Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 14.530
Filter
1.
Natl Sci Rev ; 11(7): nwae195, 2024 Jul.
Article in English | MEDLINE | ID: mdl-39045468

ABSTRACT

Endogenous opioid antinociception is a self-regulatory mechanism that reduces chronic pain, but its underlying circuit mechanism remains largely unknown. Here, we showed that endogenous opioid antinociception required the activation of mu-opioid receptors (MORs) in GABAergic neurons of the central amygdala nucleus (CEA) in a persistent-hyperalgesia mouse model. Pharmacogenetic suppression of these CEAMOR neurons, which mimics the effect of MOR activation, alleviated the persistent hyperalgesia. Furthermore, single-neuron projection analysis revealed multiple projectome-based subtypes of CEAMOR neurons, each innervating distinct target brain regions. We found that the suppression of axon branches projecting to the parabrachial nucleus (PB) of one subtype of CEAMOR neurons alleviated persistent hyperalgesia, indicating a subtype- and axonal-branch-specific mechanism of action. Further electrophysiological analysis revealed that suppression of a distinct CEA-PB disinhibitory circuit controlled endogenous opioid antinociception. Thus, this study identified the central neural circuit that underlies endogenous opioid antinociception, providing new insight into the endogenous pain modulatory mechanisms.

2.
Mol Neurobiol ; 2024 Jul 24.
Article in English | MEDLINE | ID: mdl-39046700

ABSTRACT

Both CXCL10/CXCR3 and acid-sensing ion channels (ASICs) are expressed in nociceptive sensory neurons and participate in various pain processes, but it is still unclear whether there is a link between them. Herein, we report that CXCL10 enhances the electrophysiological activity of ASICs in rat dorsal root ganglia (DRG) neurons. A brief (10 min) application of CXCL10 increased acid-evoked ASIC currents in a concentration-dependent manner. CXCL10 increased the maximum response of ASICs to acidic stimuli without changing their sensitivity. CXCL10 enhanced ASIC currents in DRG cells through CXCR3, as this enhancement was completely blocked by AMG487, a selective CXCR3 antagonist. CXCL10 also increased ASIC3 currents in CHO cells coexpressing ASIC3 and CXCR3 but not in cells expressing ASIC3 alone. The CXCL10-mediated increase in ASIC currents was prevented by the application of either the G protein inhibitor GDP-ß-S or the p38 mitogen-activated protein kinase (MAPK) inhibitor SB202190 but not by the ERK inhibitor U0126 or the JNK inhibitor SP600125. Moreover, CXCL10 increased the number of action potentials triggered by acidic stimuli via CXCR3. CXCL10 dose-dependently exacerbated acid-induced nociceptive behavior in rats through peripheral CXCR3. These results indicated that CXCL10/CXCR3 signaling enhanced ASIC-mediated electrophysiological activity in DRG neurons and nociception in rats via a p38 MAPK-dependent pathway, revealing a novel mechanism underlying pain. CXCL10/CXCR3 signaling may be an effective target in the treatment of pain associated with tissue acidification.

3.
Sci Total Environ ; 948: 174772, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-39019263

ABSTRACT

Mounting evidence in animal experiments proves that early life stage exposure to organophosphate flame retardants (OPFRs) affects the locomotor behavior and changes the transcriptions of central nervous system genes. Unfortunately, their effect on human motor neuron (MN) development, which is necessary for body locomotion and survival, has not yet characterized. Here, we utilized a spinal cord MN differentiation model from human embryonic stem cells (ESCs) and adopted this model to test the effects of two typical OPFRs tris (2-butoxyethyl) phosphate (TBEP) and tris (2-chloroethyl) phosphate (TCEP), on MN development and the possible mechanisms underlying. Our findings revealed TBEP exerted a much more inhibitory effect on MN survival, while TCEP exhibited a stronger stimulatory effect on ESCs differentiation into MN, and thus TBEP exhibited a stronger inhibition on MN development than TCEP. RNA sequencing analysis identified TBEP and TCEP inhibited MN survival mainly by disrupting extracellular matrix (ECM)-receptor interaction. Focusing on the pathway guided MN differentiation, we found both TBEP and TCEP activated BMP signaling, whereas TCEP simultaneously downregulated Wnt signaling. Collectively, this is the first study demonstrated TBEP and TCEP disrupted human MN development by affecting their survival and differentiation, thereby raising concern about their potential harm in causing MN disorders.

4.
J Hand Surg Am ; 2024 Jul 18.
Article in English | MEDLINE | ID: mdl-39023500

ABSTRACT

Spastic elbow deformity in patients with upper motor neuron injuries results from an imbalance of flexor and extensor forces across the ulnohumeral joint. Although not all deformities reflect the same underlying imbalances, the elbow most commonly rests in a flexed position. Patients may present with a combination of muscle spasticity, myostatic contracture, and/or joint contracture. A focused history and physical examination are essential for developing individualized surgical plans that account for variations in deformity severity and patient goals. Patients may present with or without volitional control; goals and treatment options differ depending on the degree of control present. Techniques include hyperselective neurectomy, tendon lengthening, muscle origin release, myotomy, tenotomy, periarticular soft tissue release, and skin rearrangement. This article presents a comprehensive review of the surgical approach to the volitional and nonvolitional spastic elbow deformities.

5.
Mol Neurobiol ; 2024 Jul 18.
Article in English | MEDLINE | ID: mdl-39023795

ABSTRACT

Caspase-12 is a caspase family member for which functions in regulating cell death and inflammation have previously been suggested. In this study, we used caspase-12 lacZ reporter mice to elucidate the expression pattern of caspase-12 in order to obtain an idea about its possible in vivo function. Strikingly, these reporter mice showed that caspase-12 is expressed explicitly in Purkinje neurons of the cerebellum. As this observation suggested a function for caspase-12 in Purkinje neurons, we analyzed the brain and behavior of caspase-12 deficient mice in detail. Extensive histological analyses showed that caspase-12 was not crucial for establishing cerebellum structure or for maintaining Purkinje cell numbers. We then performed behavioral tests to investigate whether caspase-12 deficiency affects memory, motor, and psychiatric functions in mice. Interestingly, while the absence of caspase-12 did not affect memory and motor function, caspase-12 deficient mice showed depression and hyperactivity tendencies, together resembling manic behavior. Next, suggesting a possible molecular mechanistic explanation, we showed that caspase-12 deficient cerebella harbored diminished signaling through the brain-derived neurotrophic factor/tyrosine kinase receptor B/cyclic-AMP response binding protein axis, as well as strongly enhanced expression of the neuronal activity marker c-Fos. Thus, our study establishes caspase-12 expression in mouse Purkinje neurons and opens novel avenues of research to investigate the role of caspase-12 in regulating psychiatric behavior.

6.
ACS Appl Mater Interfaces ; 16(28): 36519-36526, 2024 Jul 17.
Article in English | MEDLINE | ID: mdl-38950119

ABSTRACT

Associative multimodal artificial intelligence (AMAI) has gained significant attention across various fields, yet its implementation poses challenges due to the burden on computing and memory resources. To address these challenges, researchers have paid increasing attention to neuromorphic devices based on novel materials and structures, which can implement classical conditioning behaviors with simplified circuitry. Herein, we introduce an artificial multimodal neuron device that shows not only the acquisition behavior but also the extinction and the spontaneous recovery behaviors for the first time. Being composed of an ovonic threshold switch (OTS)-based neuron device, a conductive bridge memristor (CBM)-based synapse device, and a few passive electrical elements, such observed behaviors of this neuron device are explained in terms of the electroforming and the diffusion of metallic ions in the CBM. We believe that the proposed associative learning neuron device will shed light on the way of developing large-scale AMAI systems by providing inspiration to devise an associative learning network with improved energy efficiency.

7.
Neuroscience ; 553: 145-159, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38992567

ABSTRACT

Glutamate excitotoxicity is involved in retinal ganglion cell (RGC) death in various retinal degenerative diseases, including ischemia-reperfusion injury and glaucoma. Excitotoxic RGC death is caused by both direct damage to RGCs and indirect damage through neuroinflammation of retinal glial cells. Omidenepag (OMD), a novel E prostanoid receptor 2 (EP2) agonist, is a recently approved intraocular pressure-lowering drug. The second messenger of EP2 is cyclic adenosine monophosphate (cAMP), which activates protein kinase A (PKA) and exchange protein directly activated by cAMP (Epac). In this study, we investigated the neuroprotective effects of OMD on excitotoxic RGC death by focusing on differences in cAMP downstream signaling from the perspective of glia-neuron interactions. We established a glutamate excitotoxicity model in vitro and NMDA intravitreal injection model in vivo. In vitro, rat primary RGCs were used in an RGC survival rate assay. MG5 cells (mouse microglial cell line) and A1 cells (astrocyte cell line) were used for immunocytochemistry and Western blotting to evaluate the expressions of COX-1/2, PKA, Epac1/2, pCREB, cleaved caspase-3, inflammatory cytokines, and neurotrophic factors. Mouse retinal specimens underwent hematoxylin and eosin staining, flat-mounted retina examination, and immunohistochemistry. OMD significantly suppressed excitotoxic RGC death, cleaved caspase-3 expression, and activated glia both in vitro and in vivo. Moreover, it inhibited Epac1 and inflammatory cytokine expression and promoted COX-2, pCREB, and neurotrophic factor expression. OMD may have neuroprotective effects through inhibition of the Epac pathway and promotion of the COX-2-EP2-cAMP-PKA pathway by modulating glia-neuron interaction.

8.
Sci Rep ; 14(1): 16541, 2024 Jul 17.
Article in English | MEDLINE | ID: mdl-39019908

ABSTRACT

The red palm weevil (RPW), Rhynchophorus ferrugineus (Olivier), also known as the Asian palm weevil, is an invasive pest that causes widespread damage to palm trees around the globe. As pheromone communication is crucial for their mass attack and survival on palm trees, the olfactory concept of pest control strategies has been widely explored recently. We aim to understand the molecular basis of olfaction in RPW by studying one of the key olfactory proteins in insect pheromone communication, sensory neuron membrane proteins (SNMPs). SNMPs belong to the CD36 (cluster of differentiation 36) family that perform two distinct olfactory roles in insects, either in pheromone (odorant) transfer to the odorant receptors (SNMP1) or in the pheromone clearing process (SNMP2). In this study, we performed antennal transcriptomic screening and identified six SNMPs, mapping them on the R. ferrugineus genome, and confirmed four distinct SNMPs. Both SNMP1 proteins in RPW, viz., RferSNMPu1 and RferSNMPu2, were mapped onto the same scaffold in different loci in the RPW genome. To further understand the function of these proteins, we first classified them using phylogenetic analysis and checked their tissue-specific expression patterns. Further, we measured the relative transcript abundance of SNMPs in laboratory-reared, field-collected adults and pheromone-exposure experiments, ultimately identifying RferSNMPu1 as a potential candidate for functional analysis. We mapped RferSNMPu1 expression in the antennae and found that expression patterns were similar in both sexes. We used RNAi-based gene silencing to knockdown RferSNMPu1 and tested the changes in the RPW responses to aggregation pheromone compounds, 4-methyl-5-nonanol (ferrugineol) and 4-methyl-5-nonanone (ferrugineone), and a kairomone, ethyl acetate using electroantennogram (EAG) recordings. We found a significant reduction in the EAG recordings in the RferSNMPu1 knockdown strain of adult RPWs, confirming its potential role in pheromone detection. The structural modelling revealed the key domains in the RferSNMPu1 structure, which could likely be involved in pheromone detection based on the identified ectodomain tunnels. Our studies on RferSNMPu1 with a putative role in pheromone detection provide valuable insight into understanding the olfaction in R. ferrugineus as well as in other Curculionids, as SNMPs are under-explored in terms of its functional role in insect olfaction. Most importantly, RferSNMPu1 can be used as a potential target for the olfactory communication disruption in the R. ferrugineus control strategies.


Subject(s)
Insect Proteins , Pheromones , Weevils , Animals , Weevils/metabolism , Weevils/genetics , Pheromones/metabolism , Insect Proteins/genetics , Insect Proteins/metabolism , Arthropod Antennae/metabolism , Membrane Proteins/metabolism , Membrane Proteins/genetics , Receptors, Odorant/genetics , Receptors, Odorant/metabolism , Male , Female , Gene Silencing , Phylogeny , Sensory Receptor Cells/metabolism
9.
Exp Eye Res ; 246: 110008, 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-39025460

ABSTRACT

This study aims to explore the effects of long-term high fructose intake (LHFI) on the structure, functionality, and physiological homeostasis of mouse extra-orbital lacrimal glands (ELGs), a critical component of ocular health. Our findings reveal significant reprogramming of the circadian transcriptome in ELGs following LHFI, alongside the activation of specific inflammatory pathways, as well as metabolic and neural pathways. Notably, LHFI resulted in increased inflammatory infiltration, enhanced lipid deposition, and reduced nerve fiber density in ELGs compared to controls. Functional assessments indicated a marked reduction in lacrimal secretion following cholinergic stimulation in LHFI-treated mice, suggesting impaired gland function. Overall, our results suggest that LHFI disrupts lacrimal gland homeostasis, potentially leading to dry eye disease by altering its structure and secretory function. These insights underscore the profound impact of dietary choices on ocular health and highlight the need for strategies to mitigate these risks.

10.
Mech Ageing Dev ; 221: 111961, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38960099

ABSTRACT

This comprehensive review elucidates the critical role of antioxidants to mitigate oxidative stress, a common denominator in an array of neurodegenerative disorders. Oxidative stress-induced damage has been linked to the development of diseases such as Alzheimer's, Parkinson's, Huntington's disease and amyotrophic lateral sclerosis. This article examines a wide range of scientific literature and methodically delineates the several methods by which antioxidants exercise their neuroprotective benefits. It also explores into the complex relationship between oxidative stress and neuroinflammation, focusing on how antioxidants can alter signaling pathways and transcription factors to slow neurodegenerative processes. Key antioxidants, such as vitamins C and E, glutathione, and polyphenolic compounds, are tested for their ability to combat reactive oxygen and nitrogen species. The dual character of antioxidants, which operate as both direct free radical scavengers and regulators of cellular redox homeostasis, is investigated in terms of therapeutic potential. Furthermore, the study focuses on new antioxidant-based therapy techniques and their mechanisms including Nrf-2, PCG1α, Thioredoxin etc., which range from dietary interventions to targeted antioxidant molecules. Insights into ongoing clinical studies evaluating antioxidant therapies in neurodegenerative illnesses offer an insight into the translational potential of antioxidant research. Finally, this review summarizes our present understanding of antioxidant processes in neurodegenerative illnesses, providing important possibilities for future study and treatment development.

11.
Int Immunopharmacol ; 139: 112676, 2024 Jul 24.
Article in English | MEDLINE | ID: mdl-39053230

ABSTRACT

Accumulation of alpha-synuclein (α-syn) is a key pathological hallmark of synucleinopathies and has been shown to negatively impact neuronal function and activity. α-syn is an important factor contributing to astrocyte overactivation, though the effect of astrocyte overactivation on neurons remains unclear. Single-cell RNA sequencing data of mouse brain frontal cortex and midbrain from Hua-Syn (A53T) and wild type mice were utilized from the GEO database. Enrichment analysis, protein-protein interaction networks, and cell-cell interaction networks all indicated enhanced communication between astrocytes and neurons, along with the involvement of TNF and inflammation-related signaling pathways. In vitro experiments were performed to further explore the mechanism of neurotoxicity in astrocyte-neuron crosstalk. Astrocytes were treated by α-syn, neuronal TNFR1 receptors were antagonized by R-7050, and the cells were co-cultured after 24 h treatment. ELISA results revealed that cytokines such as TNF-α and IL-6 were significantly upregulated in astrocytes following the endocytosis of α-syn. Immunofluorescence (IF) showed neuronal dendritic reduction, axon elongation and increased co-localisation of TNFR1 receptor expression. Western blot showed up-regulation of PKR, P-eIF2α and ATF4 protein expression. Conversely, after antagonizing neuronal TNFR1 receptors with the R-7050 chemical inhibitor, neuronal synaptic structure was significantly restored and the expression of PKR, P-eIF2α and ATF4 was down-regulated. In summary, TNF-α acts as a signaling molecule mediating the up-regulated astrocyte-neuron crosstalk, providing new insights into the pathogenesis of α-syn-related neurological disorders.

12.
Front Comput Neurosci ; 18: 1426653, 2024.
Article in English | MEDLINE | ID: mdl-39049990

ABSTRACT

The investigation of the dynamics of Purkinje cell (PC) activity is crucial to unravel the role of the cerebellum in motor control, learning and cognitive processes. Within the cerebellar cortex (CC), these neurons receive all the incoming sensory and motor information, transform it and generate the entire cerebellar output. The relatively homogenous and repetitive structure of the CC, common to all vertebrate species, suggests a single computation mechanism shared across all PCs. While PC models have been developed since the 70's, a comprehensive review of contemporary models is currently lacking. Here, we provide an overview of PC models, ranging from the ones focused on single cell intracellular PC dynamics, through complex models which include synaptic and extrasynaptic inputs. We review how PC models can reproduce physiological activity of the neuron, including firing patterns, current and multistable dynamics, plateau potentials, calcium signaling, intrinsic and synaptic plasticity and input/output computations. We consider models focusing both on somatic and on dendritic computations. Our review provides a critical performance analysis of PC models with respect to known physiological data. We expect our synthesis to be useful in guiding future development of computational models that capture real-life PC dynamics in the context of cerebellar computations.

13.
Immunol Invest ; : 1-17, 2024 Jul 23.
Article in English | MEDLINE | ID: mdl-39042045

ABSTRACT

BACKGROUND: Allergic rhinitis (AR) is a non-infectious inflammatory disease of the nasal mucosa mediated by IgE and involving a variety of immune cells such as mast cells. In previous studies, AR was considered as an isolated disease of the immune system. However, recent studies have found that the nervous system is closely related to the development of AR. Bidirectional communication between the nervous and immune systems plays an important role in AR. SUMMARY: The nervous system and immune system depend on the anatomical relationship between nerve fibers and immune cells, as well as various neurotransmitters, cytokines, inflammatory mediators, etc. to produce bidirectional connections, which affect the development of AR. KEY MESSAGES: This article reviews the impact of neuro-immune interactions in AR on the development of AR, including neuro-immune cell units.

14.
Front Pharmacol ; 15: 1419797, 2024.
Article in English | MEDLINE | ID: mdl-38994202

ABSTRACT

Severe spinal cord injuries (SCI) lead to loss of functional activity of the body below the injury site, affect a person's ability to self-care and have a direct impact on performance. Due to the structural features and functional role of the spinal cord in the body, the consequences of SCI cannot be completely overcome at the expense of endogenous regenerative potential and, developing over time, lead to severe complications years after injury. Thus, the primary task of this type of injury treatment is to create artificial conditions for the regenerative growth of damaged nerve fibers through the area of the SCI. Solving this problem is possible using tissue neuroengineering involving the technology of replacing the natural tissue environment with synthetic matrices (for example, hydrogels) in combination with stem cells, in particular, neural/progenitor stem cells (NSPCs). This approach can provide maximum stimulation and support for the regenerative growth of axons of damaged neurons and their myelination. In this review, we consider the currently available options for improving the condition after SCI (use of NSC transplantation or/and replacement of the damaged area of the SCI with a matrix, specifically a hydrogel). We emphasise the expediency and effectiveness of the hydrogel matrix + NSCs complex system used for the reconstruction of spinal cord tissue after injury. Since such a complex approach (a combination of tissue engineering and cell therapy), in our opinion, allows not only to creation of conditions for supporting endogenous regeneration or mechanical reconstruction of the spinal cord, but also to strengthen endogenous regeneration, prevent the spread of the inflammatory process, and promote the restoration of lost reflex, motor and sensory functions of the injured area of spinal cord.

15.
EMBO J ; 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-39009672

ABSTRACT

Aging is associated with a progressive decline of brain function, and the underlying causes and possible interventions to prevent this cognitive decline have been the focus of intense investigation. The maintenance of neuronal function over the lifespan requires proper epigenetic regulation, and accumulating evidence suggests that the deterioration of the neuronal epigenetic landscape contributes to brain dysfunction during aging. Epigenetic aging of neurons may, however, be malleable. Recent reports have shown age-related epigenetic changes in neurons to be reversible and targetable by rejuvenation strategies that can restore brain function during aging. This review discusses the current evidence that identifies neuronal epigenetic aging as a driver of cognitive decline and a promising target of brain rejuvenation strategies, and it highlights potential approaches for the specific manipulation of the aging neuronal epigenome to restore a youthful epigenetic state in the brain.

16.
Exp Dermatol ; 33(7): e15142, 2024 Jul.
Article in English | MEDLINE | ID: mdl-39032085

ABSTRACT

Frequent itching and incessant scratching are commonly observed in various chronic inflammatory skin conditions, including atopic dermatitis and psoriasis. The persistent and prolonged nature of pruritus can worsen one's quality of life. Keratinocytes (KCs), the predominant cells of the epidermis, have been confirmed to interact with sensory neurons and immune cells and be involved in chronic skin inflammatory diseases associated with pruritus. Initially, KCs and sensory neurons form a unique synapse-like connection within the epidermis, serving as the structural foundation for their interaction. Additionally, several receptors, including toll-like receptors and protease-activated receptor 2, expressed on KCs, become activated in an inflammatory milieu. On the one hand, activated KCs are sources of pro-inflammatory cytokines and neurotrophic factors, such as adenosine triphosphate, thymic stromal lymphopoietin, and nerve growth factor, which directly or indirectly participate in stimulating sensory neurons, thereby contributing to the itch sensations. On the other hand, KCs also function as primary transducers alongside intraepidermal nerve endings, directly initiating pruritic responses. This review summarizes the current literature and highlights the critical role of KCs in the development and persistence of chronic itch in inflammatory skin disorders.


Subject(s)
Keratinocytes , Pruritus , Humans , Pruritus/etiology , Pruritus/physiopathology , Keratinocytes/metabolism , Chronic Disease , Sensory Receptor Cells/metabolism , Sensory Receptor Cells/physiology , Dermatitis, Atopic/complications , Animals , Cytokines/metabolism , Psoriasis/complications
17.
J Adv Res ; 2024 Jul 14.
Article in English | MEDLINE | ID: mdl-39002719

ABSTRACT

INTRODUCTION: Motor neurons differ from sensory neurons in aspects including origins and surrounding environment. Understanding the similarities and differences in molecular response to peripheral nerve injury (PNI) and regeneration between sensory and motor neurons is crucial for developing effective drug targets for CNS regeneration. However, genome-wide comparisons of molecular changes between sensory and motor neurons following PNI remains limited. OBJECTIVES: This study aims to investigate genome-wide convergence and divergence of injury response between sensory and motor neurons to identify novel drug targets for neural repair. METHODS: We analyzed two large-scale RNA-seq datasets of in situ captured sensory neurons (SNs) and motoneurons (MNs) upon PNI, retinal ganglion cells and spinal cord upon CNS injury. Additionally, we integrated these with other related single-cell level datasets. Bootstrap DESeq2 and WGCNA were used to detect and explore co-expression modules of differentially expressed genes (DEGs). RESULTS: We found that SNs and MNs exhibited similar injury states, but with a delayed response in MNs. We identified a conserved regeneration-associated module (cRAM) with 274 shared DEGs. Of which, 47% of DEGs could be changed in injured neurons supported by single-cell resolution datasets. We also identified some less-studied candidates in cRAM, including genes associated with transcription, ubiquitination (Rnf122), and neuron-immune cells cross-talk. Further in vitro experiments confirmed a novel role of Rnf122 in axon growth. Analysis of the top 10% of DEGs with a large divergence suggested that both extrinsic (e.g., immune microenvironment) and intrinsic factors (e.g., development) contributed to expression divergence between SNs and MNs following injury. CONCLUSIONS: This comprehensive analysis revealed convergent and divergent injury response genes in SNs and MNs, providing new insights into transcriptional reprogramming of sensory and motor neurons responding to axonal injury and subsequent regeneration. It also identified some novel regeneration-associated candidates that may facilitate the development of strategies for axon regeneration.

18.
FASEB Bioadv ; 6(7): 207-221, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38974113

ABSTRACT

The tree-like morphology of neurons and glia is a key cellular determinant of circuit connectivity and metabolic function in the nervous system of essentially all animals. To elucidate the contribution of specific cell types to both physiological and pathological brain states, it is important to access detailed neuroanatomy data for quantitative analysis and computational modeling. NeuroMorpho.Org is the largest online collection of freely available digital neural reconstructions and related metadata and is continuously updated with new uploads. Earlier in the project, we released multiple datasets together yearly, but this process caused an average delay of several months in making the data public. Moreover, in the past 5 years, >80% of invited authors agreed to share their data with the community via NeuroMorpho.Org, up from <20% in the first 5 years of the project. In the same period, the average number of reconstructions per publication increased 600%, creating the need for automatic processing to release more reconstructions in less time. The progressive automation of our pipeline enabled the transition to agile releases of individual datasets as soon as they are ready. The overall time from data identification to public sharing decreased by 63.7%; 78% of the datasets are now released in less than 3 months with an average workflow duration below 40 days. Furthermore, the mean processing time per reconstruction dropped from 3 h to 2 min. With these continuous improvements, NeuroMorpho.Org strives to forge a positive culture of open data. Most importantly, the new, original research enabled through reuse of datasets across the world has a multiplicative effect on science discovery, benefiting both authors and users.

19.
Acta Med Acad ; 53(1): 24-34, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38984697

ABSTRACT

INTRODUCTION: This study aimed to explore autonomic nervous system involvement in amyotrophic lateral sclerosis (ALS) patients by evaluating sympathetic skin response (SSR). MATERIALS AND METHODS: The study included 35 sporadic (ALS) patients (cases), and 35 healthy age and sex-matched participants (controls) aged <60 years. SSR was recorded in the electrophysiology lab of the Neurology Department of Bangabandhu Sheikh Mujib Medical University (BSMMU), Dhaka, Bangladesh. Patients with diseases associated with peripheral or autonomic neuropathy were excluded. Prolonged latency (delayed SSR) or an absent response was considered abnormal SSR. RESULTS: SSR was found to be abnormal in 17 (48.6 %) ALS cases, with an absent response in the upper limbs of six cases (17.1%). Abnormal SSR was more prevalent in the lower limbs, with 33 (94.3%) and 20 (57.1%) cases having a delayed or absent response, respectively. In comparison, SSR was normal in all control participants (P-value <0.05). Abnormal SSR was significantly more common in the lower limbs of ALS cases with bulbar palsy than those without bulbar palsy (P-value=0.04). There was no association of SSR with disease severity and duration. CONCLUSION: ALS is significantly associated with abnormal SSR, indicating autonomic nervous system involvement. There could also be an association between bulbar palsy and abnormal SSR among ALS patients. Further studies should be carried out to determine the association of abnormal SSR with disease severity, duration, and type.


Subject(s)
Amyotrophic Lateral Sclerosis , Autonomic Nervous System Diseases , Humans , Amyotrophic Lateral Sclerosis/complications , Amyotrophic Lateral Sclerosis/physiopathology , Case-Control Studies , Female , Male , Middle Aged , Adult , Bangladesh/epidemiology , Autonomic Nervous System Diseases/physiopathology , Autonomic Nervous System Diseases/etiology , Galvanic Skin Response/physiology , Autonomic Nervous System/physiopathology
20.
Addict Neurosci ; 112024 Jun.
Article in English | MEDLINE | ID: mdl-38957401

ABSTRACT

Opioids produce addictive, analgesic, and euphoric effects via actions at mu opioid receptors (µORs). The µOR is encoded by the Oprm1 gene and is expressed in multiple brain regions that regulate reward and motivation, such as the nucleus accumbens (NAc). Oprm1 expression in NAc medium spiny neurons (MSNs) mediates opioid place preference, seeking, and consumption. However, recent single nucleus RNA sequencing (snRNA-seq) studies have revealed that multiple subpopulations of NAc neurons express Oprm1 mRNA, making it unclear which populations mediate diverse behaviors resulting from µOR activation. Using published snRNA-seq datasets from the rat NAc, we identified a novel population of MSNs that express the highest levels of Oprm1 of any NAc cell type. Here, we show that this population is selectively marked by expression of Chst9, a gene encoding a carbohydrate sulfotransferase. Notably, Chst9+ neurons exhibited more abundant expression of Oprm1 as compared to other cell types, and formed discrete cellular clusters along the medial and ventral borders of the NAc shell subregion. Moreover, CHST9 mRNA was also found to mark specific MSN populations in published human and primate snRNA-seq studies, indicating that this unique population may be conserved across species. Together, these results identify a spatially and transcriptionally distinct NAc neuron population characterized by the expression of Chst9. The abundant expression of Oprm1 in this population and the conservation of these cells across species suggests that they may play a key functional role in opioid response and identify this subpopulation as a target for further investigation.

SELECTION OF CITATIONS
SEARCH DETAIL
...