Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 274
Filter
1.
Neuromuscul Disord ; 41: 20-23, 2024 May 03.
Article in English | MEDLINE | ID: mdl-38865916

ABSTRACT

Inclusion body myositis is the commonest acquired myopathy in those over 50 years of age. Although it is classified as an idiopathic inflammatory myopathy and the most frequent finding on muscle biopsy in inclusion body myositis is an endomysial inflammatory infiltrate, it is clinically distinct from other myositis, including a lack of response to immunosuppressive medication. Neurogenic changes are commonly reported in inclusion body myositis and inflammatory changes are observed in muscle following neurogenic injury. The objective of our study was to explore whether neurogenic inflammation plays a role in the pathogenesis of inclusion body myositis, possibly explaining its resistance to immunosuppression. The number of mast cells and presence of neuropeptides, substance P and calcitonin gene-related peptide, were assessed in 48 cases of inclusion body myositis, 11 cases of steroid responsive myositis, two cases of focal myositis associated with neurogenic injury, and ten normal controls. The number of mast cells in inclusion body myositis focal and myositis associated to neurogenic injury were significantly greater than that observed in steroid responsive myositis. Our findings suggest that neurogenic inflammation mediated through mast cells may play a role in the pathogenesis of inclusion body myositis, and focal myositis associated to neurogenic injury, and thus, explain in some part its lack of response to immunosuppressive treatments.

2.
Front Immunol ; 15: 1365673, 2024.
Article in English | MEDLINE | ID: mdl-38817603

ABSTRACT

Importance: Research is beginning to elucidate the sophisticated mechanisms underlying the microbiota-gut-brain-immune interface, moving from primarily animal models to human studies. Findings support the dynamic relationships between the gut microbiota as an ecosystem (microbiome) within an ecosystem (host) and its intersection with the host immune and nervous systems. Adding this to the effects on epigenetic regulation of gene expression further complicates and strengthens the response. At the heart is inflammation, which manifests in a variety of pathologies including neurodegenerative diseases such as Alzheimer's disease, Parkinson's disease, and Multiple Sclerosis (MS). Observations: Generally, the research to date is limited and has focused on bacteria, likely due to the simplicity and cost-effectiveness of 16s rRNA sequencing, despite its lower resolution and inability to determine functional ability/alterations. However, this omits all other microbiota including fungi, viruses, and phages, which are emerging as key members of the human microbiome. Much of the research has been done in pre-clinical models and/or in small human studies in more developed parts of the world. The relationships observed are promising but cannot be considered reliable or generalizable at this time. Specifically, causal relationships cannot be determined currently. More research has been done in Alzheimer's disease, followed by Parkinson's disease, and then little in MS. The data for MS is encouraging despite this. Conclusions and relevance: While the research is still nascent, the microbiota-gut-brain-immune interface may be a missing link, which has hampered our progress on understanding, let alone preventing, managing, or putting into remission neurodegenerative diseases. Relationships must first be established in humans, as animal models have been shown to poorly translate to complex human physiology and environments, especially when investigating the human gut microbiome and its relationships where animal models are often overly simplistic. Only then can robust research be conducted in humans and using mechanistic model systems.


Subject(s)
Brain-Gut Axis , Brain , Gastrointestinal Microbiome , Neuroinflammatory Diseases , Humans , Gastrointestinal Microbiome/immunology , Animals , Brain-Gut Axis/immunology , Neuroinflammatory Diseases/immunology , Neuroinflammatory Diseases/microbiology , Neuroinflammatory Diseases/etiology , Brain/immunology , Brain/microbiology
3.
Front Neurol ; 15: 1366372, 2024.
Article in English | MEDLINE | ID: mdl-38770523

ABSTRACT

Migraine is a highly prevalent disease worldwide, imposing enormous clinical and economic burdens on individuals and societies. Current treatments exhibit limited efficacy and acceptability, highlighting the need for more effective and safety prophylactic approaches, including the use of nutraceuticals for migraine treatment. Migraine involves interactions within the central and peripheral nervous systems, with significant activation and sensitization of the trigeminovascular system (TVS) in pain generation and transmission. The condition is influenced by genetic predispositions and environmental factors, leading to altered sensory processing. The neuroinflammatory response is increasingly recognized as a key event underpinning the pathophysiology of migraine, involving a complex neuro-glio-vascular interplay. This interplay is partially mediated by neuropeptides such as calcitonin gene receptor peptide (CGRP), pituitary adenylate cyclase activating polypeptide (PACAP) and/or cortical spreading depression (CSD) and involves oxidative stress, mitochondrial dysfunction, nucleotide-binding domain-like receptor family pyrin domain containing-3 (NLRP3) inflammasome formation, activated microglia, and reactive astrocytes. Omega-3 polyunsaturated fatty acids (PUFAs), particularly eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), crucial for the nervous system, mediate various physiological functions. Omega-3 PUFAs offer cardiovascular, neurological, and psychiatric benefits due to their potent anti-inflammatory, anti-nociceptive, antioxidant, and neuromodulatory properties, which modulate neuroinflammation, neurogenic inflammation, pain transmission, enhance mitochondrial stability, and mood regulation. Moreover, specialized pro-resolving mediators (SPMs), a class of PUFA-derived lipid mediators, regulate pro-inflammatory and resolution pathways, playing significant anti-inflammatory and neurological roles, which in turn may be beneficial in alleviating the symptomatology of migraine. Omega-3 PUFAs impact various neurobiological pathways and have demonstrated a lack of major adverse events, underscoring their multifaceted approach and safety in migraine management. Although not all omega-3 PUFAs trials have shown beneficial in reducing the symptomatology of migraine, further research is needed to fully establish their clinical efficacy and understand the precise molecular mechanisms underlying the effects of omega-3 PUFAs and PUFA-derived lipid mediators, SPMs on migraine pathophysiology and progression. This review highlights their potential in modulating brain functions, such as neuroimmunological effects, and suggests their promise as candidates for effective migraine prophylaxis.

4.
Neurobiol Pain ; 15: 100156, 2024.
Article in English | MEDLINE | ID: mdl-38601267

ABSTRACT

Background and aims: Spinal cord injury (SCI) affects roughly 300,000 Americans with 17,000 new cases added annually. In addition to paralysis, 60% of people with SCI develop neurogenic bowel (NB), a syndrome characterized by slow colonic transit, constipation, and chronic abdominal pain. The knowledge gap surrounding NB mechanisms after SCI means that interventions are primarily symptom-focused and largely ineffective. The goal of the present studies was to identify mechanism(s) that initiate and maintain NB after SCI as a critical first step in the development of evidence-based, novel therapeutic treatment options. Methods: Following spinal contusion injury at T9, we observed alterations in bowel structure and function reflecting key clinical features of NB. We then leveraged tissue-specific whole transcriptome analyses (RNAseq) and fecal 16S rRNA amplicon sequencing in combination with histological, molecular, and functional (Ca2+ imaging) approaches to identify potential mechanism(s) underlying the generation of the NB phenotype. Results: In agreement with prior reports focused on SCI-induced changes in the skin, we observed a rapid and persistent increase in expression of calcitonin gene-related peptide (CGRP) expression in the colon. This is suggestive of a neurogenic inflammation-like process engaged by antidromic activity of below-level primary afferents following SCI. CGRP has been shown to disrupt colon homeostasis and negatively affect peristalsis and colon function. As predicted, contusion SCI resulted in increased colonic transit time, expansion of lymphatic nodules, colonic structural and genomic damage, and disruption of the inner, sterile intestinal mucus layer corresponding to increased CGRP expression in the colon. Gut microbiome colonization significantly shifted over 28 days leading to the increase in Anaeroplasma, a pathogenic, gram-negative microbe. Moreover, colon specific vagal afferents and enteric neurons were hyperresponsive after SCI to different agonists including fecal supernatants. Conclusions: Our data suggest that SCI results in overexpression of colonic CGRP which could alter colon structure and function. Neurogenic inflammatory-like processes and gut microbiome dysbiosis can also sensitize vagal afferents, providing a mechanism for visceral pain despite the loss of normal sensation post-SCI. These data may shed light on novel therapeutic interventions targeting this process to prevent NB development in patients.

5.
Spine J ; 2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38608821

ABSTRACT

BACKGROUND CONTEXT: Intervertebral disc degeneration is common and may play an important role in low back pain, but it is not well-understood. Previous studies have shown that the outer layer of the annulus fibrosus of a healthy disc is innervated by nociceptive nerve fibers. In the process of disc degeneration, it can grow into the inner annulus fibrosus or nucleus pulposus and release neuropeptides. Disc degeneration is associated with inflammation that produces inflammatory factors and potentiates nociceptor sensitization. Subsequently neurogenic inflammation is induced by neuropeptide release from activated primary afferent terminals. Because the innervation of a lumbar disc comes from multi-segmental dorsal root ganglion neurons, does neurogenic inflammation in a degenerative disc initiate neurogenic inflammation in neighboring healthy discs by antidromic activity? PURPOSE: This study was based on animal experiments in Sprague-Dawley rats to investigate the role of neurogenic inflammation in adjacent healthy disc degeneration induced by disc injury. STUDY DESIGN: This was an experimental study. METHODS: Seventy-five 12-week-old, male Sprague-Dawley rats were allocated to 3 groups (sham group, disc injury group and disc injury+TrkA antagonist group). The disc injury group was punctured in the tail disc between the eighth and ninth coccygeal vertebrae (Co8-9) to establish an animal model of tail intervertebral disc degeneration. The sham group underwent only skin puncture and the disc injury+TrkA antagonist group was intraperitoneally injected with GW441756 two days before disc puncture. The outcome measure included quantitative real-time polymerase chain reaction and enzyme-linked immunosorbent assay. RESULTS: Disc injury induced an increase in aggrecan, NGF, TrkA, CGRP, SP, IL-1ß, and IL-6 mRNA levels in the injured (Co8-9) and adjacent discs (Co7-8), which reached a peak on day 1, then gradually decreased, and returned to normal on day 14. After intraperitoneal injection of GW441756 prior to puncture, the mRNA levels of the above indicators were down-regulated in Co7-8 and Co8-9 intervertebral discs on the 1st and 7th days. The protein content of the above indicators in Co7-8 and Co8-9 intervertebral discs showed roughly the same trend as mRNA levels. CONCLUSIONS: Degeneration of one disc can induce neurogenic inflammation of adjacent healthy discs in a rat model. CLINICAL SIGNIFICANCE: This model supports a key role of neurogenic inflammation in disc degeneration, and may play a role in the experience of low back pain.

6.
J Dermatol ; 51(5): 621-631, 2024 May.
Article in English | MEDLINE | ID: mdl-38605467

ABSTRACT

Alopecia areata refers to an autoimmune illness indicated by persistent inflammation. The key requirement for alopecia areata occurrence is the disruption of immune-privileged regions within the hair follicles. Recent research has indicated that neuropeptides play a role in the damage to hair follicles by triggering neurogenic inflammation, stimulating mast cells ambient the follicles, and promoting apoptotic processes in keratinocytes. However, the exact pathogenesis of alopecia areata requires further investigation. Recently, there has been an increasing focus on understanding the mechanisms of immune diseases resulting from the interplay between the nervous and the immune system. Neurogenic inflammation due to neuroimmune disorders of the skin system may disrupt the inflammatory microenvironment of the hair follicle, which plays a crucial part in the progression of alopecia areata.


Subject(s)
Alopecia Areata , Hair Follicle , Neurogenic Inflammation , Alopecia Areata/immunology , Alopecia Areata/etiology , Alopecia Areata/pathology , Humans , Hair Follicle/immunology , Hair Follicle/pathology , Neurogenic Inflammation/immunology , Neurogenic Inflammation/etiology , Neuropeptides/metabolism , Neuropeptides/immunology , Mast Cells/immunology , Keratinocytes/immunology , Keratinocytes/pathology , Apoptosis/immunology , Animals
7.
Int J Mol Sci ; 25(7)2024 Apr 04.
Article in English | MEDLINE | ID: mdl-38612839

ABSTRACT

Chronic inflammatory diseases are considered the most significant cause of death worldwide. Current treatments for inflammatory diseases are limited due to the lack of understanding of the biological factors involved in early-stage disease progression. Nerve growth factor (NGF) is a neurotrophic factor directly associated with inflammatory and autoimmune diseases like osteoarthritis, multiple sclerosis, and rheumatoid arthritis. It has been shown that NGF levels are significantly upregulated at the site of inflammation and play a crucial role in developing a robust inflammatory response. However, little is known about NGF's temporal expression profile during the initial progressive phase of inflammation. This study aimed to determine the temporal expression patterns of NGF in rat skin (epidermis) during adjuvant-induced arthritis (AIA). Sprague Dawley rats were randomly divided into control and complete Freund's adjuvant (CFA)-treated groups. Levels of NGF were evaluated following unilateral AIA at different time points, and it was found that peripheral inflammation due to AIA significantly upregulated the expression of NGF mRNA and protein in a biphasic pattern. These results suggest that NGF signaling is crucial for initiating and maintaining peripheral neurogenic inflammation in rats during AIA.


Subject(s)
Nerve Growth Factor , Neurogenic Inflammation , Animals , Rats , Rats, Sprague-Dawley , Nerve Growth Factor/genetics , Adjuvants, Immunologic , Adjuvants, Pharmaceutic , Inflammation
8.
World Neurosurg X ; 23: 100355, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38516024

ABSTRACT

Purpose: The study aims to evaluate the role of substance P in cerebral edema and outcomes associated with acute TBI. Method: Patients with acute TBI who presented within 6 h and a CT scan showed predominantly cerebral edema were included in the study. Substance P level was assessed from a serum sample collected within 6 h of trauma. We also evaluated the brain-specific gravity using the Brain View software. Result: A total of 160 (128 male) patients were recruited. The median serum substance P concentration was 167.89 (IQR: 101.09-238.2). Substance P concentration was high in the early hours after trauma (p = 0.001). The median specific gravity of the entire brain was 1.04. Patients with a low Glasgow coma scale (GCS) at admission had a high concentration of the substance P. In the univariate analysis, low GCS, elevated serum concentrations of substance P level, high Rotterdam grade, high cerebral edema grade, a high international normalized ratio value, and high blood sugar levels were associated with poor outcomes at six months. In logistic regression analysis, low GCS at admission, high cerebral edema grade, and elevated blood sugar level were strongly associated with poor outcomes at six months. The area under the receiver operating characteristic curve was 0.884 (0.826-0.941). Conclusion: Serum substance P is strongly associated with the severity of cerebral edema after TBI. However, brain-specific gravity does not directly correlate with posttraumatic cerebral edema severity. Serum substance P does not influence the clinical outcome of traumatic brain injury.

9.
Front Cell Dev Biol ; 12: 1334130, 2024.
Article in English | MEDLINE | ID: mdl-38481530

ABSTRACT

Transient Receptor Potential Vanilloid 1 (TRPV1) and Ankyrin 1 (TRPA1) are nonselective cation channels expressed in primary sensory neurons and several other non-neuronal structures such as immune cells, keratinocytes, and vascular smooth muscle cells. They play important roles in nociception, pain processing and their chanellopathies are associated with the development of several pathological conditions. They are located in cholesterol- and sphingolipid-rich membrane lipid raft regions serving as platforms to modulate their activations. We demonstrated earlier that disruption of these lipid rafts leads to decreased TRP channel activation and exerts analgesic effects. Cyclodextrins are macrocyclic molecules able to form host-guest complexes with cholesterol and deplete it from the membrane lipid rafts. The aim of this study was to investigate 8 structurally different (methylated and non-methylated) CD derivatives on cell viability, mitochondrial membrane potential, membrane composition and activation abilities of the TRPV1 and TRPA1 channels. We showed that non-methylated derivatives have preferable safety profiles compared to methylated ones. Furthermore, methylated derivatives reduced mitochondrial membrane potential. However, all investigated derivatives influence the ordered cell membrane structure depleting membrane cholesterol and inhibit the TRPV1 agonist capsaicin- and the TRPA1 agonist allyl isothiocyanate-induced Ca2+-influx. This mechanism of action might provide novel perspectives for the development of peripherally acting analgesics via indirectly decreasing the generation and transmission of nociceptive signals.

10.
Exp Biol Med (Maywood) ; 249: 10064, 2024.
Article in English | MEDLINE | ID: mdl-38463389

ABSTRACT

Ultrasonographic characteristics of skeletal muscles are related to their health status and functional capacity, but they still provide limited information on muscle composition during the inflammatory process. It has been demonstrated that an alteration in muscle composition or structure can have disparate effects on different ranges of ultrasonogram pixel intensities. Therefore, monitoring specific clusters or bands of pixel intensity values could help detect echotextural changes in skeletal muscles associated with neurogenic inflammation. Here we compare two methods of ultrasonographic image analysis, namely, the echointensity (EI) segmentation approach (EI banding method) and detection of selective pixel intensity ranges correlated with the expression of inflammatory regulators using an in-house developed computer algorithm (r-Algo). This study utilized an experimental model of neurogenic inflammation in segmentally linked myotomes (i.e., rectus femoris (RF) muscle) of rats subjected to lumbar facet injury. Our results show that there were no significant differences in RF echotextural variables for different EI bands (with 50- or 25-pixel intervals) between surgery and sham-operated rats, and no significant correlations among individual EI band pixel characteristics and protein expression of inflammatory regulators studied. However, mean numerical pixel values for the pixel intensity ranges identified with the proprietary r-Algo computer program correlated with protein expression of ERK1/2 and substance P (both 86-101-pixel ranges) and CaMKII (86-103-pixel range) in RF, and were greater (p < 0.05) in surgery rats compared with their sham-operated counterparts. Our findings indicate that computer-aided identification of specific pixel intensity ranges was critical for ultrasonographic detection of changes in the expression of inflammatory mediators in neurosegmentally-linked skeletal muscles of rats after facet injury.


Subject(s)
Neurogenic Inflammation , Quadriceps Muscle , Rats , Animals , Quadriceps Muscle/diagnostic imaging , Muscle, Skeletal/diagnostic imaging , Muscle, Skeletal/physiology , Ultrasonography/methods , Image Processing, Computer-Assisted
11.
Eur J Pediatr ; 183(4): 1619-1627, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38183438

ABSTRACT

Neurogenic inflammation is involved in the development and progression of respiratory inflammatory diseases. However, its role in community-acquired pneumonia (CAP) remains unclear. We therefore aimed to investigate plasma levels of neurogenic inflammation-related neuropeptides, calcitonin gene-related peptide (CGRP), substance P (SP), vasoactive intestinal peptide (VIP) and neuropeptide Y (NPY), and procalcitonin (PCT) in pediatric patients with CAP and to assess their diagnostic value in viral and bacterial/mixed pneumonia. A total of 124 pediatric patients with CAP (1 month-18 years old) and 56 healthy children of similar ages were prospectively enrolled. The patients were classified as viral (n = 99) and bacterial/mixed (n = 25) pneumonia. Plasma levels of the peptides were quantified by ELISA. ROC analysis was performed to evaluate possible diagnostic value of the peptides. While plasma levels of CGRP, VIP and PCT were significantly higher in patients with CAP than in the control group, respectively, NPY levels were significantly lower. Moreover, plasma levels of all neuropeptides and PCT were significantly higher in bacterial pneumonia patients compared to viral pneumonia patients. ROC analysis revealed that CGRP, SP and NPY had a diagnostic value in distinguishing viral and bacterial/mixed pneumonia. CONCLUSIONS: Our findings suggest that these neuropeptides may be implicated in pediatric CAP. CGRP, SP and NPY together may be a promising candidate in distinguishing viral and bacterial/mixed pneumonia, however, for this, further studies are needed. WHAT IS KNOWN: • Neurogenic inflammation contributes to the development and progression of respiratory inflammatory diseases such as chronic obstructive pulmonary disease and bronchial asthma. WHAT IS NEW: • Plasma levels of neurogenic inflammation related neuropeptides calcitonin gene-related peptide, substance P, vasoactive intestinal peptide and neuropeptide Y are changed in pediatric community-acquired pneumonia. Calcitonin gene-related peptide, substance P and neuropeptide Y are promising candidates in distinguishing viral and bacterial/mixed pneumonia.


Subject(s)
Neuropeptides , Pneumonia, Bacterial , Humans , Child , Calcitonin Gene-Related Peptide/analysis , Vasoactive Intestinal Peptide/analysis , Neuropeptide Y/analysis , Substance P/analysis , Neurogenic Inflammation , Pneumonia, Bacterial/diagnosis
12.
Int Endod J ; 57(5): 576-585, 2024 May.
Article in English | MEDLINE | ID: mdl-38294105

ABSTRACT

AIM: The purpose of this study was to quantify the effect of five different root canal preparation instruments on Substance P (SP), Calcitonin gene-related peptide (CGRP) and their receptors expression in healthy human periodontal ligament. METHODOLOGY: STROBE guidelines were used to design a study using 60 periodontal ligament samples obtained from healthy lower premolars where extraction was indicated for orthodontic reasons. Prior to extraction 40 of these premolars were equally divided into four groups and root canals were prepared using different systems: Mtwo, Reciproc Blue, HyFlex EDM and Plex-V. Ten premolars were prepared with hand files and served as a positive control group. The remaining 10 premolars where extracted without treatment and served as a negative control group. All periodontal ligament samples were processed to measure the expression of SP, CGRP and their receptors by radioimmunoassay. Kruskal-Wallis and Duncan tests were performed to determine statistically significant differences between the groups for each variable. RESULTS: Greater expression of all the peptides measured were found in the hand-file preparation group, followed by the Reciproc Blue, Mtwo, HyFlex EDM and Plex-V groups. The lower SP, CGRP and their receptors values were for the intact teeth control group. Kruskal-Wallis test showed statistically significant differences amongst groups (p < .001). Dunn post-hoc tests showed statistically significant differences in SP, CGRP and their receptors expression between the intact teeth and the hand-file and Reciproc Blue groups. Hand-file group showed significant differences with the other groups, except with Reciproc Blue, where no differences were observed in any of the peptides measured. Finally, no differences were observed between Plex-V and HyFlex in any of the peptides measured. CONCLUSIONS: Root canal preparation with hand files and Reciproc Blue generates the highest expression of SP, CGRP, NK1 and CGRP1R in human periodontal ligament, whilst Plex-V and HyFlex maintain the basal expression of neuropeptides and their receptors. Mtwo showed intermediate results between Reciproc Blue and HyFlex.


Subject(s)
Calcitonin Gene-Related Peptide , Substance P , Humans , Substance P/metabolism , Calcitonin Gene-Related Peptide/metabolism , Periodontal Ligament/metabolism , Root Canal Preparation , Bicuspid , Dental Pulp Cavity , Equipment Design
13.
Circulation ; 149(19): 1516-1533, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38235590

ABSTRACT

BACKGROUND: Heart failure is associated with a high rate of mortality and morbidity, and ventricular remodeling invariably precedes heart failure. Ventricular remodeling is fundamentally driven by mechanotransduction that is regulated by both the nervous system and the immune system. However, it remains unknown which key molecular factors govern the neuro/immune/cardio axis that underlies mechanotransduction during ventricular remodeling. Here, we investigated whether the mechanosensitive Piezo cation channel-mediated neurogenic inflammatory cascade underlies ventricular remodeling-related mechanotransduction. METHODS: By ligating the left coronary artery of rats to establish an in vivo model of chronic myocardial infarction (MI), lentivirus-mediated thoracic dorsal root ganglion (TDRG)-specific Piezo1 knockdown rats and adeno-associated virus-PHP.S-mediated TDRG neuron-specific Piezo1 knockout mice were used to investigate whether Piezo1 in the TDRG plays a functional role during ventricular remodeling. Subsequently, neutralizing antibody-mediated TDRG IL-6 (interleukin-6) inhibition rats and adeno-associated virus-PHP.S-mediated TDRG neuron-specific IL-6 knockdown mice were used to determine the mechanism underlying neurogenic inflammation. Primary TDRG neurons were used to evaluate Piezo1 function in vitro. RESULTS: Expression of Piezo1 and IL-6 was increased, and these factors were functionally activated in TDRG neurons at 4 weeks after MI. Both knockdown of TDRG-specific Piezo1 and deletion of TDRG neuron-specific Piezo1 lessened the severity of ventricular remodeling at 4 weeks after MI and decreased the level of IL-6 in the TDRG or heart. Furthermore, inhibition of TDRG IL-6 or knockdown of TDRG neuron-specific IL-6 also ameliorated ventricular remodeling and suppressed the IL-6 cascade in the heart, whereas the Piezo1 level in the TDRG was not affected. In addition, enhanced Piezo1 function, as reflected by abundant calcium influx induced by Yoda1 (a selective agonist of Piezo1), led to increased release of IL-6 from TDRG neurons in mice 4 weeks after MI. CONCLUSIONS: Our findings point to a critical role for Piezo1 in ventricular remodeling at 4 weeks after MI and reveal a neurogenic inflammatory cascade as a previously unknown facet of the neuronal immune signaling axis underlying mechanotransduction.


Subject(s)
Inflammation , Ion Channels , Myocardial Infarction , Ventricular Remodeling , Animals , Male , Mice , Rats , Disease Models, Animal , Ganglia, Spinal/metabolism , Inflammation/metabolism , Inflammation/pathology , Interleukin-6/metabolism , Interleukin-6/genetics , Ion Channels/metabolism , Ion Channels/genetics , Mechanotransduction, Cellular , Mice, Knockout , Myocardial Infarction/metabolism , Myocardial Infarction/pathology , Myocardial Infarction/physiopathology , Neurons/metabolism , Neurons/pathology , Rats, Sprague-Dawley , Ventricular Remodeling/genetics , Ventricular Remodeling/physiology
14.
Lasers Med Sci ; 39(1): 54, 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38296870

ABSTRACT

Neurogenic inflammation, mediated by T helper 17 cell (Th17) and neurons that release neuropeptides such as substance P (SP), is thought to play a role in the pathogenesis of psoriasis. Excimer light is used in the treatment of psoriasis via induction of T cell apoptosis. The objective of this study is to study the effect of excimer light on active versus stable psoriasis and investigate the levels of substance P and its receptor in both groups. The study included 27 stable and 27 active psoriatic patients as well as 10 matched healthy controls. Clinical examination (in the form of local psoriasis severity index (PSI) and visual analogue scale (VAS)) was done to determine disease severity, level of itching, and quality of life. Tissue levels of SP and neurokinin-1 receptor (NK-1R) were measured by ELISA before and after 9 excimer light sessions in 43 patients. A statistically significant lower levels of PSI and VAS were reached after therapy with no significant difference between the stable and active groups. The mean tissue levels of SP before therapy were significantly higher than the control group. Lower levels of SP and NK-1 receptor were found after treatment overall and in each group. Excimer therapy can be effective for both stable and active plaque psoriasis and this effect could be partly through its role on ameliorating the neurogenic inflammation.


Subject(s)
Psoriasis , Substance P , Humans , Neurogenic Inflammation , Quality of Life , Psoriasis/radiotherapy , Pruritus
15.
J Ethnopharmacol ; 324: 117741, 2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38224794

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Zhisou Powder (ZSP), a traditional Chinese medicine (TCM) prescription, has been widely used in the clinic for the treatment of post-infectious cough (PIC). However, the exact mechanism is not clear. AIM OF THE STUDY: The aim of this study was to investigate the ameliorative effect of ZSP on PIC in mice. The possible mechanisms of action were screened based on network pharmacology, and the potential mechanisms were explored through molecular docking and in vivo experimental validation. MATERIALS AND METHODS: Lipopolysaccharide (LPS) (80µg/50 µL) was used to induce PIC in mice, followed by daily exposure to cigarette smoke (CS) for 30 min for 30 d to establish PIC model. The effects of ZSP on PIC mice were observed by detecting the number of coughs and cough latency, peripheral blood and bronchoalveolar lavage fluid (BALF) inflammatory cell counts, enzyme-linked immunosorbent assay (ELISA), and histological analysis. The core targets and key pathways of ZSP on PIC were analyzed using network pharmacology, and TRPA1 and TRPV1 were validated using RT-qPCR and western blotting assays. RESULTS: ZSP effectively reduced the number of coughs and prolonged the cough latency in PIC mice. Airway inflammation was alleviated by reducing the expression levels of the inflammatory mediators TNF-α and IL-1ß. ZSP modulated the expression of Substance P, Calcitonin gene-related peptide (CGRP), and nerve growth factor (NGF) in BALF. Based on the results of network pharmacology, the mechanism of action of ZSP may exert anti-neurogenic airway-derived inflammation by regulating the expression of TRPA1 and TRPV1 through the natural active ingredients α-spinastero, shionone and didehydrotuberostemonine. CONCLUSION: ZSP exerts anti-airway inflammatory effects through inhibition of TRPA1/TRPV1 channels regulating neuropeptides to alleviate cough hypersensitivity and has a favorable therapeutic effect on PIC model mice. It provides theoretical evidence for the clinical application of ZSP.


Subject(s)
Lipopolysaccharides , TRPV Cation Channels , Mice , Animals , TRPA1 Cation Channel/metabolism , Lipopolysaccharides/toxicity , Powders/therapeutic use , Molecular Docking Simulation , TRPV Cation Channels/metabolism , Cough/chemically induced , Cough/drug therapy , Cough/metabolism , Inflammation/pathology , Anti-Inflammatory Agents/adverse effects
16.
Dev Comp Immunol ; 151: 105106, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38013114

ABSTRACT

Species-specific neural inflammation can be induced by profound immune signalling from periphery to brain. Recent advances in transcriptomics offer cost-effective approaches to study this regulation. In a population of captive zebra finch (Taeniopygia guttata), we compare the differential gene expression patterns in lipopolysaccharide (LPS)-triggered peripheral inflammation revealed by RNA-seq and QuantSeq. The RNA-seq approach identified more differentially expressed genes but failed to detect any inflammatory markers. In contrast, QuantSeq results identified specific expression changes in the genes regulating inflammation. Next, we adopted QuantSeq to relate peripheral and brain transcriptomes. We identified subtle changes in the brain gene expression during the peripheral inflammation (e.g. up-regulation in AVD-like and ACOD1 expression) and detected co-structure between the peripheral and brain inflammation. Our results suggest benefits of the 3'end transcriptomics for association studies between peripheral and neural inflammation in genetically heterogeneous models and identify potential targets for the future brain research in birds.


Subject(s)
Finches , Songbirds , Animals , Songbirds/genetics , Transcriptome , RNA, Messenger/metabolism , Gene Expression Profiling , Brain/metabolism , Inflammation/genetics , Inflammation/metabolism , Finches/genetics
17.
Chin J Integr Med ; 30(2): 152-162, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38038835

ABSTRACT

OBJECTIVE: To investigate whether electroacupuncture (EA) at sensitized acupoints could reduce sympathetic-sensory coupling (SSC) and neurogenic inflammatory response by interfering with 5-hydroxytryptamine (5-HT)ergic neural pathways to relieve colitis and somatic referred pain, and explore the underlying mechanisms. METHODS: Rats were treated with 5% dextran sodium sulfate (DSS) solution for 7 days to establish a colitis model. Twelve rats were randomly divided into the control and model groups according to a random number table (n=6). According to the "Research on Rat Acupoint Atlas", sensitized acupoints and non-sensitized acupoints were determined. Rats were randomly divided into the control, model, Zusanli-EA (ST 36), Dachangshu-EA (BL 25), and Xinshu (BL 15) groups (n=6), as well as the control, model, EA, and EA + GR113808 (a 5-HT inhibitor) groups (n=6). The rats in the control group received no treatment. Acupuncture was administered on 2 days after modeling using the stimulation pavameters: 1 mA, 2 Hz, for 30 min, with sparse and dense waves, for 14 consecutive days. GR113808 was injected into the tail vein at 5 mg/kg before EA for 10 min for 7 consecutive days. Mechanical sensitivity was assessed with von Frey filaments. Body weight and disease activity index (DAI) scores of rats were determined. Hematoxylin and eosin staining was performed to observe colon histopathology. SSC was analyzed by immunofluorescence staining. Immunohistochemical staining was performed to detect 5-HT and substance P (SP) expressions. The calcitonin gene-related peptide (CGRP) in skin tissue and tyrosine hydroxylase (TH) protein levels in DRG were detected by Western blot. The levels of hyaluronic acid (HA), bradykinin (BK), prostaglandin I2 (PGI2) in skin tissue, 5-HT, tryptophan hydroxylase 1 (TPH1), serotonin transporters (SERT), 5-HT 3 receptor (5-HT3R), and 5-HT 4 receptor (5-HT4R) in colon tissue were measured by enzyme-linked immunosorbent assay (ELISA). RESULTS: BL 25 and ST 36 acupoints were determined as sensitized acupoints, and BL 15 acupoint was used as a non-sensitized acupoint. EA at sensitized acupoints improved the DAI score, increased mechanical withdrawal thresholds, and alleviated colonic pathological damage of rats. EA at sensitized acupoints reduced SSC structures and decreased TH and CGRP expression levels (P<0.05). Furthermore, EA at sensitized acupoints reduced BK, PGI2, 5-HT, 5-HT3R and TPH1 levels, and increased HA, 5-HT4R and SERT levels in colitis rats (P<0.05). GR113808 treatment diminished the protective effect of EA at sensitized acupoints in colitis rats (P<0.05). CONCLUSION: EA at sensitized acupoints alleviated DSS-induced somatic referred pain in colitis rats by interfering with 5-HTergic neural pathway, and reducing SSC inflammatory response.


Subject(s)
Colitis , Electroacupuncture , Indoles , Sulfonamides , Rats , Animals , Rats, Sprague-Dawley , Serotonin , Acupuncture Points , Pain, Referred , Calcitonin Gene-Related Peptide , Signal Transduction , Colitis/chemically induced , Colitis/complications , Colitis/therapy
18.
Article in English | WPRIM (Western Pacific) | ID: wpr-1010329

ABSTRACT

OBJECTIVE@#To investigate whether electroacupuncture (EA) at sensitized acupoints could reduce sympathetic-sensory coupling (SSC) and neurogenic inflammatory response by interfering with 5-hydroxytryptamine (5-HT)ergic neural pathways to relieve colitis and somatic referred pain, and explore the underlying mechanisms.@*METHODS@#Rats were treated with 5% dextran sodium sulfate (DSS) solution for 7 days to establish a colitis model. Twelve rats were randomly divided into the control and model groups according to a random number table (n=6). According to the "Research on Rat Acupoint Atlas", sensitized acupoints and non-sensitized acupoints were determined. Rats were randomly divided into the control, model, Zusanli-EA (ST 36), Dachangshu-EA (BL 25), and Xinshu (BL 15) groups (n=6), as well as the control, model, EA, and EA + GR113808 (a 5-HT inhibitor) groups (n=6). The rats in the control group received no treatment. Acupuncture was administered on 2 days after modeling using the stimulation pavameters: 1 mA, 2 Hz, for 30 min, with sparse and dense waves, for 14 consecutive days. GR113808 was injected into the tail vein at 5 mg/kg before EA for 10 min for 7 consecutive days. Mechanical sensitivity was assessed with von Frey filaments. Body weight and disease activity index (DAI) scores of rats were determined. Hematoxylin and eosin staining was performed to observe colon histopathology. SSC was analyzed by immunofluorescence staining. Immunohistochemical staining was performed to detect 5-HT and substance P (SP) expressions. The calcitonin gene-related peptide (CGRP) in skin tissue and tyrosine hydroxylase (TH) protein levels in DRG were detected by Western blot. The levels of hyaluronic acid (HA), bradykinin (BK), prostaglandin I2 (PGI2) in skin tissue, 5-HT, tryptophan hydroxylase 1 (TPH1), serotonin transporters (SERT), 5-HT 3 receptor (5-HT3R), and 5-HT 4 receptor (5-HT4R) in colon tissue were measured by enzyme-linked immunosorbent assay (ELISA).@*RESULTS@#BL 25 and ST 36 acupoints were determined as sensitized acupoints, and BL 15 acupoint was used as a non-sensitized acupoint. EA at sensitized acupoints improved the DAI score, increased mechanical withdrawal thresholds, and alleviated colonic pathological damage of rats. EA at sensitized acupoints reduced SSC structures and decreased TH and CGRP expression levels (P<0.05). Furthermore, EA at sensitized acupoints reduced BK, PGI2, 5-HT, 5-HT3R and TPH1 levels, and increased HA, 5-HT4R and SERT levels in colitis rats (P<0.05). GR113808 treatment diminished the protective effect of EA at sensitized acupoints in colitis rats (P<0.05).@*CONCLUSION@#EA at sensitized acupoints alleviated DSS-induced somatic referred pain in colitis rats by interfering with 5-HTergic neural pathway, and reducing SSC inflammatory response.


Subject(s)
Rats , Animals , Electroacupuncture , Rats, Sprague-Dawley , Serotonin , Acupuncture Points , Pain, Referred , Calcitonin Gene-Related Peptide , Signal Transduction , Colitis/therapy , Indoles , Sulfonamides
19.
J Ethnopharmacol ; 319(Pt 3): 117243, 2024 Jan 30.
Article in English | MEDLINE | ID: mdl-37777025

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Xingbei antitussive granules (XB) is a classic Chinese Medicine prescription for treating post-infectious cough(PIC), based on the Sanao Decoction from Formularies of the Bureau of People's Welfare Pharmacies in the Song Dynasty and Jiegeng decoction from Essentials of the Golden Chamber in the Han Dynasty. However, the therapeutic effects and pharmacological mechanisms are still ambiguous. In the present study, we endeavored to elucidate these underlying mechanisms. AIMS OF THE STUDY: This study aimed to explore the potential impact and mechanism of XB on PIC, and provide a scientific basis for its clinical application. MATERIALS AND METHODS: Cigarette smoking (CS) combined with lipopolysaccharide (LPS) nasal drops were administered to induce the PIC guinea pig with cough hypersensitivity status. Subsequently, the model guinea pigs were treated with XB and the cough frequency was observed by the capsaicin cough provocation test. The pathological changes of lung tissue were assessed by HE staining, and the levels of inflammatory mediators, mast cell degranulating substances, and neuropeptides were detected. The protein and mRNA expression of transient receptor potential vanilloid type 1(TRPV1), proteinase-activated receptor2(PAR2), and protein kinase C (PKC) were measured by Immunohistochemical staining, Western blot, and RT-qPCR. Changes in the abundance and composition of respiratory bacterial microbiota were determined by 16S rRNA sequencing. RESULTS: After XB treatment, the model guinea pigs showed a dose-dependent decrease in cough frequency, along with a significant alleviation in inflammatory infiltration of lung tissue and a reduction in inflammatory mediators. In addition, XB high-dose treatment significantly decreased the levels of mast cell Tryptase as well as ß-hexosaminidase (ß-Hex) and downregulated the expression of TRPV1, PAR2, and p-PKC. Simultaneously, levels of neuropeptides like substance P (SP), calcitonin gene-related peptide (CGRP), neurokinin A (NKA), and nerve growth factor (NGF) were improved. Besides, XB also can modulate the structure of respiratory bacterial microbiota and restore homeostasis. CONCLUSION: XB treatment alleviates cough hypersensitivity and inflammatory responses, inhibits the degranulation of mast cells, and ameliorates neurogenic inflammation in PIC guinea pigs whose mechanism may be associated with the inhibition of Tryptase/PAR2/PKC/TRPV1 and the recovery of respiratory bacterial microbiota.


Subject(s)
Antitussive Agents , Communicable Diseases , Humans , Guinea Pigs , Animals , Swine , Antitussive Agents/pharmacology , Antitussive Agents/therapeutic use , Cough/drug therapy , Tryptases , RNA, Ribosomal, 16S , Inflammation Mediators , TRPV Cation Channels
20.
Temperature (Austin) ; 10(1): 13-34, 2023.
Article in English | MEDLINE | ID: mdl-38059854

ABSTRACT

This paper is dedicated to the memory of János Szolcsányi (1938-2018), an outstanding Hungarian scientist. Among analgesics that act on pain receptors, he identified capsaicin as a selective lead molecule. He studied the application of capsaicin and revealed several physiological (pain, thermoregulation) and pathophysiological (inflammation, gastric ulcer) mechanisms. He discovered a new neuroregulatory system without sensory efferent reflex and investigated its pharmacology. The authors of this review are his former Ph.D. students who carried out their doctoral work in Szolcsányi's laboratory between 1985 and 2010 and report on the scientific results obtained under his guidance. His research group provided evidence for the triple function of the peptidergic capsaicin-sensitive sensory neurons including classical afferent function, local efferent responses, and remote, hormone-like anti-inflammatory, and antinociceptive actions. They also proposed somatostatin receptor type 4 as a promising drug target for the treatment of pain and inflammation. They revealed that neonatal capsaicin treatment caused no acute neuronal death but instead long-lasting selective ultrastructural and functional changes in B-type sensory neurons, similar to adult treatment. They described that lipid raft disruption diminished the agonist-induced channel opening of the TRPV1, TRPA1, and TRPM8 receptors in native sensory neurons. Szolcsányi's group has developed new devices for noxious heat threshold measurement: an increasing temperature hot plate and water bath. This novel approach proved suitable for assessing the thermal antinociceptive effects of analgesics as well as for analyzing peripheral mechanisms of thermonociception.

SELECTION OF CITATIONS
SEARCH DETAIL
...