and mechanically influences neural plate bending has not been elucidated. Here, we used atomic force microscopy to reveal the relationship between the stiffness of the neural plate and the mesoderm during Xenopus neural tube formation. Measurements with intact embryos revealed that the stiffness of the neural plate was consistently higher compared with the non-neural ectoderm and that it increased in an actomyosin activity-dependent manner during neural plate bending. Interestingly, measurements of isolated tissue explants also revealed that the relationship between the stiffness of the apical and basal sides of the neural plate was reversed during bending and that the stiffness of the mesoderm was lower than that of the basal side of the neural plate. The experimental elevation of mesoderm stiffness delayed neural plate bending, suggesting that low mesoderm stiffness mechanically supports neural tube closure. This study provides an example of mechanical interactions between tissues during large-scale morphogenetic movements.


Subject(s)
Neural Plate , Neural Tube , Xenopus laevis , Animals , Neural Tube/embryology , Neural Tube/cytology , Neural Tube/metabolism , Neural Plate/embryology , Neural Plate/metabolism , Neural Plate/cytology , Xenopus laevis/embryology , Mesoderm/cytology , Mesoderm/embryology , Mesoderm/metabolism , Ectoderm/cytology , Ectoderm/metabolism , Microscopy, Atomic Force , Embryo, Nonmammalian/cytology , Embryo, Nonmammalian/metabolism , Embryo, Nonmammalian/embryology
20.
Childs Nerv Syst ; 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38847879

ABSTRACT

INTRODUCTION: Myelomeningocele (MMC) is a prevalent form of neural tube defect. Despite advancements in treatment, MMC still poses significant health risks, including complications leading to chronic disability and mortality. Identifying prognostic risk factors for early outcomes is crucial for tailored intervention strategies. METHODS: This prospective study involved newborns and infants diagnosed with MMC who underwent surgery between 2020 and 2023 at Urmia University of Medical Sciences. Demographic data and surgical outcomes were collected, and participants were followed up for six months. Statistical analyses were conducted using descriptive statistics, Chi-Square, and independent t-test. RESULTS: The study included 29 MMC cases, with an incidence rate of 1.4 per 10,000 live births. Lesions were predominantly located in the lumbar spine. Although mortality rates appeared to increase with ascending lesion sites, this trend was not statistically significant. Short-term outcomes revealed high morbidity and mortality rates, with neurological deficits being the most prevalent complication. Multivariable analysis identified head circumference as a significant predictor of adverse outcomes (IRR = 1.37, 95% CI = 1.02 to 1.86, p = 0.04). Furthermore, an increase in birth weight was associated with a reduction in the incidence of requiring a ventriculoperitoneal shunt (IRR = 0.99, 95% CI = 0.998 to 0.999, p = 0.02). CONCLUSION: This prospective study highlights prognostic risk factors for early outcomes in MMC patients, emphasizing the need for personalized intervention strategies. By addressing modifiable risk factors and implementing targeted interventions, healthcare providers can strive to improve outcomes and enhance the quality of life for MMC patients.

SELECTION OF CITATIONS
SEARCH DETAIL
...