Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 208
Filter
1.
J Autoimmun ; 147: 103256, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38788538

ABSTRACT

Parkinson's disease (PD) is a progressive neurodegenerative disorder associated with the loss of dopaminergic neurons and neuroinflammation. Recent studies have identified a role of T cells in the pathogenesis of PD. Additionally, these studies suggested that α-synuclein (α-Syn) is related to abnormal T-cell responses and may act as an epitope and trigger autoimmune T-cell responses. However, it is unclear whether the α-Syn-mediated autoimmune response occurs and whether it is related to neuronal cell death and glial cell activation. In this study, we investigated the autoimmune T-cell response induced by α-Syn peptides and evaluated the neurotoxic effect of the α-Syn peptide-mediated autoimmune response. The immunization of mice with α-Syn peptides resulted in enhanced autoimmune responses, such as the peptide recall response, polarization toward Th1/Th17 cells, and regulatory T cell imbalance. Furthermore, the α-Syn autoimmune response led to the death of primary neurons cocultured with splenocytes. Treatment with conditioned media from α-Syn peptide-immunized splenocytes induced microglia and toxic A1-type astrocyte activation. Taken together, our results provide evidence of the potential role of the α-Syn-initiated autoimmune response and its contribution to neuronal cell death and glial cell activation.

2.
Anat Cell Biol ; 57(2): 155-162, 2024 Jun 30.
Article in English | MEDLINE | ID: mdl-38680098

ABSTRACT

Cerebral ischemia is the important cause of worldwide disability and mortality, that is one of the obstruction of blood vessels supplying to the brain. In early stage, glutamate excitotoxicity and high level of intracellular calcium (Ca2+) are the major processes which can promote many downstream signaling involving in neuronal death and brain tissue damaging. Moreover, autophagy, the reusing of damaged cell organelles, is affected in early ischemia. Under ischemic conditions, autophagy plays an important role to maintain energy of the brain and its function. In the other hand, over intracellular Ca2+ accumulation triggers excessive autophagic process and lysosomal degradation leading to autophagic process impairment which finally induce neuronal death. This article reviews the association between intracellular Ca2+ and autophagic process in acute stage of ischemic stroke.

3.
BMC Complement Med Ther ; 24(1): 162, 2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38632534

ABSTRACT

The incidence of dementia is rising, with neuronal cell death from oxidative stress and apoptosis recognized as a significant contributor to its development. However, effective strategies to combat this condition are lacking, necessitating further investigation. This study aimed to assess the potential of an anthocyanin-rich extract from Zea mays L. var. ceratina (AZC) in alleviating neuronal cell death.Neurotoxicity was induced in SH-SY5Y cells using hydrogen peroxide (H2O2) at a concentration of 200 µM. Cells were pretreated with varying doses (31.25 and 62.5 µg/mL) of AZC. Cell viability was assessed using the MTT assay, and molecular mechanisms including reactive oxygen species (ROS) levels, antioxidant enzyme activities (catalase (CAT), superoxide dismutase (SOD), and glutathione peroxidase (GSH-Px)), malondialdehyde (MDA) levels for oxidative stress, and the activation of extracellular signal-regulated kinases 1 and 2 (ERK1/2), cAMP response element-binding protein (CREB), and apoptotic factors (B-cell lymphoma 2 (Bcl-2), caspase 3) were explored.Results showed that AZC significantly improved cell viability, reduced ROS production and MDA levels, and downregulated caspase 3 expression. It enhanced CAT, SOD, and GSH-Px activities, activated ERK1/2 and CREB, and upregulated Bcl-2 expression. These findings support the neuroprotective effects of AZC, suggesting it activates ERK1/2, leading to CREB activation and subsequent upregulation of Bcl-2 expression while suppressing caspase 3. AZC may mitigate neuronal cell death by reducing ROS levels through enhanced scavenging enzyme activities.In conclusion, this study underscores the potential of AZC as a neuroprotective agent against neuronal cell death. However, further investigations including toxicity assessments, in vivo studies, and clinical trials are necessary to validate its benefits in neuroprotection.


Subject(s)
Neuroblastoma , Neuroprotective Agents , Humans , Animals , Bees , Hydrogen Peroxide/pharmacology , Reactive Oxygen Species/metabolism , Caspase 3/metabolism , Anthocyanins , Zea mays/metabolism , Cell Line, Tumor , Cell Death , Antioxidants/pharmacology , Neuroprotective Agents/pharmacology , Proto-Oncogene Proteins c-bcl-2/metabolism , Superoxide Dismutase/metabolism
4.
Mol Med Rep ; 29(6)2024 Jun.
Article in English | MEDLINE | ID: mdl-38639190

ABSTRACT

Traumatic Brain Injury (TBI) represents a significant public health challenge. Recovery from brain injury necessitates the collaborative efforts of various resident neural cells, predominantly microglia. The present study analyzed rat and mouse RNA expression micro­arrays, high­throughput RNA sequencing and single­cell sequencing data sourced from public databases. To construct an inflammation regulation network around TYRO protein tyrosine kinase­binding protein (TYROBP), to evaluate the role of TYROBP in cell death after TBI. These findings indicate that following TBI, neurons predominantly communicate with one another through the CXC chemokine ligand (CXCL) and CC chemokine ligand (CCL) signaling pathways, employing a paracrine mechanism to activate microglia. These activated microglia intensify the pathological progression of brain injury by releasing factors such as tumor necrosis factor α (TNF­α), vascular endothelial growth factor and transforming growth factor ß via the NF­κB pathway. Cells co­culture experiments demonstrated that neurons, impaired by mechanical injury, interact with microglia through non­contact mechanisms. Activated microglia secrete cytokines, including TNF­α, CXCL­8 and CCL2, which trigger an inflammatory response and facilitate neuronal apoptosis. TYROBP gene knockout in microglia was demonstrated to reduce this interaction and reduce neuronal cell apoptosis rates.


Subject(s)
Adaptor Proteins, Signal Transducing , Brain Injuries, Traumatic , Microglia , Animals , Mice , Rats , Apoptosis , Brain Injuries, Traumatic/metabolism , Inflammation/metabolism , Ligands , Mice, Inbred C57BL , Microglia/metabolism , Protein-Tyrosine Kinases/metabolism , Signal Transduction , Tumor Necrosis Factor-alpha/metabolism , Vascular Endothelial Growth Factor A/metabolism , Adaptor Proteins, Signal Transducing/metabolism
5.
Curr Med Chem ; 2024 Feb 16.
Article in English | MEDLINE | ID: mdl-38549537

ABSTRACT

The proprotein convertase subtilisin/kexin type 9 (PCSK9) belongs to a member of the proprotein convertase (PC) family, which is mainly secreted by the liver and plays a central role in lipid metabolism. Furthermore, PCSK9 plays a multifunctional role in promoting the inflammatory response, inducing cell apoptosis and pyroptosis and affecting tumor homeostasis. The brain is the organ with the richest lipid content. Incidentally, PCSK9 increased in many brain diseases, including brain injury and Alzheimer's disease (AD). Consequently, the relationship between PCSK9 and brain diseases has attracted increasing research interest. Amyloid beta (Aß) accumulation is the central and initial event in the pathogenesis of AD. This study focuses on the effects of PCSK9 on Aß accumulation in the brain via multiple modalities to explore the potential role of PCSK9 in AD, which is characterized by progressive loss of brain cells by increasing Aß accumulation. The study also explores the new mechanism by which PCSK9 is involved in the pathogenesis of AD, providing interesting and innovative guidance for the future of PCSK9-targeted therapy for AD.

6.
Cells ; 13(5)2024 Feb 25.
Article in English | MEDLINE | ID: mdl-38474360

ABSTRACT

Embolism, hyperglycemia, high intraocular pressure-induced increased reactive oxygen species (ROS) production, and microglial activation result in endothelial/retinal ganglion cell death. Here, we conducted in vitro and in vivo ischemia/reperfusion (I/R) efficacy studies of a hybrid antioxidant-nitric oxide donor small molecule, SA-10, to assess its therapeutic potential for ocular stroke. METHODS: To induce I/R injury and inflammation, we subjected R28 and primary microglial cells to oxygen glucose deprivation (OGD) for 6 h in vitro or treated these cells with a cocktail of TNF-α, IL-1ß and IFN-γ for 1 h, followed by the addition of SA-10 (10 µM). Inhibition of microglial activation, ROS scavenging, cytoprotective and anti-inflammatory activities were measured. In vivo I/R-injured mouse retinas were treated with either PBS or SA-10 (2%) intravitreally, and pattern electroretinogram (ERG), spectral-domain optical coherence tomography, flash ERG and retinal immunocytochemistry were performed. RESULTS: SA-10 significantly inhibited microglial activation and inflammation in vitro. Compared to the control, the compound SA-10 significantly attenuated cell death in both microglia (43% vs. 13%) and R28 cells (52% vs. 17%), decreased ROS (38% vs. 68%) production in retinal microglia cells, preserved neural retinal function and increased SOD1 in mouse eyes. CONCLUSION: SA-10 is protective to retinal neurons by decreasing oxidative stress and inflammatory cytokines.


Subject(s)
Reperfusion Injury , Retinal Ganglion Cells , Mice , Animals , Reactive Oxygen Species/metabolism , Retinal Ganglion Cells/metabolism , Reperfusion Injury/metabolism , Ischemia/metabolism , Anti-Inflammatory Agents/therapeutic use , Inflammation/metabolism , Reperfusion
7.
IBRO Neurosci Rep ; 16: 336-344, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38390232

ABSTRACT

Alzheimer's disease (AD) is the most common age-related progressive neurodegenerative disorder. The accumulation of amyloid beta-peptide is a neuropathological marker of AD. While melatonin is recognized to have protective effects on aging and neurodegenerative disorders, the therapeutic effect of melatonin on calcineurin in AD is poorly understood. In this study, we examined the effect and underlying molecular mechanisms of melatonin treatment on amyloid beta-mediated neurotoxicity in neuroblastoma cells. Melatonin treatment decreased calcineurin and autophagy in neuroblastoma cells. Electron microscopy images showed that melatonin inhibited amyloid beta-induced autophagic vacuoles. The increase in the amyloid beta-induced apoptosis rate was observed more in PrPC-expressing ZW cells than in PrPC-silencing Zpl cells. Taken together, the results suggest that by mitigating the effect of calcineurin and autophagy flux activation, melatonin could also rescue amyloid beta-induced neurotoxic effects. These findings may be relevant to therapy for neurodegenerative diseases, including AD.

8.
Cells ; 13(3)2024 Jan 25.
Article in English | MEDLINE | ID: mdl-38334622

ABSTRACT

Neuronal cell death is a key mechanism involved in the development and exacerbation of Parkinson's disease (PD). The excessive production of reactive oxygen species (ROS) is a major cause leading to neuronal death; therefore, compounds that prevent oxidative stress-dependent neuronal death may be promising as a preventive method for PD. Ergothioneine is a natural amino acid with antioxidant properties, and its protective functions in the body are attracting attention. However, there has been no investigation into the protective functions of ergothioneine using in vivo and in vitro PD models. Thus, in this study, we analyzed the efficacy of ergothioneine against 6-hydroxydopamine (6-OHDA)-dependent neuronal cell death using immortalized hypothalamic neurons (GT1-7 cells). First, we found that ergothioneine prevents 6-OHDA-dependent neuronal cell death by suppressing ROS overproduction in GT1-7 cells. The cytoprotective effect of ergothioneine was partially abolished by verapamil, an inhibitor of OCTN1, which is involved in ergothioneine uptake. Furthermore, ergothioneine-rich Rice-koji (Ergo-koji) showed cytoprotective and antioxidant effects similar to those of ergothioneine. Taken together, these results suggest that ergothioneine or foods containing ergothioneine may be an effective method for preventing the development and progression of PD.


Subject(s)
Ergothioneine , Ergothioneine/pharmacology , Ergothioneine/metabolism , Oxidopamine/pharmacology , Reactive Oxygen Species/metabolism , Neurotoxins/pharmacology , Cell Death , Antioxidants/pharmacology , Antioxidants/metabolism
9.
Arch Toxicol ; 98(4): 1163-1175, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38367039

ABSTRACT

Methylmercury (MeHg) is a well-known environmental neurotoxicant that causes severe brain disorders such as Minamata disease. Although some patients with Minamata disease develop olfactory dysfunction, the underlying pathomechanism is largely unknown. We examined the effects of MeHg on the olfactory system using a model of MeHg poisoning in which mice were administered 30 ppm MeHg in drinking water for 8 weeks. Mice exposed to MeHg displayed significant mercury accumulation in the olfactory pathway, including the nasal mucosa, olfactory bulb, and olfactory cortex. The olfactory epithelium was partially atrophied, and olfactory sensory neurons were diminished. The olfactory bulb exhibited an increase in apoptotic cells, hypertrophic astrocytes, and amoeboid microglia, mainly in the granular cell layer. Neuronal cell death was observed in the olfactory cortex, particularly in the ventral tenia tecta. Neuronal cell death was also remarkable in higher-order areas such as the orbitofrontal cortex. Correlation analysis showed that neuronal loss in the olfactory cortex was strongly correlated with the plasma mercury concentration. Our results indicate that MeHg is an olfactory toxicant that damages the central regions involved in odor perception. The model described herein is useful for analyzing the mechanisms and treatments of olfactory dysfunction in MeHg-intoxicated patients.


Subject(s)
Mercury Poisoning, Nervous System , Mercury , Methylmercury Compounds , Olfaction Disorders , Humans , Mice , Animals , Methylmercury Compounds/toxicity , Microglia/pathology , Olfaction Disorders/chemically induced , Olfaction Disorders/complications
10.
Int J Mol Sci ; 25(1)2024 Jan 04.
Article in English | MEDLINE | ID: mdl-38203830

ABSTRACT

Apoptosis plays a crucial role in neuronal injury, with substantial evidence implicating Fas-mediated cell death as a key factor in ischemic strokes. To address this, inhibition of Fas-signaling has emerged as a promising strategy in preventing neuronal cell death and alleviating brain ischemia. However, the challenge of overcoming the blood-brain barrier (BBB) hampers the effective delivery of therapeutic drugs to the central nervous system (CNS). In this study, we employed a 30 amino acid-long leptin peptide to facilitate BBB penetration. By conjugating the leptin peptide with a Fas-blocking peptide (FBP) using polyethylene glycol (PEG), we achieved specific accumulation in the Fas-expressing infarction region of the brain following systemic administration. Notably, administration in leptin receptor-deficient db/db mice demonstrated that leptin facilitated the delivery of FBP peptide. We found that the systemic administration of leptin-PEG-FBP effectively inhibited Fas-mediated apoptosis in the ischemic region, resulting in a significant reduction of neuronal cell death, decreased infarct volumes, and accelerated recovery. Importantly, neither leptin nor PEG-FBP influenced apoptotic signaling in brain ischemia. Here, we demonstrate that the systemic delivery of leptin-PEG-FBP presents a promising and viable strategy for treating cerebral ischemic stroke. Our approach not only highlights the therapeutic potential but also emphasizes the importance of overcoming BBB challenges to advance treatments for neurological disorders.


Subject(s)
Brain Ischemia , Stroke , Animals , Mice , Leptin/pharmacology , Apoptosis , Brain Ischemia/drug therapy , Cell Death , Peptides/pharmacology
11.
J Toxicol Sci ; 49(2): 55-60, 2024.
Article in English | MEDLINE | ID: mdl-38296529

ABSTRACT

Apoptosis is one of the hallmarks of MeHg-induced neuronal cell death; however, its molecular mechanism remains unclear. We previously reported that MeHg exposure induces neuron-specific ER stress in the mouse brain. Excessive ER stress contributes to apoptosis, and CHOP induction is considered to be one of the major mechanisms. CHOP is also increased by MeHg exposure in the mouse brain, suggesting that it correlates with increased apoptosis. In this study, to clarify whether CHOP mediates MeHg-induced apoptosis, we examined the effect of CHOP deletion on MeHg exposure in CHOP-knockout mice. Our data showed that CHOP deletion had no effect on MeHg exposure-induced weight loss or hindlimb impairment in mice, nor did it increase apoptosis or inhibit neuronal cell loss. Hence, CHOP plays little role in MeHg toxicity, and other apoptotic pathways coupled with ER stress may be involved in MeHg-induced cell death.


Subject(s)
Brain , Methylmercury Compounds , Neurons , Animals , Mice , Apoptosis , Brain/pathology , Methylmercury Compounds/toxicity , Methylmercury Compounds/metabolism , Mice, Knockout , Neurons/pathology
12.
Transl Neurodegener ; 13(1): 4, 2024 01 09.
Article in English | MEDLINE | ID: mdl-38195518

ABSTRACT

Alzheimer's disease (AD) is the most prevalent form of dementia in the elderly and represents a major clinical challenge in the ageing society. Neuropathological hallmarks of AD include neurofibrillary tangles composed of hyperphosphorylated tau, senile plaques derived from the deposition of amyloid-ß (Aß) peptides, brain atrophy induced by neuronal loss, and synaptic dysfunctions. Death-associated protein kinase 1 (DAPK1) is ubiquitously expressed in the central nervous system. Dysregulation of DAPK1 has been shown to contribute to various neurological diseases including AD, ischemic stroke and Parkinson's disease (PD). We have established an upstream effect of DAPK1 on Aß and tau pathologies and neuronal apoptosis through kinase-mediated protein phosphorylation, supporting a causal role of DAPK1 in the pathophysiology of AD. In this review, we summarize current knowledge about how DAPK1 is involved in various AD pathological changes including tau hyperphosphorylation, Aß deposition, neuronal cell death and synaptic degeneration. The underlying molecular mechanisms of DAPK1 dysregulation in AD are discussed. We also review the recent progress regarding the development of novel DAPK1 modulators and their potential applications in AD intervention. These findings substantiate DAPK1 as a novel therapeutic target for the development of multifunctional disease-modifying treatments for AD and other neurological disorders.


Subject(s)
Alzheimer Disease , Aged , Humans , Alzheimer Disease/drug therapy , Alzheimer Disease/genetics , Death-Associated Protein Kinases/genetics , Amyloid beta-Peptides , Central Nervous System , Neurofibrillary Tangles
13.
Phytother Res ; 38(2): 636-645, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37963759

ABSTRACT

Hyperforin is a phloroglucinol derivative isolated from the medicinal plant Hypericum perforatum (St John's wort, SJW). This lipophilic biomolecule displays antibacterial, pro-apoptotic, antiproliferative, and anti-inflammatory activities. In addition, in vitro and in vivo data showed that hyperforin is a promising molecule with potential applications in neurology and psychiatry. For instance, hyperforin possesses antidepressant properties, impairs the uptake of neurotransmitters, and stimulates the brain derived neurotrophic factor (BDNF)/TrkB neurotrophic signaling pathway, the adult hippocampal neurogenesis, and the brain homeostasis of zinc. In fact, hyperforin is a multi-target biomolecule with a complex neuropharmacological profile. However, one prominent pharmacological feature of hyperforin is its ability to influence the homeostasis of cations such as Ca2+ , Na+ , Zn2+ , and H+ . So far, the pathophysiological relevance of these actions is currently unknown. The main objective of the present work is to provide an overview of the cellular neurobiology of hyperforin, with a special focus on its effects on neuronal membranes and the movement of cations.


Subject(s)
Hypericum , Neurobiology , Phloroglucinol/analogs & derivatives , Antidepressive Agents/pharmacology , Terpenes/pharmacology , Phloroglucinol/pharmacology , Plant Extracts/pharmacology , Cations , Bridged Bicyclo Compounds/pharmacology
14.
Biochim Biophys Acta Gen Subj ; 1868(1): 130506, 2024 01.
Article in English | MEDLINE | ID: mdl-37949151

ABSTRACT

BACKGROUND: Ischemia and reperfusion (I/R) injury exacerbate the prognosis of ischemic diseases. The cause of this exacerbation is partly a mitochondrial cell death pathway. Mitochondrial calpain-5 is proteolyzed/autolyzed under endoplasmic reticulum stress, resulting in inflammatory caspase-4 activation. However, the role of calpain-5 in I/R injury remains unclear. We hypothesized that calpain-5 is involved in ischemic brain disease. METHODS: Mitochondria from C57BL/6J mice were extracted via centrifugation with/without proteinase K treatment. The expression and proteolysis/autolysis of calpain-5 were determined using western blotting. The mouse and human brains with I/R injury were analyzed using hematoxylin and eosin staining and immunohistochemistry. HT22 cells were treated with tunicamycin and CAPN5 siRNA. RESULTS: Calpain-5 was expressed in the mitochondria of mouse tissues. Mitochondrial calpain-5 in mouse brains was responsive to calcium earlier than cytosolic calpain-5 in vitro calcium assays and in vivo bilateral common carotid artery occlusion model mice. Immunohistochemistry revealed that neurons were positive for calpain-5 in the normal brains of mice and humans. The expression of calpain-5 was increased in reactive astrocytes at human infarction sites. The knockdown of calpain-5 suppressed of cleaved caspase-11. CONCLUSIONS: The neurons of human and mouse brains express calpain-5, which is proteolyzed/autolyzed in the mitochondria in the early stage of I/R injury and upregulated in reactive astrocytes in the end-stage. GENERAL SIGNIFICANCE: Our results provide a comprehensive understanding of the mechanisms underlying I/R injury. Targeting the expression or activity of mitochondrial calpain-5 may suppress the inflammation during I/R injuries such as cerebrovascular diseases.


Subject(s)
Brain Ischemia , Reperfusion Injury , Animals , Mice , Humans , Calpain/genetics , Calpain/metabolism , Calcium/metabolism , Mice, Inbred C57BL , Brain Ischemia/genetics , Caspases
15.
Cells ; 12(20)2023 10 18.
Article in English | MEDLINE | ID: mdl-37887324

ABSTRACT

Cerebral injury is a leading cause of long-term disability and mortality. Common causes include major cardiovascular events, such as cardiac arrest, ischemic stroke, and subarachnoid hemorrhage, traumatic brain injury, and neurodegenerative as well as neuroinflammatory disorders. Despite improvements in pharmacological and interventional treatment options, due to the brain's limited regeneration potential, survival is often associated with the impairment of crucial functions that lead to occupational inability and enormous economic burden. For decades, researchers have therefore been investigating adjuvant therapeutic options to alleviate neuronal cell death. Although promising in preclinical studies, a huge variety of drugs thought to provide neuroprotective effects failed in clinical trials. However, utilizing medical gases, noble gases, and gaseous molecules as supportive treatment options may offer new perspectives for patients suffering neuronal damage. This review provides an overview of current research, potentials and mechanisms of these substances as a promising therapeutic alternative for the treatment of cerebral injury.


Subject(s)
Brain Injuries , Neuroprotective Agents , Humans , Neuroprotection , Noble Gases/pharmacology , Noble Gases/therapeutic use , Gases , Neuroprotective Agents/pharmacology , Neuroprotective Agents/therapeutic use , Brain Injuries/drug therapy , Neurons
16.
Cells ; 12(18)2023 Sep 21.
Article in English | MEDLINE | ID: mdl-37759545

ABSTRACT

Fetal alcohol spectrum disorders (FASD) are a set of abnormalities caused by prenatal exposure to ethanol and are characterized by developmental defects in the brain that lead to various overt and non-overt physiological abnormalities. Growing evidence suggests that in utero alcohol exposure induces functional and structural abnormalities in gliogenesis and neuron-glia interactions, suggesting a possible role of glial cell pathologies in the development of FASD. However, the molecular mechanisms of neuron-glia interactions that lead to the development of FASD are not clearly understood. In this review, we discuss glial cell pathologies with a particular emphasis on microglia, primary resident immune cells in the brain. Additionally, we examine the involvement of several neuroimmune molecules released by glial cells, their signaling pathways, and epigenetic mechanisms responsible for FASD-related alteration in brain functions. Growing evidence suggests that extracellular vesicles (EVs) play a crucial role in the communication between cells via transporting bioactive cargo from one cell to the other. This review emphasizes the role of EVs in the context of neuron-glia interactions during prenatal alcohol exposure. Finally, some potential applications involving nutritional, pharmacological, cell-based, and exosome-based therapies in the treatment of FASD are discussed.

17.
Pharmaceuticals (Basel) ; 16(9)2023 Sep 07.
Article in English | MEDLINE | ID: mdl-37765076

ABSTRACT

Neuronal cell death is a physiological process that, when uncontrollable, leads to neurodegenerative disorders like spinal cord injury (SCI). SCI represents one of the major causes of trauma and disabilities worldwide for which no effective pharmacological intervention exists. Herein, we observed the beneficial effects of Δ8-Tetrahydrocannabinol (Δ8-THC) during neuronal cell death recovery. We cultured NSC-34 motoneuron cell line performing three different experiments. A traumatic scratch injury was caused in two experiments. One of the scratched was pretreated with Δ8-THC to observe the role of the cannabinoid following the trauma. An experimental control group was neither scratched nor pretreated. All the experiments underwent RNA-seq analysis. The effects of traumatic injury were observed in scratch against control comparison. Comparison of scratch models with or without pretreatment highlighted how Δ8-THC counteracts the traumatic event. Our results shown that Δ8-THC triggers the cytoskeletal remodeling probably due to the activation of the Janus Kinase Signal Transducer and Activator of Transcription (JAK/STAT) signaling pathway and the signaling cascade operated by the Mitogen-Activated Protein (MAP) Kinase signaling pathway. In light of this evidence, Δ8-THC could be a valid pharmacological approach in the treatment of abnormal neuronal cell death occurring in motoneuron cells.

18.
Exp Neurol ; 368: 114520, 2023 10.
Article in English | MEDLINE | ID: mdl-37634698

ABSTRACT

Wobbly hedgehog syndrome (WHS) has been long considered to be a myelin disease primarily affecting the four-toed hedgehog. In this study, we have shown for the first time that demyelination is accompanied by extensive remyelination in WHS. However, remyelination is not enough to compensate for the axonal degeneration and neuronal loss, resulting in a progressive neurodegenerative disease reminiscent of progressive forms of multiple sclerosis (MS) in humans. Thus, understanding the pathological features of WHS may shed light on the disease progression in progressive MS and ultimately help to develop therapeutic strategies for both diseases.


Subject(s)
Multiple Sclerosis , Neurodegenerative Diseases , Humans , Animals , Hedgehogs , Neurodegenerative Diseases/genetics , Disease Progression , Memory
19.
Neurobiol Dis ; 184: 106228, 2023 08.
Article in English | MEDLINE | ID: mdl-37454781

ABSTRACT

Armcx1 is highly expressed in the brain and is located in the mitochondrial outer membrane of neurons, where it mediates mitochondrial transport. Mitochondrial transport promotes the removal of damaged mitochondria and the replenishment of healthy mitochondria, which is essential for neuronal survival after traumatic brain injury (TBI). This study investigated the role of Armcx1 and its potential regulator(s) in secondary brain injury (SBI) after TBI. An in vivo TBI model was established in male C57BL/6 mice via controlled cortical impact (CCI). Adeno-associated viruses (AAVs) with Armcx1 overexpression and knockdown were constructed and administered to mice via stereotactic cortical injection. Exogenous miR-223-3p mimic or inhibitor was transfected into cultured cortical neurons, which were then scratched to simulate TBI in vitro. It was found that Armcx1 expression decreased significantly, while miR-223-3p levels increased markedly in peri-lesion tissues after TBI. The overexpression of Armcx1 significantly reduced TBI-induced neurological dysfunction, neuronal cell death, mitochondrial dysfunction, and axonal injury, while the knockdown of Armcx1 had the opposite effect. Armcx1 was potentially a direct target of miR-223-3p. The miR-223-3p mimic obviously reduced the Armcx1 protein level, while the miR-223-3p inhibitor had the opposite effect. Finally, the miR-223-3p inhibitor dramatically improved mitochondrial membrane potential (MMP) and increased the total length of the neurites without affecting branching numbers. In summary, our results suggest that the decreased expression of Armcx1 protein in neurons after experimental TBI aggravates secondary brain injury, which may be regulated by miR-223-3p. Therefore, this study provides a potential therapeutic approach for treating TBI.


Subject(s)
Armadillo Domain Proteins , Brain Injuries, Traumatic , MicroRNAs , Mitochondrial Proteins , Animals , Male , Mice , Brain Injuries, Traumatic/metabolism , Cell Death , Mice, Inbred C57BL , MicroRNAs/metabolism , Mitochondria/metabolism , Armadillo Domain Proteins/metabolism , Mitochondrial Proteins/metabolism
20.
Front Cell Neurosci ; 17: 1170170, 2023.
Article in English | MEDLINE | ID: mdl-37377778

ABSTRACT

Neurogenesis persists in the mammalian subventricular zone after birth, producing various populations of olfactory bulb (OB) interneurons, including GABAergic and mixed dopaminergic/GABAergic (DA) neurons for the glomerular layer. While olfactory sensory activity is a major factor controlling the integration of new neurons, its impact on specific subtypes is not well understood. In this study we used genetic labeling of defined neuron subsets, in combination with reversible unilateral sensory deprivation and longitudinal in vivo imaging, to examine the behavior of postnatally born glomerular neurons. We find that a small fraction of GABAergic and of DA neurons die after 4 weeks of sensory deprivation while surviving DA-neurons exhibit a substantial decrease in tyrosine hydroxylase (TH) expression levels. Importantly, after reopening of the naris, cell death is arrested and TH levels go back to normal levels, indicating a specific adaptation to the level of sensory activity. We conclude that sensory deprivation induces adjustments in the population of glomerular neurons, involving both, cell death and adaptation of neurotransmitter use in specific neuron types. Our study highlights the dynamic nature of glomerular neurons in response to sensory deprivation and provide valuable insights into the plasticity and adaptability of the olfactory system.

SELECTION OF CITATIONS
SEARCH DETAIL
...