Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 23
Filter
Add more filters










Publication year range
1.
J Neurosci Res ; 102(1): e25271, 2024 01.
Article in English | MEDLINE | ID: mdl-38284837

ABSTRACT

Similar to the human brain, Drosophila glia may well be divided into several subtypes that each carries out specific functions. Glial GPCRs play key roles in crosstalk between neurons and glia. Drosophila Lgr4 (dLgr4) is a human relaxin receptor homolog involved in angiogenesis, cardiovascular regulation, collagen remodeling, and wound healing. A recent study suggests that ilp7 might be the ligand for Lgr4 and regulates escape behavior of Drosophila larvae. Here we demonstrate that Drosophila Lgr4 expression in glial cells, not neurons, is necessary for early development, adult behavior, and lifespan. Reducing the Lgr4 level in glial cells disrupts Drosophila development, while knocking down other LGR family members in glia has no impact. Adult-specific knockdown of Lgr4 in glia but not neurons reduce locomotion, male reproductive success, and animal longevity. The investigation of how glial expression of Lgr4 contributes to this behavioral alteration will increase our understanding of how insulin signaling via glia selectively modulates neuronal activity and behavior.


Subject(s)
Drosophila Proteins , Drosophila , Neuroglia , Receptors, G-Protein-Coupled , Animals , Male , Brain , Neurons , Receptors, Neuropeptide , Receptors, G-Protein-Coupled/genetics , Drosophila Proteins/genetics
2.
J Mol Biol ; 436(4): 168416, 2024 02 15.
Article in English | MEDLINE | ID: mdl-38143020

ABSTRACT

Neuropeptides not only work through nervous system but some of them also work peripherally to regulate numerous physiological processes. They are important in regulation of numerous physiological processes including growth, reproduction, social behavior, inflammation, fluid homeostasis, cardiovascular function, and energy homeostasis. The various roles of neuropeptides make them promising candidates for prospective therapeutics of different diseases. Currently, NeuroPep has been updated to version 2.0, it now holds 11,417 unique neuropeptide entries, which is nearly double of the first version of NeuroPep. When available, we collected information about the receptor for each neuropeptide entry and predicted the 3D structures of those neuropeptides without known experimental structure using AlphaFold2 or APPTEST according to the peptide sequence length. In addition, DeepNeuropePred and NeuroPred-PLM, two neuropeptide prediction tools developed by us recently, were also integrated into NeuroPep 2.0 to help to facilitate the identification of new neuropeptides. NeuroPep 2.0 is freely accessible at https://isyslab.info/NeuroPepV2/.


Subject(s)
Databases, Protein , Molecular Sequence Annotation , Neuropeptides , Amino Acid Sequence , Neuropeptides/chemistry , Molecular Sequence Annotation/methods
3.
Front Physiol ; 14: 1270751, 2023.
Article in English | MEDLINE | ID: mdl-37841314

ABSTRACT

Predatory stink bugs derive from phytophagous stink bugs and evolved enhanced predation skills. Neuropeptides are a diverse class of ancient signaling molecules that regulate physiological processes and behavior in animals, including stink bugs. Neuropeptide evolution might be important for the development of predation because neuropeptides can be converted to venoms that impact prey. However, information on neuropeptide signaling genes in predatory stink bugs is lacking. In the present study, neuropeptide signaling genes of Picromerus lewisi, an important predatory stink bug and an effective biological agent, were comprehensively identified by transcriptome analysis, with a total of 59 neuropeptide precursor genes and 58 potential neuropeptide receptor genes found. In addition, several neuropeptides and their receptors enriched in salivary glands of P. lewisi were identified. The present study and subsequent functional research contribute to an in-depth understanding of the biology and behavior of the predatory bugs and can provide basic information for the development of better pest management strategies, possibly including neuropeptide receptors as insecticide targets and salivary gland derived venom toxins as novel killing moleculars.

4.
Int J Biol Macromol ; 244: 125411, 2023 Jul 31.
Article in English | MEDLINE | ID: mdl-37327925

ABSTRACT

Neuropeptides and neuropeptide receptors are crucial regulators for the behavior, lifecycle, and physiology of insects and are mainly produced and released from the neurosecretory cells of the central nervous system (CNS). In this study, RNA-seq was employed to investigate the transcriptome profile of the CNS which is composed of the brain and ventral nerve cord (VNC) of Antheraea pernyi. From the data sets, a total of 18 and 42 genes were identified, which respectively encode the neuropeptides and neuropeptide receptors involved in regulating multiple behaviors including feeding, reproductive behavior, circadian locomotor, sleep, and stress response and physiological processes such as nutrient absorption, immunity, ecdysis, diapause, and excretion. Comparison of the patterns of expression of those genes between the brain and VNC showed that most had higher levels of expression in the brain than VNC. Besides, 2760 differently expressed genes (DEGs) (1362 up-regulated and 1398 down-regulated ones between the B and VNC group) were also screened and further analyzed via gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes pathway (KEGG) enrichment analyses. The results of this study could provide comprehensive profiles of the neuropeptides and neuropeptide receptors of A. pernyi CNS and lay the foundation for further research into their functions.


Subject(s)
Moths , Neuropeptides , Animals , Transcriptome/genetics , Gene Expression Profiling/methods , Moths/genetics , Neuropeptides/genetics , Receptors, Neuropeptide/genetics , Central Nervous System
5.
Biochem Biophys Res Commun ; 660: 28-34, 2023 06 11.
Article in English | MEDLINE | ID: mdl-37060828

ABSTRACT

G protein-coupled receptors (GPCRs) are a major class of membrane receptors that modulate a wide range of physiological functions. These receptors transmit extracellular signals, including secreted bioactive peptides, to intracellular signaling pathways. The nematode Caenorhabditis elegans has FMRFamide-like peptides, which are one of the most diverse neuropeptide families, some of which modulate larval development through GPCRs. In this study, we identified the GPCR neuropeptide receptor (NPR)-15, which modulates C. elegans larval development. Our molecular genetic analyses indicated the following: 1) NPR-15 mainly functions in ASI neurons, which predominantly regulate larval development, 2) NPR-15 interacts with GPA-4, a C. elegans Gα subunit, and 3) NPR-15, along with GPA-4, modulates larval development by regulating the production and secretion of the transforming growth factor-ß (TGF-ß)-like protein DAF-7. The present study is the first report to demonstrate the importance of a GPCR to the direct regulation of a TGF-ß-like protein.


Subject(s)
Caenorhabditis elegans Proteins , Caenorhabditis elegans , Animals , Caenorhabditis elegans/metabolism , Caenorhabditis elegans Proteins/metabolism , Peptides/metabolism , Receptors, G-Protein-Coupled/genetics , Receptors, G-Protein-Coupled/metabolism , Receptors, Neuropeptide/genetics , Receptors, Neuropeptide/metabolism , Transforming Growth Factor beta/metabolism , Transforming Growth Factors/metabolism
6.
Peptides ; 155: 170839, 2022 09.
Article in English | MEDLINE | ID: mdl-35839946

ABSTRACT

The functional characteristics of neuropeptides in marine invertebrates have attracted significant attention recently although functional studies of luqin-type neuropeptides are still very limited, especially in deuterostomes. The sea cucumber, Apostichopus japonicus, is a representative species of deuterostomian Holothurian invertebrates. The species has high nutritional and medicinal value in China. In this study, we report the first comprehensive histological, biochemical and pharmacological characterization of luqin-type neuropeptide signaling in the sea cucumber A. japonicus. The A. japonicus luqin-like neuropeptide precursor (AjLQP) contains a single typical deuterostomian luqin-like neuropeptide AjLQ with an xFxRWamide motif. AjLQ was identified as the ligand for a luqin-type neuropeptide receptor AjLQR, that was previously predicted to be a tachykinin-type receptor, and triggers a rapid intracellular mobilization of Ca2+, followed by receptor internalization and a transient increase in ERK1/2 phosphorylation. In situ hybridization, immunohistochemistry and qRT-PCR analysis revealed extensive expression of AjLQP and AjLQ in A. japonicus tissues, especially in locomotion-related organs. In vitro pharmacological tests revealed that AjLQ caused 12.69% ± 1.99% (p < 0.01) relaxation of longitudinal muscle preparations at 10-7 M concentration. Furthermore, we observed significantly increased expression of AjLQP (about 17.63 fold, p < 0.01) in intestine of deeply aestivating sea cucumbers, which suggests that AjLQ might be involved in feeding inhibition during aestivation. The present study provides a first insight into the experimental characterization of luqin-type neuropeptide signaling in a sea cucumber. The results will broaden our understanding of the potential function of neuropeptides during important biological processes in marine invertebrates and provide theoretical support for optimizing sea cucumber aquaculture technology.


Subject(s)
Neuropeptides , Sea Cucumbers , Stichopus , Animals , China , Neuropeptides/genetics , Neuropeptides/metabolism , Receptors, Neuropeptide/metabolism , Sea Cucumbers/genetics , Sea Cucumbers/metabolism , Stichopus/genetics , Stichopus/metabolism
7.
Biomedicines ; 10(1)2021 Dec 22.
Article in English | MEDLINE | ID: mdl-35052689

ABSTRACT

BACKGROUND: As chemical signals of hormones, neuropeptides are essential to regulate cell growth by interacting with their receptors to achieve cell communications in cancer tissues. Previously, neuropeptide transcriptome analysis was limited to tissue-based bulk expression levels. The molecular mechanisms of neuropeptides and their receptors at the single-cell level remain unclear. We conducted a systematic single-cell transcriptome data integration analysis to clarify the similarities and variations of neuropeptide-mediated cell communication between various malignancies. METHODS: Based on the single-cell expression information in 72 cancer datasets across 24 cancer types, we characterized actively expressed neuropeptides and receptors as having log values of the quantitative transcripts per million ≥ 1. Then, we created the putative cell-to-cell communication network for each dataset by using the known interaction of those actively expressed neuropeptides and receptors. To focus on the stable cell communication events, we identified neuropeptide and downstream receptors whose interactions were detected in more than half of all conceivable cell-cell interactions (square of the total cell population) in a dataset. RESULTS: Focusing on those actively expressed neuropeptides and receptors, we built over 76 million cell-to-cell communications across 70 cancer datasets. Then the stable cell communication analyses were applied to each dataset, and about 14 million stable cell-to-cell communications could be detected based on 16 neuropeptides and 23 receptors. Further functional analysis indicates these 39 genes could regulate blood pressure and are significantly associated with patients' survival among over ten thousand The Cancer Genome Atlas (TCGA)pan-cancer samples. By zooming in lung cancer-specific clinical features, we discovered the 39 genes appeared to be enriched in the patients with smoking. In skin cancer, they may differ in the patients with the distinct histological subtype and molecular drivers. CONCLUSIONS: At the single-cell level, stable cell communications across cancer types demonstrated some common and distinct neuropeptide-receptor patterns, which could be helpful in determining the status of neuropeptide-based cell communication and developing a peptide-based therapy strategy.

8.
Invert Neurosci ; 20(1): 2, 2020 01 24.
Article in English | MEDLINE | ID: mdl-31980901

ABSTRACT

Members of the decapod infraorder Achelata, specifically species from the genus Panulirus, have storied histories as models for investigating the basic principles governing the generation, maintenance, and modulation of rhythmic motor behavior, including modulation by locally released and circulating peptides. Despite their contributions to our understanding of peptidergic neuromodulation, little is known about the identity of the native neuropeptides and neuronal peptide receptors present in these crustaceans. Here, a Panulirus argus nervous system-specific transcriptome was used to help fill this void, providing insight into the neuropeptidome and neuronal peptide receptome of this species. A neuropeptidome consisting of 266 distinct peptides was predicted using the P. argus assembly, 128 having structures placing them into a generally recognized arthropod peptide family: agatoxin-like peptide, allatostatin A (AST-A), allatostatin B, allatostatin C, bursicon, CCHamide, crustacean cardioactive peptide, crustacean hyperglycemic hormone/molt-inhibiting hormone, diuretic hormone 31 (DH31), ecdysis-triggering hormone (ETH), FMRFamide-like peptide (FLP), glycoprotein hormone (GPH), GSEFLamide, inotocin, leucokinin, myosuppressin, natalisin, neuroparsin, neuropeptide F, orcokinin, orcomyotropin, periviscerokinin, pigment-dispersing hormone, pyrokinin, red pigment-concentrating hormone, RYamide, short neuropeptide F (sNPF), SIFamide, sulfakinin, tachykinin-related peptide (TRP), and trissin. Twenty-five putative neuronal receptors, encompassing 15 peptide groups, were also identified from the P. argus transcriptome: AST-A, bursicon, CCHamide, DH31, diuretic hormone 44, ETH, FLP, GPH, inotocin, insulin-like peptide, myosuppressin, natalisin, periviscerokinin, sNPF, and TRP. Collectively, the reported data provide a powerful resource for expanding studies of neuropeptidergic control of physiology and behavior in members of the genus Panulirus specifically, and decapods generally.


Subject(s)
Neuropeptides/metabolism , Palinuridae/physiology , Signal Transduction/physiology , Animals
9.
J Insect Sci ; 19(2)2019 Mar 01.
Article in English | MEDLINE | ID: mdl-31222323

ABSTRACT

Pheromonal communication is important in insect mate finding and reproduction. Identifying components of pest insect pheromone system is a first step to disrupt pest insect reproduction. In this study, we identified and cloned the pheromone biosynthesis activating neuropeptide receptor (PBANR) from the Asian corn borer, Ostrinia furnacalis (Guenée) (Lepidoptera: Pyralidae), which is one of the most damaging pests of corn and other crops in parts of Asia and Australia. The O. furnacalis PBANR (OstfuPBANR) gene has an ORF of 1,086 bp and encoded 362 amino acids with seven transmembrane domains and had a high sequence identity to known lepidopteran PBANRs. Expression analysis showed that OstfuPBANR was highly expressed in the pheromone glands compared with other tissues, consistent with other studies. Interestingly, OstfuPBANR was expressed higher in the larval stages compared to the pupal or adult stages, suggesting that OstfuPBANR may have broad functions in larva beyond adult pheromone synthesis.


Subject(s)
Moths/metabolism , Receptors, Neuropeptide/metabolism , Amino Acid Sequence , Animals , Base Sequence , Female , Gene Expression , Insect Proteins/genetics , Insect Proteins/metabolism , Moths/genetics , Pheromones/biosynthesis , Receptors, Neuropeptide/genetics , Sequence Analysis, DNA
10.
Gen Comp Endocrinol ; 258: 60-69, 2018 03 01.
Article in English | MEDLINE | ID: mdl-28579335

ABSTRACT

In most moth species, including Mamestra brassicae, pheromone biosynthesis activating neuropeptide (PBAN) regulates pheromone production. Generally, PBAN acts directly on the pheromone gland (PG) cells via its specific G protein-coupled receptor (i.e. PBANR) with Ca2+ as a second messenger. In this study, we identified cDNAs encoding three variants (A, B and C) of the M. brassicae PBANR (Mambr-PBANR). The full-length coding sequences were transiently expressed in cultured Trichoplusia ni cells and Sf9 cells for functional characterization. All three isoforms dose-dependently mobilized extracellular Ca2+ in response to PBAN analogs with Mambr-PBANR-C exhibiting the greatest sensitivity. Fluorescent confocal microscopy imaging studies demonstrated binding of a rhodamine red-labeled ligand (RR10CPBAN) to all three Mambr-PBANR isoforms. RR10CPBAN binding did not trigger ligand-induced internalization in cells expressing PBANR-A, but did in cells expressing the PBANR-B and -C isoforms. Furthermore, activation of the PBANR-B and -C isoforms with the 18 amino acid Mambr-pheromonotropin resulted in co-localization with a Drosophila melanogaster arrestin homolog (Kurtz), whereas stimulation with an unrelated peptide had no effect. PCR-based profiling of the three transcripts revealed a basal level of expression throughout development with a dramatic increase in PG transcripts from the day of adult emergence with PBANR-C being the most abundant.


Subject(s)
Moths/metabolism , Pheromones/biosynthesis , Receptors, Neuropeptide/metabolism , Amino Acid Sequence , Animals , Cells, Cultured , Cloning, Molecular , DNA, Complementary/genetics , Drosophila Proteins/chemistry , Drosophila Proteins/metabolism , Drosophila melanogaster/metabolism , Endocytosis , Female , Gene Expression Profiling , Ligands , Moths/genetics , Neuropeptides/metabolism , Phylogeny , Polymerase Chain Reaction , Protein Isoforms/metabolism , Receptors, Neuropeptide/chemistry , Signal Transduction
11.
Open Biol ; 7(8)2017 08.
Article in English | MEDLINE | ID: mdl-28835571

ABSTRACT

Animal behaviour often comprises spatially separated sub-reactions and even ciliated larvae are able to coordinate sub-reactions of complex behaviours (metamorphosis, feeding). How these sub-reactions are coordinated is currently not well understood. Neuropeptides are potential candidates for triggering larval behaviour. However, although their immunoreactivity has been widely analysed, their function in trochozoan larvae has only been studied for a few cases. Here, we investigate the role of neuropeptides in the defence behaviour of brachiopod larvae. When mechanically disturbed, the planktonic larvae of Terebratalia transversa protrude their stiff chaetae and sink down slowly. We identified endogenous FLRFamide-type neuropeptides (AFLRFamide and DFLRFamide) in T. transversa larvae and show that the protrusion of the chaetae as well as the sinking reaction can both be induced by each of these peptides. This also correlates with the presence of FLRFamidergic neurons in the apical lobe and adjacent to the trunk musculature. We deorphanized the AFLRFamide/DFLRFamide receptor and detected its expression in the same tissues. Furthermore, the ability of native and modified FLRFamide-type peptides to activate this receptor was found to correspond with their ability to trigger behavioural responses. Our results show how FLRFamide-type neuropeptides can induce two coherent sub-reactions in a larva with a simple nervous system.


Subject(s)
FMRFamide/metabolism , Receptors, Invertebrate Peptide/metabolism , Zooplankton/physiology , Animals , Behavior, Animal , Invertebrates , Larva/physiology , Neurons/metabolism , Zooplankton/metabolism
12.
Curr Res Transl Med ; 64(4): 203-206, 2016.
Article in English | MEDLINE | ID: mdl-27939459

ABSTRACT

Pruritus is an unpleasant sensation that evokes the urgent desire to scratch. It is a symptom derived from many nervous system disorders that affects a large population of humans and is treated by a variety of pharmacological agents with variable access. Chronic itch is a huge unmet health problem which affect upward 20% of people worldwide. The mechanisms underlying the chronic pruritus are complex. Studies of the neurobiology, neurophysiology and cellular biology of itch have gradually been clarifying the mechanism of chronic itch both peripherally and centrally. The discussion has been focused on pruriceptive nerves and their receptors as well as the cytokines/chemokines that play major roles in itch induction. Though it is historically hypothesized that pain convey signal generated with the stimuli under high intensity, and itch transduces signal from the same nerves of pain but under low intensity, recently, with the identification of distinct itch specific sensory afferent fibers the theory has twisted the "intensity" to a existence of a complete separation of pain and itch pathways. This review helps to understand the unique properties of itch signaling pathways and their clinical importance of the itch perception and pruritic diseases.


Subject(s)
Pruritus/physiopathology , Afferent Pathways/physiology , Animals , Cytokines/physiology , Dermatitis/physiopathology , Histamine Release , Humans , Interneurons/physiology , Mice , Models, Biological , Neurotransmitter Agents/physiology , Pain/physiopathology , Perception/physiology , Posterior Horn Cells/physiology , Sensory Receptor Cells/physiology , Spinothalamic Tracts/physiology
13.
J Neurosci Res ; 94(12): 1472-1487, 2016 12.
Article in English | MEDLINE | ID: mdl-27717098

ABSTRACT

Pituitary adenylate cyclase-activating polypeptide (PACAP) and vasoactive intestinal peptide (VIP) are neuropeptides with wide, complementary, and overlapping distributions in the central and peripheral nervous systems, where they exert important regulatory roles in many physiological processes. VIP and PACAP display a large range of biological cellular targets and functions in the adult nervous system including regulation of neurotransmission and neuroendocrine secretion and neuroprotective and neuroimmune responses. As the main focus of the present review, VIP and PACAP also have been long implicated in nervous system development and maturation through their interaction with the seven transmembrane domain G protein-coupled receptors, PAC1, VPAC1, and VPAC2, initiating multiple signaling pathways. Compared with PAC1, which solely binds PACAP with very high affinity, VPACs exhibit high affinities for both VIP and PACAP but differ from each other because of their pharmacological profile for both natural accessory peptides and synthetic or chimeric molecules, with agonistic and antagonistic properties. Complementary to initial pharmacological studies, transgenic animals lacking these neuropeptides or their receptors have been used to further characterize the neuroanatomical, electrophysiological, and behavioral roles of PACAP and VIP in the developing central nervous system. In this review, we recapitulate the critical steps and processes guiding/driving neurodevelopment in vertebrates and superimposing the potential contribution of PACAP and VIP receptors on the given timeline. We also describe how alterations in VIP/PACAP signaling may contribute to both (neuro)developmental and adult pathologies and suggest that tuning of VIP/PACAP signaling in a spatiotemporal manner may represent a novel avenue for preventive therapies of neurological and psychiatric disorders. © 2016 Wiley Periodicals, Inc.


Subject(s)
Central Nervous System/growth & development , Central Nervous System/physiology , Neuropeptides/physiology , Pituitary Adenylate Cyclase-Activating Polypeptide/physiology , Signal Transduction/physiology , Vasoactive Intestinal Peptide/physiology , Animals , Humans , Receptors, Pituitary Adenylate Cyclase-Activating Polypeptide , Receptors, Pituitary Adenylate Cyclase-Activating Polypeptide
14.
Biochim Biophys Acta ; 1858(9): 2145-2151, 2016 09.
Article in English | MEDLINE | ID: mdl-27342372

ABSTRACT

The effect of high hydrostatic pressure (HHP) on the solubilization of a class-A G protein-coupled receptor, the silkmoth pheromone biosynthesis-activating neuropeptide receptor (PBANR), was investigated. PBANR was expressed in expresSF+ insect cells as a C-terminal fusion protein with EGFP. The membrane fraction was subjected to HHP treatment (200MPa) at room temperature for 1-16h in the presence of 0-2.0% (w/v) n-dodecyl-ß-D-maltopyranoside (DDM). The solubilization yield of PBANR-EGFP in the presence of 0.6% (w/v) DDM increased to ~1.5-fold after 1h HHP treatment. Fluorescence-detection size-exclusion chromatography demonstrated that the PBANR-EGFP ligand binding ability was retained after HHP-mediated solubilization. The PBANR-EGFP solubilized with 1.0% DDM under HHP at room temperature for 6h retained ligand binding ability, whereas solubilization in the absence of HHP treatment resulted in denaturation.


Subject(s)
Bombyx/chemistry , Insect Proteins/chemistry , Receptors, Pheromone/chemistry , Animals , Bombyx/genetics , Green Fluorescent Proteins/chemistry , Green Fluorescent Proteins/genetics , Hydrostatic Pressure , Insect Proteins/genetics , Protein Stability , Receptors, Pheromone/genetics , Recombinant Fusion Proteins/chemistry , Recombinant Fusion Proteins/genetics
15.
Peptides ; 80: 96-107, 2016 06.
Article in English | MEDLINE | ID: mdl-26896569

ABSTRACT

Malpighian tubules are critical organs for epithelial fluid transport and stress tolerance in insects, and are under neuroendocrine control by multiple neuropeptides secreted by identified neurons. Here, we demonstrate roles for CRF-like diuretic hormone 44 (DH44) and Drosophila melanogaster kinin (Drome-kinin, DK) in desiccation and starvation tolerance. Gene expression and labelled DH44 ligand binding data, as well as highly selective knockdowns and/or neuronal ablations of DH44 in neurons of the pars intercerebralis and DH44 receptor (DH44-R2) in Malpighian tubule principal cells, indicate that suppression of DH44 signalling improves desiccation tolerance of the intact fly. Drome-kinin receptor, encoded by the leucokinin receptor gene, LKR, is expressed in DH44 neurons as well as in stellate cells of the Malpighian tubules. LKR knockdown in DH44-expressing neurons reduces Malpighian tubule-specific LKR, suggesting interactions between DH44 and LK signalling pathways. Finally, although a role for DK in desiccation tolerance was not defined, we demonstrate a novel role for Malpighian tubule cell-specific LKR in starvation tolerance. Starvation increases gene expression of epithelial LKR. Also, Malpighian tubule stellate cell-specific knockdown of LKR significantly reduced starvation tolerance, demonstrating a role for neuropeptide signalling during starvation stress.


Subject(s)
Drosophila Proteins/metabolism , Drosophila melanogaster/physiology , Insect Hormones/metabolism , Neuropeptides/metabolism , Animals , Animals, Genetically Modified , Dehydration , Drosophila Proteins/genetics , Drosophila melanogaster/genetics , Gene Knockdown Techniques , Insect Hormones/genetics , Malpighian Tubules/metabolism , Neuropeptides/genetics , Signal Transduction , Starvation/metabolism , Stress, Physiological/genetics
16.
Behav Brain Res ; 292: 125-32, 2015 Oct 01.
Article in English | MEDLINE | ID: mdl-26057358

ABSTRACT

Anxiety disorders are among the most prevalent neuropsychiatric conditions, but their precise aetiology and underlying pathophysiological processes remain poorly understood. In light of putative anatomical and functional interactions of the relaxin-3/RXFP3 system with anxiety-related neural circuits, we assessed the ability of central administration of the RXFP3 agonist, RXFP3-A2, to alter anxiety-like behaviours in adult C57BL/6J mice. We assessed how RXFP3-A2 altered performance in tests measuring rodent anxiety-like behaviour (large open field (LOF), elevated plus maze (EPM), light/dark (L/D) box, social interaction). We examined effects of RXFP3-A2 on low 'basal' anxiety, and on elevated anxiety induced by the anxiogenic benzodiazepine, FG-7142; and explored endogenous relaxin-3/RXFP3 signalling modulation by testing effects of an RXFP3 antagonist, R3(B1-22)R, on these behaviours. Intracerebroventricular (icv) injection of RXFP3-A2 (1 nmol, 15 min pre-test) did not alter anxiety-like behaviour under 'basal' conditions in the LOF, EPM or L/D box, but reduced elevated indices of FG-7142-induced (30 mg/kg, ip) anxiety-like behaviour in the L/D box and a single-chamber social interaction test. Furthermore, R3(B1-22)R (4 nmol, icv, 15 min pre-test) increased anxiety-like behaviour in the EPM (reflected by reduced entries into the open arms), but not consistently in the LOF, L/D box or social interaction tests, suggesting endogenous signaling only weakly participates in regulating 'basal' anxiety-like behaviour, in line with previous studies of relaxin-3 and RXFP3 gene knockout mice. Overall, these data suggest exogenous RXFP3 agonists can reduce elevated (FG-7142-induced) levels of anxiety in mice; data important for gauging how conserved such effects are, with a view to modelling human pathophysiology and the likely therapeutic potential of RXFP3-targeted drugs.


Subject(s)
Anti-Anxiety Agents/pharmacology , Anxiety/drug therapy , Anxiety/metabolism , Receptors, G-Protein-Coupled/metabolism , Animals , Behavior, Animal/drug effects , Carbolines/pharmacology , Male , Maze Learning/drug effects , Mice , Mice, Inbred C57BL , Mice, Knockout , Receptors, G-Protein-Coupled/agonists , Receptors, G-Protein-Coupled/antagonists & inhibitors , Relaxin/metabolism
17.
Gene ; 560(1): 96-106, 2015 Apr 10.
Article in English | MEDLINE | ID: mdl-25637719

ABSTRACT

Recent developments in high-throughput RNA sequencing (RNA-seq) technology have led to a dramatic impact on our understanding of the structure and expression profiles of the mammalian transcriptome. To gain insights into the usefulness of swine production and biomedical model, the transcriptome profiling of Rongchang pig brains and livers was characterized using RNA-seq technology to uncover functional candidate molecules. In the study, total RNAs from brains and livers of Rongchang pig were sequenced and 8.6Gb sequencing data was obtained. This analysis revealed tissue specificity through the identification of 5575 and 4600 differentially expressed genes (DEGs) in brains and livers, respectively and the functional analysis of DEGs. Furthermore, 83 neuropeptide gene transcripts, 69 neuropeptide receptor gene transcripts, 10 pro-neuropeptide convertase gene transcripts and many other neuropeptide related protein gene transcripts were identified. Totally, the major characteristics of the transcriptional profiles of Rongchang pig brains and livers were present.


Subject(s)
Brain/metabolism , Liver/metabolism , Swine/genetics , Transcriptome , Animals , Brain Chemistry , Female , Gene Expression Profiling , Gene Library , High-Throughput Nucleotide Sequencing , Liver/chemistry , Male , Oligonucleotide Array Sequence Analysis , Sequence Analysis, RNA , Swine/metabolism
18.
Behav Brain Res ; 278: 167-75, 2015 Feb 01.
Article in English | MEDLINE | ID: mdl-25257104

ABSTRACT

Anatomical and pharmacological evidence suggests the neuropeptide, relaxin-3, is the preferred endogenous ligand for the relaxin family peptide-3 receptor (RXFP3) and suggests a number of putative stress- and arousal-related roles for RXFP3 signalling. However, in vitro and in vivo evidence demonstrates exogenous relaxin-3 can activate other relaxin peptide family receptors, and the role of relaxin-3/RXFP3 signalling in specific brain circuits and associated behaviours in mice is not well described. In this study, we characterised the behaviour of cohorts of male and female Rxfp3 gene knockout (KO) mice (C57/B6J(RXFP3TM1/DGen)), relative to wild-type (WT) littermates to determine if this receptor KO strain has a similar phenotype to its ligand KO equivalent. Rxfp3 KO mice displayed similar performance to WT littermates in several acute behavioural paradigms designed to gauge motor coordination (rotarod test), spatial memory (Y-maze), depressive-like behaviour (repeat forced-swim test) and sensorimotor gating (prepulse inhibition of acoustic startle). Notably however, male and female Rxfp3 KO mice displayed robust and consistent (dark phase) hypoactivity on voluntary home-cage running wheels (∼20-60% less activity/h), and a small but significant decrease in anxiety-like behavioural traits in the elevated plus maze and light/dark box paradigms. Importantly, this phenotype is near identical to that observed in two independent lines of relaxin-3 KO mice, suggesting these phenotypes are due to the elimination of ligand or receptor and RXFP3-linked signalling. Furthermore, this behavioural characterisation of Rxfp3 KO mice identifies them as a useful experimental model for studying RXFP3-linked signalling and assessing the selectivity and/or potential off-target actions of RXFP3 agonists and antagonists, which could lead to an improved understanding of dysfunctional arousal in mental health disorders, including depression, anxiety, insomnia and neurodegenerative diseases.


Subject(s)
Arousal/genetics , Motor Activity/genetics , Receptors, G-Protein-Coupled/deficiency , Relaxin/metabolism , Signal Transduction/drug effects , Adaptation, Ocular/genetics , Analysis of Variance , Animals , Exploratory Behavior/physiology , Maze Learning/physiology , Mice , Mice, Inbred C57BL , Mice, Knockout , Prepulse Inhibition/genetics , Receptors, G-Protein-Coupled/genetics , Recognition, Psychology , Reflex, Startle/genetics , Rotarod Performance Test
19.
Mol Biochem Parasitol ; 195(1): 54-8, 2014 Jun.
Article in English | MEDLINE | ID: mdl-25038481

ABSTRACT

Genetic studies undertaken in the model organism Caenorhabditis elegans have demonstrated the importance of neuropeptidergic signalling in nematode physiology. Disruption of this signalling may have deleterious phenotypic consequences, including altered locomotion, feeding behaviour, and reproduction. Neuropeptide G protein-coupled receptors (GPCRs) that transduce many of these signals therefore represent cogent drug targets. Recently published genomic sequencing data for a number of parasitic helminths of medical and veterinary importance has revealed the apparent conservation of a number of neuropeptides, and neuropeptide receptors between parasitic and free-living species, raising the intriguing possibility of developing broad-spectrum anthelmintic therapeutics. Here, we identify and clone a neuropeptide receptor, NPR-4, from the human filarial nematode Brugia malayi and demonstrate its activation in vitro, by FMRFamide-like peptides of the FLP-18 family, and intracellular signalling via Gαi mediated pathways. These data represent the first example of deorphanisation of a neuropeptide GPCR in any parasitic helminth species.


Subject(s)
Brugia malayi/metabolism , Filariasis/metabolism , Filariasis/parasitology , GTP-Binding Protein alpha Subunits, Gi-Go/metabolism , Helminth Proteins/metabolism , Neuropeptides/metabolism , Receptors, Neuropeptide/metabolism , Amino Acid Sequence , Animals , Brugia malayi/chemistry , Brugia malayi/genetics , Caenorhabditis elegans , Helminth Proteins/genetics , Humans , Molecular Sequence Data , Neuropeptides/chemistry , Neuropeptides/genetics , Receptors, Neuropeptide/genetics , Sequence Alignment , Signal Transduction
20.
Stress ; 17(4): 352-61, 2014 Jul.
Article in English | MEDLINE | ID: mdl-24800784

ABSTRACT

We have previously shown that urban upbringing and city living were associated with stress-induced activity in the amygdala and the perigenual anterior cingulate cortex (pACC). This finding might link the epidemiological risk factor "urbanicity" to neurobiological mechanisms of psychiatric disorders. However, given the heritability of stress-related phenotypes, it appears likely that genetic factors can modulate the effect of urbanicity on social stress processing. In the present exploratory study, we investigated if a functional sequence variation in the neuropeptide S receptor gene (NPSR1 rs324981) is associated with brain activation patterns under acute psychosocial stress and if it modulates the link between urbanicity and central stress processing. In animals, neuropeptide S has strong anxiolytic effects and it induces hypothalamus-pituitary-adrenal (HPA) axis activation. In humans, rs324981 was found to be associated with anxiety and stress-related phenotypes. Forty-two subjects were exposed to a psychosocial stress task for scanner environments (ScanSTRESS). While no main effect of rs324981 on amygdala and pACC activity was detected, we found a distinct interaction between rs324981 and urban upbringing modulating right amygdala responses. Moreover, right amygdala responses were significantly higher in subjects who also showed a salivary cortisol response to the stress exposure. The present finding of a gene × environment interaction further supports the view that the brain NPS system is involved in central stress regulation. This study provides first evidence for the assumption that a NPSR1 variant modulates brain activation under stress, interacting with the environmental risk factor urban upbringing.


Subject(s)
Amygdala/physiology , Gene-Environment Interaction , Mental Disorders/metabolism , Receptors, G-Protein-Coupled/genetics , Stress, Psychological/genetics , Adult , Anxiety/genetics , Anxiety/metabolism , Female , Genotype , Humans , Hydrocortisone/genetics , Male , Mental Disorders/genetics , Phenotype , Stress, Psychological/metabolism , Urban Health , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...