Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 231
Filter
1.
Mol Ther ; 32(7): 2150-2175, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38796706

ABSTRACT

Neuroglobin, a member of the globin superfamily, is abundant in the brain, retina, and cerebellum of mammals and localizes to mitochondria. The protein exhibits neuroprotective capacities by participating in electron transfer, oxygen supply, and protecting against oxidative stress. Our objective was to determine whether neuroglobin overexpression can be used to treat neurological disorders. We chose Harlequin mice, which harbor a retroviral insertion in the first intron of the apoptosis-inducing factor gene resulting in the depletion of the corresponding protein essential for mitochondrial biogenesis. Consequently, Harlequin mice display degeneration of the cerebellum and suffer from progressive blindness and ataxia. Cerebellar ataxia begins in Harlequin mice at the age of 4 months and is characterized by neuronal cell disappearance, bioenergetics failure, and motor and cognitive impairments, which aggravated with aging. Mice aged 2 months received adeno-associated viral vectors harboring the coding sequence of neuroglobin or apoptosis-inducing factor in both cerebellar hemispheres. Six months later, Harlequin mice exhibited substantial improvements in motor and cognitive skills; probably linked to the preservation of respiratory chain function, Purkinje cell numbers and connectivity. Thus, without sharing functional properties with apoptosis-inducing factor, neuroglobin was efficient in reducing ataxia in Harlequin mice.


Subject(s)
Cerebellar Ataxia , Cerebellum , Globins , Mitochondria , Nerve Tissue Proteins , Neuroglobin , Animals , Neuroglobin/metabolism , Mitochondria/metabolism , Mice , Nerve Tissue Proteins/metabolism , Nerve Tissue Proteins/genetics , Globins/metabolism , Globins/genetics , Cerebellum/metabolism , Cerebellar Ataxia/metabolism , Cerebellar Ataxia/genetics , Cerebellar Ataxia/therapy , Neurons/metabolism , Genetic Vectors/genetics , Genetic Vectors/administration & dosage , Homeostasis , Apoptosis Inducing Factor/metabolism , Apoptosis Inducing Factor/genetics , Dependovirus/genetics , Disease Models, Animal , Genetic Therapy/methods , Gene Expression
2.
Curr Issues Mol Biol ; 46(4): 3364-3378, 2024 Apr 14.
Article in English | MEDLINE | ID: mdl-38666941

ABSTRACT

Neuroglobin (Ngb) is a cytosolic heme protein that plays an important role in protecting cells from apoptosis through interaction with oxidized cytochrome c (Cyt c) released from mitochondria. The interaction of reduced Ngb and oxidized Cyt c is accompanied by electron transfer between them and the reduction in Cyt c. Despite the growing number of studies on Ngb, the mechanism of interaction between Ngb and Cyt c is still unclear. Using Raman spectroscopy, we studied the effect of charged amino acid substitutions in Ngb and Cyt c on the conformation of their hemes. It has been shown that Ngb mutants E60K, K67E, K95E and E60K/E87K demonstrate changed heme conformations with the lower probability of the heme planar conformation compared to wild-type Ngb. Moreover, oxidized Cyt c mutants K25E, K72E and K25E/K72E demonstrate the decrease in the probability of methyl-radicals vibrations, indicating the higher rigidity of the protein microenvironment. It is possible that these changes can affect electron transfer between Ngb and Cyt c.

3.
Methods Mol Biol ; 2757: 215-237, 2024.
Article in English | MEDLINE | ID: mdl-38668969

ABSTRACT

In situ hybridization is a powerful and precise tool for revealing cell- and tissue-specific gene expression and a critical approach to validating single-cell RNA-seq (scRNA-seq). However, applying it to highly fragile animals such as ctenophores is challenging. Here, we present an in situ hybridization protocol for adult Pleurobrachia bachei (Cydippida)-a notable reference species representing the earliest-branching metazoan lineage, Ctenophora, sister to the rest of Metazoa. We provided expression patterns for several markers of cell phenotypes, as illustrated examples. The list includes predicted small secretory molecules/neuropeptides, WntX, genes encoding RNA-binding proteins (Musashi, Elav, Dicer, Argonaut), Neuroglobin, and selected transcription factors such as BarX. Both cell- and organ-specific expression of these genes further support the convergent evolution of many ctenophore innovations, which are remarkably distinct from tissue and organ specification in other basal metazoan lineages.


Subject(s)
Ctenophora , In Situ Hybridization , Animals , In Situ Hybridization/methods , Ctenophora/genetics , Ctenophora/metabolism , Gene Expression Profiling/methods
4.
J Inorg Biochem ; 251: 112453, 2024 02.
Article in English | MEDLINE | ID: mdl-38100903

ABSTRACT

Carbon monoxide poisoning is one of the most common forms of poisoning in the world. Although the primary mode of treatment, oxygen therapy, is highly effective in many cases, there are instances in which it is inadequate or inappropriate. Whereas oxygen therapy relies on high levels of a low-affinity ligand (O2) to displace a high-affinity ligand (CO) from metalloproteins, an antidote strategy relies on introducing a molecule with a higher affinity for CO than native proteins (Kantidote,CO > Kprotein,CO). Based on the fundamental chemistry of CO, such an antidote is most likely required to be an inorganic compound featuring an electron-rich transition metal. A review is provided of the protein-, supramolecular complex-, and small molecule-based CO poisoning antidote platforms that are currently under investigation.


Subject(s)
Carbon Monoxide Poisoning , Humans , Carbon Monoxide Poisoning/therapy , Antidotes , Ligands , Carbon Monoxide/chemistry , Oxygen/chemistry , Chemistry, Inorganic
5.
Biochem Biophys Rep ; 36: 101560, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37929291

ABSTRACT

Neuroglobin is a hemoprotein expressed in several nervous system cell lineages with yet unknown physiological functions. Neuroglobin presents a very similar structure to that of the related globins hemoglobin and myoglobin, but shows an hexacoordinate heme as compared to the pentacoordinated heme of myoglobin and hemoglobin. While several reactions of neuroglobin have been characterized in vitro, the relative importance of most of those reactions in vivo is yet undefined. Neuroglobin, like other heme proteins, can reduce nitrite to nitric oxide, providing a possible route to generate nitric oxide in vivo in low oxygen conditions. The reaction kinetics are highly dependent on the nature of the distal residue, and replacement of the distal histidine His64(E7) can increase the reaction rate constants by several orders of magnitude. However, mutation of other distal pocket positions such as Phe28(B10) or Val68(E11) has more limited impact on the rates. Computational analysis using myoglobin as template, guided by the structure of dedicated nitrite reductases like cytochrome cd1 nitrite reductase, has pointed out that combined mutations of the residues B10 and CD1 could increase the nitrite reductase activity of myoglobin, by mimicking the environment of the distal heme pocket in cytochrome cd1 nitrite reductase. As neuroglobin shows high sequence and structural homology with myoglobin, we hypothesized that such mutations (F28H and F42Y in neuroglobin) could also modify the nitrite reductase activity of neuroglobin. Here we study the effect of these mutations. Unfortunately, we do not observe in any case an increase in the nitrite reduction rates. Our results provide some further indications of nitrite reductase regulation in neuroglobin and highlight the minor but critical differences between the structure of penta- and hexacoordinate globins.

6.
Int J Mol Sci ; 24(21)2023 Nov 06.
Article in English | MEDLINE | ID: mdl-37958992

ABSTRACT

Globins have been studied as model proteins to elucidate the principles of protein evolution. This was achieved by understanding the relationship between amino acid sequence, three-dimensional structure, physicochemical properties, and physiological function. Previous molecular phylogenies of chordate globin genes revealed the monophyletic evolution of urochordate globins and suggested convergent evolution. However, to provide evidence of convergent evolution, it is necessary to determine the physicochemical and functional similarities between vertebrates and urochordate globins. In this study, we determined the expression patterns of Ciona globin genes using real-time RT-PCR. Two genes (Gb-1 and Gb-2) were predominantly expressed in the branchial sac, heart, and hemocytes and were induced under hypoxia. Combined with the sequence analysis, our findings suggest that Gb-1/-2 correspond to vertebrate hemoglobin-α/-ß. However, we did not find a robust similarity between Gb-3, Gb-4, and vertebrate globins. These results suggested that, even though Ciona globins obtained their unique functions differently from vertebrate globins, the two of them shared some physicochemical features and physiological functions. Our findings offer a good example for understanding the molecular mechanisms underlying gene co-option and convergence, which could lead to evolutionary innovations.


Subject(s)
Ciona intestinalis , Lancelets , Animals , Humans , Globins/genetics , Ciona intestinalis/genetics , Lancelets/genetics , Vertebrates/genetics , Amino Acid Sequence , Multigene Family , Phylogeny , Evolution, Molecular
7.
Biomolecules ; 13(8)2023 08 10.
Article in English | MEDLINE | ID: mdl-37627298

ABSTRACT

Neuroglobin, which is a heme protein from the globin family that is predominantly expressed in nervous tissue, can promote a neuronal survivor. However, the molecular mechanisms underlying the neuroprotective function of Ngb remain poorly understood to this day. The interactions between neuroglobin and mitochondrial cytochrome c may serve as at least one of the mechanisms of neuroglobin-mediated neuroprotection. Interestingly, neuroglobin and cytochrome c possibly can interact with or without electron transfer both in the cytoplasm and within the mitochondria. This review provides a general picture of molecular interactions between neuroglobin and cytochrome c based on the recent experimental and computational work on neuroglobin and cytochrome c interactions.


Subject(s)
Cytochromes c , Nerve Tissue , Neuroglobin , Cytoplasm , Mitochondria
8.
Biomolecules ; 13(7)2023 07 13.
Article in English | MEDLINE | ID: mdl-37509151

ABSTRACT

Alzheimer's disease (AD) is a debilitating neurodegenerative disease characterised by the accumulation of amyloid-beta and tau in the brain, leading to the progressive loss of memory and cognition. The causes of its pathogenesis are still not fully understood, but some risk factors, such as age, genetics, and hormones, may play a crucial role. Studies show that postmenopausal women have a higher risk of developing AD, possibly due to the decrease in hormone levels, especially oestrogen, which may be directly related to a reduction in the activity of oestrogen receptors, especially beta (ERß), which favours a more hostile cellular environment, leading to mitochondrial dysfunction, mainly affecting key processes related to transport, metabolism, and oxidative phosphorylation. Given the influence of hormones on biological processes at the mitochondrial level, hormone therapies are of clinical interest to reduce the risk or delay the onset of symptoms associated with AD. One drug with such potential is tibolone, which is used in clinics to treat menopause-related symptoms. It can reduce amyloid burden and have benefits on mitochondrial integrity and dynamics. Many of its protective effects are mediated through steroid receptors and may also be related to neuroglobin, whose elevated levels have been shown to protect against neurological diseases. Its importance has increased exponentially due to its implication in the pathogenesis of AD. In this review, we discuss recent advances in tibolone, focusing on its mitochondrial-protective effects, and highlight how valuable this compound could be as a therapeutic alternative to mitigate the molecular pathways characteristic of AD.


Subject(s)
Alzheimer Disease , Neurodegenerative Diseases , Female , Humans , Alzheimer Disease/metabolism , Neurodegenerative Diseases/metabolism , Drug Repositioning , Amyloid beta-Peptides/metabolism , Estrogens
9.
Biomolecules ; 13(6)2023 06 08.
Article in English | MEDLINE | ID: mdl-37371541

ABSTRACT

Current management of glaucomatous optic neuropathy is limited to intraocular pressure control. Neuroglobin (Ngb) is an endogenous neuroprotectant expressed in neurons and astrocytes. We recently showed that exogenous intravitreal Ngb reduced inflammatory cytokines and microglial activation in a rodent model of hypoxia. We thus hypothesised that IVT-Ngb may also be neuroprotective in experimental glaucoma (EG) by mitigating optic nerve (ON) astrogliosis and microgliosis as well as structural damage. In this study using a microbead-induced model of EG in six Cynomolgus primates, optical coherence imaging showed that Ngb-treated EG eyes had significantly less thinning of the peripapillary minimum rim width, retinal nerve fibre layer thickness, and ON head cupping than untreated EG eyes. Immunohistochemistry confirmed that ON astrocytes overexpressed Ngb following Ngb treatment. A reduction in complement 3 and cleaved-caspase 3 activated microglia and astrocytes was also noted. Our findings in higher-order primates recapitulate the effects of neuroprotection by Ngb treatment in rodent EG studies and suggest that Ngb may be a potential candidate for glaucoma neuroprotection in humans.


Subject(s)
Glaucoma , Neuroglobin , Optic Disk , Animals , Astrocytes , Complement C3 , Glaucoma/drug therapy , Microglia , Neuroglobin/administration & dosage , Neuroglobin/therapeutic use , Primates , Macaca fascicularis
10.
J Inorg Biochem ; 246: 112296, 2023 09.
Article in English | MEDLINE | ID: mdl-37356378

ABSTRACT

The sequence and structure of human cytochrome c (hCyt c) exhibit evolutionary conservations, with only a limited number of naturally occurring mutations in humans. Herein, we investigated the effects of the naturally occurring S47F/A mutations on the structure and function of hCyt c in the oxidized form. Although the naturally occurring S47F/A mutations did not largely alter the protein structure, the S47F and S47A variants exhibited a small fraction of high-spin species. Kinetic studies showed that the peroxidase activity of the variants was enhanced by ∼2.5-fold under neutral pH conditions, as well as for the rate in reaction with H2O2, when compared to those of wild-type hCyt c. In addition, we evaluated the interaction between hCyt c and human neuroglobin (hNgb) by isothermal titration calorimetry (ITC) studies, which revealed that the binding constant was reduced by ∼8-fold as result of the mutation of the hydrophilic Ser to the hydrophobic Phe/Ala. These findings provide valuable insights into the role of Ser47 in Ω-loop C in sustaining the structure and function of hCyt c.


Subject(s)
Cytochromes c , Hydrogen Peroxide , Humans , Cytochromes c/chemistry , Kinetics , Mutation
11.
Biochem Biophys Res Commun ; 664: 108-116, 2023 07 05.
Article in English | MEDLINE | ID: mdl-37141638

ABSTRACT

Pancreatic cancer is an extremely aggressive malignancy with a very disappointing prognosis. Neuroglobin (NGB), a member of the globin family, has been demonstrated to have a significant role in a variety of tumor forms. The possible role of NGB as a tumor suppressor gene in pancreatic cancer was investigated in this work. Information from the public dataset TCGA combined with GTEx was used to analyze the finding that NGB was commonly downregulated in pancreatic cancer cell lines and tissues, correlating with patient age and prognosis. The expression of NGB in pancreatic cancer was investigated via RT-PCR, qRT-PCR, and Western blot experiments. In-vitro and in-vivo assays, NGB elicited cell cycle arrest in the S phase and apoptosis, hindered migration and invasion, reversed the EMT process, and suppressed cell proliferation and development. The mechanism of action of NGB was predicted via bioinformatics analysis and validated using Western blot and co-IP experiments revealed that NGB inhibited the EGFR/AKT/ERK pathway by binding to and reducing expression of GNAI1 and p-EGFR. In addition, pancreatic cancer cells overexpressing NGB showed increased drug sensitivity to gefitinib (EGFR-TKI). In conclusion, NGB inhibits pancreatic cancer progression by specifically targeting the GNAI1/EGFR/AKT/ERK signaling axis.


Subject(s)
Neuroglobin , Pancreatic Neoplasms , Proto-Oncogene Proteins c-akt , Humans , Cell Line, Tumor , Cell Proliferation , ErbB Receptors/genetics , ErbB Receptors/metabolism , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/metabolism , Neuroglobin/metabolism , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/metabolism , Proto-Oncogene Proteins c-akt/metabolism
12.
Environ Toxicol ; 38(8): 1891-1904, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37195900

ABSTRACT

Cerebral ischemia/reperfusion (I/R) injury remains a grievous health threat, and herein effective therapy is urgently needed. This study explored the protection of neuroglobin (Ngb) in rats with cerebral I/R injury. The focal cerebral I/R rat models were established by middle cerebral artery occlusion (MCAO) and neuronal injury models were established by oxygen-glucose deprivation/reoxygenation (OGD/R) treatment. The brain injury of rats was assessed. Levels of Ngb, Bcl-2, Bax, endoplasmic reticulum stress (ERS)-related markers, and Syt1 were measured by immunofluorescence staining and Western blotting. The cytotoxicity in neurons was assessed by lactate dehydrogenase (LDH) release assay. Levels of intracellular Ca2+ and mitochondrial function-related indicators were determined. The binding between Ngb and Syt1 was detected by co-immunoprecipitation. Ngb was upregulated in cerebral I/R rats and its overexpression alleviated brain injury. In OGD/R-induced neurons, Ngb overexpression decreased LDH level and neuronal apoptosis, decreased Ca2+ content, and mitigated mitochondrial dysfunction and ERS-related apoptosis. However, Ngb silencing imposed the opposite effects. Importantly, Ngb could bind to Syt1. Syt1 knockdown partially counteracted the alleviation of Ngb on OGD/R-induced injury in neurons and cerebral I/R injury in rats. Briefly, Ngb extenuated cerebral I/R injury by repressing mitochondrial dysfunction and endoplasmic reticulum stress-mediated neuronal apoptosis through Syt1.


Subject(s)
Brain Ischemia , Reperfusion Injury , Rats , Animals , Neuroglobin/metabolism , Neuroglobin/pharmacology , Neurons , Apoptosis , Brain Ischemia/metabolism , Reperfusion Injury/prevention & control , Reperfusion Injury/metabolism , Endoplasmic Reticulum Stress , Mitochondria/metabolism , Synaptotagmins/metabolism , Synaptotagmins/pharmacology , Glucose/metabolism
13.
Curr Med Chem ; 2023 Apr 13.
Article in English | MEDLINE | ID: mdl-37069714

ABSTRACT

Neuroglobin (Ngb) is an oxygen-binding globin protein that is mainly expressed in the neurons of the central and peripheral nervous system. However, moderate levels of Ngb have also been detected in non-neural tissues. Ngb and Ngb modulating factors have been increasingly studied over the last decade due to their neuroprotective role in neurological disorders and hypoxia. Studies have shown that a number of chemicals, pharmaceuticals, and herbal compounds can modulate the expression of Ngb at different dose levels, indicating a protective role against neurodegenerative diseases. Iron chelators, hormones, antidiabetic drugs, anticoagulants, antidepressants, plant derivatives and short-chain fatty acids are among these compounds. Therefore, this study aimed to review the literature focused on the possible effects and mechanisms of chemical, pharmaceutical, and herbal compounds on Ngbs.

14.
Neurosci Bull ; 39(10): 1481-1496, 2023 Oct.
Article in English | MEDLINE | ID: mdl-36884214

ABSTRACT

The discovery of neuroglobin (Ngb), a brain- or neuron-specific member of the hemoglobin family, has revolutionized our understanding of brain oxygen metabolism. Currently, how Ngb plays such a role remains far from clear. Here, we report a novel mechanism by which Ngb might facilitate neuronal oxygenation upon hypoxia or anemia. We found that Ngb was present in, co-localized to, and co-migrated with mitochondria in the cell body and neurites of neurons. Hypoxia induced a sudden and prominent migration of Ngb towards the cytoplasmic membrane (CM) or cell surface in living neurons, and this was accompanied by the mitochondria. In vivo, hypotonic and anemic hypoxia induced a reversible Ngb migration toward the CM in cerebral cortical neurons in rat brains but did not alter the expression level of Ngb or its cytoplasm/mitochondria ratio. Knock-down of Ngb by RNA interference significantly diminished respiratory succinate dehydrogenase (SDH) and ATPase activity in neuronal N2a cells. Over-expression of Ngb enhanced SDH activity in N2a cells upon hypoxia. Mutation of Ngb at its oxygen-binding site (His64) significantly increased SDH activity and reduced ATPase activity in N2a cells. Taken together, Ngb was physically and functionally linked to mitochondria. In response to an insufficient oxygen supply, Ngb migrated towards the source of oxygen to facilitate neuronal oxygenation. This novel mechanism of neuronal respiration provides new insights into the understanding and treatment of neurological diseases such as stroke and Alzheimer's disease and diseases that cause hypoxia in the brain such as anemia.


Subject(s)
Anemia , Globins , Rats , Animals , Neuroglobin/metabolism , Globins/genetics , Globins/metabolism , Nerve Tissue Proteins/metabolism , Neurons/metabolism , Hypoxia/metabolism , Brain/metabolism , Oxygen , Anemia/metabolism , Adenosine Triphosphatases/metabolism
15.
Adv Exp Med Biol ; 1414: 45-96, 2023.
Article in English | MEDLINE | ID: mdl-36520413

ABSTRACT

Nitric-oxide dioxygenases (NODs) activate and combine O2 with NO to form nitrate. A variety of oxygen-binding hemoglobins with associated partner reductases or electron donors function as enzymatic NODs. Kinetic and structural investigations of the archetypal two-domain microbial flavohemoglobin-NOD have illuminated an allosteric mechanism that employs selective tunnels for O2 and NO, gates for NO and nitrate, transient O2 association with ferric heme, and an O2 and NO-triggered, ferric heme spin crossover-driven, motion-controlled, and dipole-regulated electron-transfer switch. The proposed mechanism facilitates radical-radical coupling of ferric-superoxide with NO to form nitrate while preventing suicidal ferrous-NO formation. Diverse globins display the structural and functional motifs necessary for a similar allosteric NOD mechanism. In silico docking simulations reveal monomeric erythrocyte hemoglobin alpha-chain and beta-chain intrinsically matched and tightly coupled with NADH-cytochrome b5 oxidoreductase and NADPH-cytochrome P450 oxidoreductase, respectively, forming membrane-bound flavohemoglobin-like mammalian NODs. The neuroprotective neuroglobin manifests a potential NOD role in a close-fitting ternary complex with membrane-bound NADH-cytochrome b5 oxidoreductase and cytochrome b5. Cytoglobin interfaces weakly with cytochrome b5 for O2 and NO-regulated electron-transfer and coupled NOD activity. The mechanistic model also provides insight into the evolution of O2 binding cooperativity in hemoglobin and a basis for the discovery of allosteric NOD inhibitors.


Subject(s)
Dioxygenases , Oxidoreductases , Humans , Animals , Globins , Nitrates , Cytochromes b , NAD , Oxides , Oxidation-Reduction , Mammals
16.
FEBS J ; 290(1): 148-161, 2023 01.
Article in English | MEDLINE | ID: mdl-35866372

ABSTRACT

In the present study, human neuroglobin (hNgb) was found to undergo H2 O2 -induced breakdown of the heme center at a much slower rate than other globins, namely in the timescale of hours against minutes. We investigated how the rate of the process is affected by the Cys46/Cys55 disulfide bond and the network of non-covalent interactions in the distal heme side involving Tyr44, Lys67, the His64 heme iron axial ligand and the heme propionate-7. The rate is increased by the Tyr44 to Ala and Phe mutations; however the rate is lowered by Lys67 to Ala swapping. The absence of the disulfide bridge slows down the reaction further. Therefore, the disulfide bond-controlled accessibility of the heme site and the residues at position 44 and 67 affect the activation barrier of the reaction. Wild-type and mutated species form ß-amyloid aggregates in the presence of H2 O2 producing globular structures. Furthermore, the C46A/C55A, Y44A, Y44F and Y44F/C46A/C55A variants yield potentially harmful fibrils. Finally, the nucleation and growth kinetics for the aggregation of the amyloid structures can be successfully described by the Finke-Watzky model.


Subject(s)
Hydrogen Peroxide , Protein Aggregates , Humans , Neuroglobin , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/metabolism , Disulfides/metabolism , Globins/chemistry , Heme/chemistry , Hydrogen
17.
Acta Anatomica Sinica ; (6): 188-194, 2023.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-1015238

ABSTRACT

Objective Saiga antelope is a small population inhabiting in desert and semi desert areas of national and world endangered protected animals, its wild population is extremely rare. In order to explore the correlation between hypoxic tolerance and neuroglobin (NGB) in Saiga antelope. A female Saiga antelope died of dystocia was used as the experimental animal, and the tissue samples were sampled repeatedly for 3 times to study the distribution and expression of NGB in brain of Saiga antelope in the process of adapting to hypoxia. Methods The distribution and expression of NGB in the parietal lobe, frontal lobe, temporal lobe, occipital lobe, hypothalamus, hippocampus, pear like leaf, cingulate gyrus, striatum and thalamus of Saiga antelope were detected by immunohistochemistry(IHC) and Real-time PCR. Results The result of IHC showed that NGB was positive in all parts of Saiga antelope brain, and the cells that had positive reactions in the parietal, frontal, temporal and occipital lobes of the cerebral cortex were mostly granular cells and martinotti cells. NGB was found in the granular cell layer, pyramidal cell layer and molecular cell layer in hippocampus, and the positive staining of pyramidal cell layer was the strongest. NGB positive expression in Pear like leaves and hypothalamus mainly occured in multi-type cells. NGB was expressed in the granulocytes and glial cells of cingulate gyrus, mainly in the granular cells. The positive expression of NGB in striatum was mainly located in granular cells, the positive expression of NGB in thalamus could be seen in the polymorphosis and glial cells, and the positive substance of the multi-type cells was obviously colored. The result of Real-time PCR showed that NGB was expressed in different regions of Saiga antelope brain, the highest expression in the frontal lobe of the cerebral cortex, the second in the parietal lobe, and the expression was significantly higher than that in the rest of the brain tissue (P0.05). Conclusion The expression of NGB in different regions of Saiga antelope has some selective differences in the long-term adaptation to hypoxia environment. The frontal and parietal lobes have the highest tolerance to hypoxia, followed by hippocampus, and the striatum is the weakest, which may be related to the specific functions of different regions of brain tissue, but the specific mechanism remains to be further explored.

18.
Neuroscience Bulletin ; (6): 1481-1496, 2023.
Article in English | WPRIM (Western Pacific) | ID: wpr-1010614

ABSTRACT

The discovery of neuroglobin (Ngb), a brain- or neuron-specific member of the hemoglobin family, has revolutionized our understanding of brain oxygen metabolism. Currently, how Ngb plays such a role remains far from clear. Here, we report a novel mechanism by which Ngb might facilitate neuronal oxygenation upon hypoxia or anemia. We found that Ngb was present in, co-localized to, and co-migrated with mitochondria in the cell body and neurites of neurons. Hypoxia induced a sudden and prominent migration of Ngb towards the cytoplasmic membrane (CM) or cell surface in living neurons, and this was accompanied by the mitochondria. In vivo, hypotonic and anemic hypoxia induced a reversible Ngb migration toward the CM in cerebral cortical neurons in rat brains but did not alter the expression level of Ngb or its cytoplasm/mitochondria ratio. Knock-down of Ngb by RNA interference significantly diminished respiratory succinate dehydrogenase (SDH) and ATPase activity in neuronal N2a cells. Over-expression of Ngb enhanced SDH activity in N2a cells upon hypoxia. Mutation of Ngb at its oxygen-binding site (His64) significantly increased SDH activity and reduced ATPase activity in N2a cells. Taken together, Ngb was physically and functionally linked to mitochondria. In response to an insufficient oxygen supply, Ngb migrated towards the source of oxygen to facilitate neuronal oxygenation. This novel mechanism of neuronal respiration provides new insights into the understanding and treatment of neurological diseases such as stroke and Alzheimer's disease and diseases that cause hypoxia in the brain such as anemia.


Subject(s)
Rats , Animals , Neuroglobin/metabolism , Globins/metabolism , Nerve Tissue Proteins/metabolism , Neurons/metabolism , Hypoxia/metabolism , Brain/metabolism , Oxygen , Anemia/metabolism , Adenosine Triphosphatases/metabolism
19.
Front Physiol ; 14: 1321007, 2023.
Article in English | MEDLINE | ID: mdl-38317846

ABSTRACT

Light-sensitive neurons are located in the ventral and central core of the suprachiasmatic nucleus (SCN), whereas stably oscillating clock neurons are found mainly in the dorsal shell. Signals between the SCN core and shell are believed to play an important role in light entrainment. Core neurons express vasoactive intestinal polypeptide (VIP), gastrin-releasing peptide (GRP), and Neuroglobin (Ngb), whereas the shell neurons express vasopressin (AVP), prokineticin 2, and the VIP type 2 (VPAC2) receptor. In rodents, light has a phase-shifting capacity at night, which induces rapid and transient expression of the EGR1 and FOS in the SCN. Methods: The present study used immunohistochemical staining of FOS, EGR1, and phenotypical markers of SCN neurons (VIP, AVP, Ngb) to identify subtypes/populations of light-responsive neurons at early night. Results: Double immunohistochemistry and cell counting were used to evaluate the number of SCN neurons expressing FOS and EGR1 in the SCN. The number of neurons expressing either EGR1 or FOS was higher than the total number of neurons co-storing EGR1 and FOS. Of the total number of light-responsive cells, 42% expressed only EGR1, 43% expressed only FOS, and 15% expressed both EGR1 and FOS. Light-responsive VIP neurons represented only 31% of all VIP neurons, and EGR1 represents the largest group of light-responsive VIP neurons (18%). VIP neurons expressing only FOS represented 1% of the total light-responsive VIP neurons. 81% of the Ngb neurons in the mouse SCN were light-responsive, and of these neurons expressing only EGR1 after light stimulation represented 44%, whereas 24% expressed FOS. Although most light-responsive neurons are found in the core of the SCN, 29% of the AVP neurons in the shell were light-responsive, of which 8% expressed EGR1, 10% expressed FOS, and 11% co-expressed both EGR1 and FOS after light stimulation. Discussion: Our analysis revealed cell-specific differences in light responsiveness between different peptidergic and Ngb-expressing neurons in different compartments of the mouse SCN, indicating that light activates diverse neuronal networks in the SCN, some of which participate in photoentrainment.

20.
Braz. j. biol ; 83: 1-15, 2023. tab, graf, ilus
Article in English | LILACS, VETINDEX | ID: biblio-1468904

ABSTRACT

Background: The brain is an organ that serves as the center of the nervous system in all vertebrate and most invertebrate animals. Aim: The study examined the expression of Neuroglobin (Ngb) and Hypoxia-inducible factor-1α (Hif-1α) in adult and young yak brain tissues, and provided researchers with meaningful insight into the anatomy, physiology, and biochemistry of this mammal. Method: The study employed immunohistochemistry (IHC), quantitative real-time PCR (qRT-PCR), and Western blot (WB) to obtain the results. Results: Ngb and Hif-1α were significantly (P<0.05) expressed in the cerebellar cortex, piriform lobe, medulla, and corpus callosum of the adult yak while in the young yak brain tissues, the protein expressions were significantly found in the white matter of the cerebellum, pineal gland, corpus callosum, and cerebellar cortex. The Ngb and Hif-1α expression showed similarities and differences. This may have resulted from similar animal species, source of nutrition, age factors, brain size, emotional activities, and communication. The findings documented that Ngb and Hif-1α are commonly expressed in various adult and young yak brain tissues. Multiple roles in the brain tissues of the adult and young yaks are involved in the expression and distribution and are proposed to play a significant role in the adaptation of the yak to the high altitude environment. Conclusion: This study provides meaningful data to understand the adaptive mechanism to hypoxia and recommended researchers to expand on the adaptive mechanism and brain tissues that are not recorded.


Contexto: O cérebro é um órgão que funciona como o centro do sistema nervoso em todos os animais vertebrados e na maioria dos invertebrados. Objetivo: O estudo examinou a expressão de neuroglobina (Ngb) e fator-1α indutível por hipóxia (Hif-1α) em tecidos cerebrais de iaques adultos e jovens e forneceu aos pesquisadores uma visão significativa da anatomia, fisiologia e bioquímica desse mamífero. Método: O estudo utilizou imuno-histoquímica (IHC), PCR quantitativo em tempo real (qRT-PCR) e western blot (WB) para a obtenção dos resultados. Resultados: Ngb e Hif-1α foram significativamente (P < 0,05) expressos no córtex cerebelar, lobo piriforme, medula e corpo caloso do iaque adulto, enquanto nos tecidos cerebrais do iaque jovem as expressões proteicas foram encontradas significativamente na substância branca do cerebelo, glândula pineal, corpo caloso e córtex cerebelar. A expressão de Ngb e Hif-1α apresentou semelhanças e diferenças. Isso pode ter resultado de espécies animais semelhantes, fonte de nutrição, fatores de idade, tamanho do cérebro, atividades emocionais e comunicação. Os resultados documentaram que o Ngb e o Hif-1α são comumente expressos em vários tecidos cerebrais de iaques adultos e jovens. Múltiplos papéis nos tecidos cerebrais de iaques adultos e jovens estão envolvidos na expressão e distribuição e são propostos para desempenhar um papel significativo na adaptação do iaque ao ambiente de alta altitude. Conclusão: Este estudo fornece dados significativos para compreender o mecanismo adaptativo à hipóxia e recomendou que os pesquisadores expandissem o mecanismo adaptativo e os tecidos cerebrais que não foram registrados.


Subject(s)
Animals , Young Adult , Adult , Cattle , Cattle , Cerebrum/anatomy & histology , Cerebrum/physiology , Hypoxia-Inducible Factor 1/analysis , Biochemical Phenomena , Neuroglobin/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...