Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 3.957
Filter
1.
J Ethnopharmacol ; 336: 118715, 2025 Jan 10.
Article in English | MEDLINE | ID: mdl-39179058

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Si-Ni-San (SNS), a traditional Chinese medicinal formula derived from Treatise on Febrile Diseases, is considered effective in the treatment of inflammatory bowel diseases based upon thousands of years of clinical practice. However, the bioactive ingredients and underlying mechanisms are still unclear and need further investigation. AIM OF THE STUDY: This study aimed to evaluate the effect, explore the bioactive ingredients and the underlying mechanisms of SNS in ameliorating ulcerative colitis (UC) and associated liver injury in dextran sodium sulphate (DSS)-induced mouse colitis models. MATERIALS AND METHODS: The effect of SNS (1.5, 3, 6 g/kg) on 3% DSS-induced acute murine colitis was evaluated by disease activity index (DAI), colon length, inflammatory cytokines, hematoxylin-eosin (H&E) staining, tight junction proteins expression, ALT, AST, and oxidative stress indicators. HPLC-ESI-IT/TOF MS was used to analyze the chemical components of SNS and the main xenobiotics in the colon of UC mice after oral administration of SNS. Network pharmacological study was then conducted based on the main xenobiotics. Flow cytometry and immunohistochemistry techniques were used to demonstrate the inhibitory effect of SNS on Th17 cells differentiation and the amelioration of Th17/Treg cell imbalance. LC-MS/MS, Real-time quantitative polymerase chain reaction (RT-qPCR), and western blotting techniques were performed to investigate the oxysterol-Liver X receptor (LXRs) signaling activity in colon. Targeted bile acids metabolomics was conducted to reveal the change of the two major pathways of bile acid synthesis in the liver, and the expression of key metabolic enzymes of bile acids synthesis was characterized by RT-qPCR and western blotting techniques. RESULTS: SNS (1.5, 3, 6 g/kg) decreased the DAI scores, protected intestinal mucosa barrier, suppressed the production of pro-inflammatory cytokines, improved hepatic and splenic enlargement and alleviated liver injury in a dose-dependent manner. A total of 22 components were identified in the colon of SNS (6 g/kg) treated colitis mice, and the top 10 components ranked by relative content were regarded as the potential effective chemical components of SNS, and used to conduct network pharmacology research. The efficacy of SNS was mediated by a reduction of Th17 cell differentiation, restoration of Th17/Treg cell homeostasis in the colon and spleen, and the experimental results were consistent with our hypothesis and the biological mechanism predicted by network pharmacology. Mechanistically, SNS regulated the concentration of 25-OHC and 27-OHC by up-regulated CH25H, CYP27A1 protein expression in colon, thus affected the expression and activity of LXR, ultimately impacted Th17 differentiation and Th17/Treg balance. It was also found that SNS repressed the increase of hepatic cholesterol and reversed the shift of BA synthesis to the acidic pathway in UC mice, which decreased the proportion of non-12-OH BAs in total bile acids (TBAs) and further ameliorated colitis and concomitant liver injury. CONCLUSIONS: This study set the stage for considering SNS as a multi-organ benefited anti-colitis prescription based on the significant effect of ameliorating intestinal and liver damage, and revealed that derivatives of cholesterol, namely oxysterols and bile acids, were closely involved in the mechanism of SNS anti-colitis effect.


Subject(s)
Cholesterol , Colitis, Ulcerative , Dextran Sulfate , Drugs, Chinese Herbal , Animals , Drugs, Chinese Herbal/pharmacology , Colitis, Ulcerative/drug therapy , Colitis, Ulcerative/chemically induced , Colitis, Ulcerative/pathology , Colitis, Ulcerative/metabolism , Mice , Male , Cholesterol/blood , Th17 Cells/drug effects , Disease Models, Animal , Mice, Inbred C57BL , Liver/drug effects , Liver/pathology , Liver/metabolism , Colon/drug effects , Colon/pathology , Colon/metabolism , Network Pharmacology , Cytokines/metabolism , T-Lymphocytes, Regulatory/drug effects
2.
Article in English | MEDLINE | ID: mdl-39366002

ABSTRACT

Nickel-rich layered oxides stand as ideal cathode candidates for high specific capacity and energy density next-generation lithium-ion batteries. However, increasing the Ni content significantly exacerbates structural degradation under high operating voltage, which greatly restricts large-scale commercialization. While strategies are being developed to improve cathode material stability, little is known about the effects of electrolyte-electrode interaction on the structural changes of cathode materials. Here, using LiNiO2 in contact with electrolytes with different proton-generating levels as model systems, we present a holistic picture of proton-induced structural degradation of LiNiO2. Through ab initio molecular dynamics calculations based on density functional theory, we investigated the mechanisms of electrolyte deprotonation, protonation-induced Ni dissolution, and cathode degradation and the impacts of dissolved Ni on the Li metal anode surfaces. We show that the proton-transfer reaction from electrolytes to cathode surfaces leads to dissolution of Ni cations in the form of NiOOHx, which stimulates cation mixing and oxygen loss in the lattice accelerating its layered-spinel-rock-salt phase transition. Migration of dissolved Ni2+ ions to the anode side causes their reduction into the metallic state and surface deposition. This work reveals that interactions between the electrolyte and cathode that result in protonation can be a dominant factor for the structural stability of Ni-rich cathodes. Considering this factor in electrolyte design should be of benefit for the development of future batteries.

3.
Article in English | MEDLINE | ID: mdl-39361204

ABSTRACT

Fungal biomass is as a cost-effective and sustainable biosorbent utilized in both active and inactive forms. This study investigated the efficacy of inactivated and dried biomass of Fusarium sp. in adsorbing Ni2+ and Pb2+ from aqueous solutions. The strain underwent sequential cultivation and was recovered by filtration. Then, the biomass was dried in an oven at 80 ± 2 °C and sieved using a 0.1-cm mesh. The biosorbent was thoroughly characterized, including BET surface area analysis, morphology examination (SEM), chemical composition (XRF and FT-IR), thermal behavior (TGA), and surface charge determination (pH-PZC and zeta potential). The biosorption mechanism was elucidated by fitting equilibrium models of kinetics, isotherm, and thermodynamic to the data. The biosorbent exhibited a neutral charge, a rough surface, a relatively modest surface area, appropriate functional groups for adsorption, and thermal stability above 200 °C. Optimal biosorption was achieved at 25 ± 2 °C, using 0.05 g of adsorbent per 50 mL of metallic ion solution at initial concentrations ranging from 0.5 to 2.0 mg L-1 and at pH 4.5 for Pb2+ and Ni2+. Biosorption equilibrium was achieved after 240 min for Ni2+ and 1440 min for Pb2+. The process was spontaneous, mainly through chemisorption, in monolayer for Ni2+ and multilayer for Pb2+, with efficiencies of over 85% for both metallic ion removal. These findings underscore the potential of inactive and dry Fusarium sp. biomass (IDFB) as a promising material for the biosorption of Ni2+ and Pb2+.

4.
Nano Lett ; 2024 Oct 02.
Article in English | MEDLINE | ID: mdl-39356826

ABSTRACT

Monocrystalline chalcogenide thin films in freestanding forms are very much needed in advanced electronics such as flexible phase change memories (PCMs). However, they are difficult to manufacture in a scalable manner due to their growth and delamination challenges. Herein, we report a viable strategy for a wafer-scale epitaxial growth of monocrystalline germanium telluride (GeTe) membranes and their deterministic integrations onto flexible substrates. GeTe films are epitaxially grown on Ge wafers via a tellurization reaction accompanying a formation of confined dislocations along GeTe/Ge interfaces. The as-grown films are subsequently delaminated off the wafers, preserving their wafer-scale structural integrity, enabled by a strain-engineered spalling method that leverages the stress-concentrated dislocations. The versatility of this wafer epitaxy and delamination approach is further expanded to manufacture other chalcogenide membranes, such as germanium selenide (GeSe). These materials exhibit phase change-driven electrical switching characteristics even in freestanding forms, opening up unprecedented opportunities for flexible PCM technologies.

5.
J Colloid Interface Sci ; 679(Pt A): 100-108, 2024 Sep 30.
Article in English | MEDLINE | ID: mdl-39357220

ABSTRACT

Developing low-cost catalysts with high activity for the Hydrogen Evolution Reaction (HER) is a main challenge to reduce the dependence on precious metals while maintaining the catalytic activity. In this study, nickel-plated multi-walled carbon nanotubes (Ni-MWCNTs) with a large number of active sites were selected, and Ni-MWCNTs electrocatalysts loaded with trace amounts of RuO2 nanoparticles were prepared by annealing treatment, which exhibited excellent HER performances in both acidic and alkaline media. The RuO2 nanoparticles loaded nickel-coated multi-walled carbon nanotubes (RuO2@Ni-MWCNTs) had a small electrochemical impedance spectrum (EIS) and a large electrochemically active surface area (ECSA). Notably, RuO2@Ni-MWCNTs with less than 1 % Ru content exhibited excellent catalytic activities in both acidic and alkaline solutions. The results showed that the overpotentials of RuO2@Ni-MWCNTs were 20.2 mV (alkaline) and 73.7 mV (acidic), respectively. After stabilization at 20 mA cm-2 for 90 h, the evaluation results showed that RuO2@Ni-MWCNTs could maintain their catalytic efficiency without significant degradation.

6.
J Colloid Interface Sci ; 679(Pt A): 90-99, 2024 Sep 30.
Article in English | MEDLINE | ID: mdl-39357229

ABSTRACT

The integration of methanol oxidation reaction (MOR) with hydrogen evolution reaction (HER) represents an advanced approach to hydrogen production technology. Nonetheless, the rational design and synthesis of bifunctional catalysts for both MOR and HER with exceptional activity, stability and selectivity present formidable challenges. In this work, firstly, density functional theory (DFT) was utilized to design and evaluate material models with high performance for both MOR and HER. Secondly, guided by DFT, Co30Ni60/CC (CC, carbon cloth) composites with a leaf-like nanosheet structure were successfully fabricated via electrodeposition. In the MOR process, Ni acts as the predominant active center, while Co amplifies the electrochemically active surface area (ECSA) and enhances the selectivity of methanol oxidation. Conversely, in the HER process, Co serves as the primary active center, with Ni augmenting the charge transfer rate. The electrochemical results demonstrate that Co30Ni60/CC exhibits exceptional performance in both MOR and HER at a current density (j) of 10 mA cm-2, with peak potentials of 1.323 V and -95 mV, respectively. Additionally, it shows remarkable selectivity for the oxidiation of methanol to high value-added formic acid. Thirdly, following a 100 h chronopotentiometry (CP) test, the required potential demonstrates an increase of 4.9 % (MOR) and 8.1 % (HER), signifying the superior stability of Co30Ni60/CC compared to those reported in the literature. The exceptional performance of Co30Ni60/CC can be primarily attributed to that the leaf-like nanosheets structure not only exposes a plethora of active sites but also facilitates electrolyte diffusion, the monolithic structure prepared by electrodeposition enhances its stability, and the transfer of electrons from Co to Ni regulates its electronic structure, as corroborated by X-ray photoelectron spectroscopy (XPS) and density of states (DOS) analyses. Finally, at the same j, the voltage required by the Co30Ni60/CC||Co30Ni60/CC electrolytic cell, powered by an electrochemical workstation, is 198 mV lower than that required for alkaline water-splitting. Meanwhile, at higher j (100 mA cm-2), the electrolytic cell exhibits sustained and stable operation for 150 h, enabling high-efficiency hydrogen production and the synthesis of high value-added formic acid.

7.
Dent Mater J ; 2024 Oct 02.
Article in English | MEDLINE | ID: mdl-39358306

ABSTRACT

The purpose of this study was to develop a new instrument to measure the mechanical properties of rotary endodontic Ni-Ti files (ProTaper Gold F2, ProTaper Ultimate F2, and HyFlex EDM Onefile), and to evaluate the overall utility of the device. The instrument was capable of analyzing the 6-axis force/torque generated by the files during cyclic dynamic movement in a metal curved artificial root canal, and doing automatic cyclic dynamic filing in a resin root canal with a preset vertical force limit by adopting a negative feedback mechanism. By analyzing the 6-axis force/torque, we were able to estimate the position and contact points of the files in the curved root canal. ProTaper Gold showed the highest force/torque in all directions. HyFlex EDM had the highest hysteresis ratio, centering ratio value and NCF (number of cycles to fatigue fracture), while the lowest vertical force.

8.
Chem Asian J ; : e202400818, 2024 Oct 04.
Article in English | MEDLINE | ID: mdl-39363755

ABSTRACT

In this work, we unveil a novel synthesis of bench stable Ni (II) complexes supported by tetradentate Schiff-base ligands and the complexes were devoid of any phosphine or phosphine-based ligand. These Ni-complexes were successfully applied for the dehydrogenation of secondary alcohols for ketone and ketazine syntheses. Secondary alcohols with different functional groups were well tolerated during catalytic cycle. Moreover, we successfully extended this protocol for the synthesis of biologically significant ketones and ketazines. On the basis of various control experiments, probable reaction pathway was proposed and an acceptorless alcohol dehydrogenation mechanism was suggested.

9.
Small ; : e2407328, 2024 Sep 23.
Article in English | MEDLINE | ID: mdl-39308212

ABSTRACT

Nickel-based metal-organic frameworks (MOFs) with flexible structure units provide a broad platform for designing highly efficient electrocatalysts, especially for alkaline oxygen evolution reaction (OER). However, the stability of MOFs under harsh and dynamic reaction conditions poses significant challenges, resulting in ambiguous structure-activity relationships in MOFs-based OER research. Herein, Ni-benzenedicarboxylic acid-based MOF (NiBDC) is selected as prototypical catalyst to elucidate  its real active sites for OER and reaction pathway under different reaction states. Electrochemical measurements combined with X-ray absorption spectroscopy (XAS) and Raman spectroscopy reveal that the complete reconstruction of NiBDC to ß-NiOOH in the chronoamperometry activation process is responsible for significantly increased OER performance. In situ XAS and Raman results further demonstrate the electro-oxidation of ß-NiOOH into γ-NiOOH at high-potential state (above 1.6 V vs RHE). Furthermore, the collective evidences from key reaction intermediates and isotope-labeled products definitely unravel the potential dependence of OER mechanism: OER process at low-potential state proceeds mainly through the lattice oxygen-mediated mechanism, while adsorbate evolution mechanism emerges as the predominant pathway at high-potential state. Interestingly, the dynamically changing OER mechanism can not only reduce the required overpotential at the low-potential state but also improve the electrochemical stability of catalysts at high-potential state.

10.
Small ; : e2404420, 2024 Sep 23.
Article in English | MEDLINE | ID: mdl-39308234

ABSTRACT

Wood, as a renewable material, has been regarded as an emerging substrate for self-supporting electrodes in large-scale water electrolysis due to numerous merits such as rich pore structure, abundant hydroxyl groups, etc. However, poor conductivity of wood can greatly suppress the performance of wood-based electrodes. Carbonization process can improve wood's conductivity, but the loss of hydroxyl groups and the required high energy consumption are the drawbacks of such a process. Here, a facile strategy is developed to prepare pristine wood-supported electrode (Ni-NiP/W) for enhanced hydrogen evolution reaction (HER); this improves electrical conductivity of wood while retaining its excellent intrinsic properties. The preparation process involves the deposition of copper on the untreated wood followed with the loading of Ni-NiP catalyst at room temperature. Encouragingly, the Ni-NiP/W exhibits conductive and inherited pristine wood's superhydrophilic and superaerophobic properties, that effectively boost mass and charge transfer. It demonstrates high activity and excellent stability in acidic, alkali, and seawater conditions as well as high current densities of up to 2000 mA cm-2; particularly a record-low HER overpotential of 206 mV in acidic conditions at 1000 mA cm-2. This work fully unlocks the admiring potential of pristine wood as superior substrate for high-performance electrochemical electrodes.

11.
Article in English | MEDLINE | ID: mdl-39316669

ABSTRACT

Ni-rich single-crystalline layered cathodes have garnered significant attention due to their high energy density and thermal stability. However, they experience severe capacity degradation caused by lattice strain and interfacial side reactions during practical applications. In this study, an effective yttrium modification method is employed to stabilize the structure of Ni-rich single-crystalline LiNi0.83Mn0.05Co0.12O2 (SC-NMC83) to solve these issues. This innovative approach successfully immobilizes oxygen within the material, preventing crack formation while simultaneously broadening the diffusion path of Li+. The yttrium-modified sample (SC-NMC83-Y) exhibits a superior capacity retention compared to the SC-NMC83 sample, with values of 90% and 76.1% after 100 cycles, respectively. This work demonstrates the promising potential of a doping strategy for Ni-rich single-crystalline cathodes and paves a pathway for its practical implementation, such as all-solid-state batteries.

12.
Luminescence ; 39(9): e4906, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39319701

ABSTRACT

This study explores the synthesis, characterization, and photocatalytic performance of a SnO2/TiO2-Ni@rGO nanocomposite for tetracycline (TC) degradation under visible light irradiation. The nanocomposite was precisely designed to enhance structural stability, charge transfer efficiency, and catalytic activity. X-ray diffraction (XRD) analysis confirmed the structural integrity of the SnO2/TiO2-Ni@rGO composite, demonstrating excellent reusability and resistance to photo-corrosion after multiple cycles. Photocatalytic experiments revealed that the SnO2/TiO2-Ni@rGO nanocomposite significantly outperformed individual SnO2/TiO2-Ni and rGO catalysts, achieving a remarkable 94.6% degradation of TC within 60 min. The degradation process followed pseudo-first-order kinetics, with a rate constant (k) of 0.046 min-1. The Z-scheme charge transfer mechanism facilitated efficient separation and migration of photogenerated charge carriers, generating reactive oxygen species such as superoxide (•O2 -) and hydroxyl (•OH) radicals crucial for the oxidation of TC. Radical scavenger studies confirmed that superoxide and hydroxyl radicals were the primary active species. The SnO2/TiO2-Ni@rGO composite also exhibited excellent reusability, maintaining high catalytic performance over four consecutive cycles. These findings suggest that the SnO2/TiO2-Ni@rGO nanocomposite is a promising candidate for the efficient and sustainable photocatalytic degradation of persistent organic pollutants like TC, offering significant potential for environmental remediation applications.


Subject(s)
Graphite , Light , Tetracycline , Tin Compounds , Titanium , Titanium/chemistry , Tetracycline/chemistry , Tin Compounds/chemistry , Graphite/chemistry , Catalysis , Nickel/chemistry , Nanocomposites/chemistry , Anti-Bacterial Agents/chemistry , Photochemical Processes , Photolysis
13.
Angew Chem Int Ed Engl ; : e202416711, 2024 Sep 19.
Article in English | MEDLINE | ID: mdl-39297431

ABSTRACT

Single-atom catalysts with precise structure and extremely high catalytic efficiency remain a fervent focus in the fields of materials chemistry and catalytic science. Herein, a nickel-substituted polyoxometalate (POM) {NiSb6O4(H2O)3[ß-Ni(hmta)SbW8O31]3}15- (NiPOM) with one extremely exposed nickel site [NiO3(H2O)3] was synthesized using the conventional aqueous method. The uniform dispersion of single nickel center with well-defined structure was facilely achieved by anchoring nanosized NiPOM on graphene oxide (GO). The resulting NiPOM/GO can couple with CdS photoabsorber for the construction of low-cost and ultra-efficient hydrogen evolution system. The H2 yield can reach to 2753.27 mmol gPOM-1 h-1, which represents a record value among all the POM-based photocatalytic systems. Remarkablely, an extremely high hydrogen yield of 3647.28 mmol gPOM-1 h-1 was achieved with simultaneous photooxidation of commercial waste plastic, representing the first POM-based photocatalytic system for H2 evolution and waste plastic conversion. This work highlights a straightforward strategy for constructing extremely exposed single-metal site with precise microenvironment by facilely manipulating nanosized molecular cluster to control individual atom.

14.
Children (Basel) ; 11(9)2024 Sep 13.
Article in English | MEDLINE | ID: mdl-39334653

ABSTRACT

(1) Background: Pulmonary hypertension (PH) increases pulmonary vascular resistance and right ventricular (RV) afterload. Assessment of RV systolic function in PH using RV fractional area change (RV FAC) as a marker directly correlates with mortality and the need for extracorporeal membrane oxygenation (ECMO). However, few studies have assessed neurodevelopmental outcomes. We hypothesize that cardiac RV systolic dysfunction with lower RV FAC is associated with worse neurodevelopmental impairment (NI). (2) Methods: Retrospective study of 42 subjects with PH to evaluate neurodevelopmental outcomes in the first two years of life based on (i) subjective assessment of RV systolic function and (ii) RV FAC, a specific echocardiographic marker for RV function. (3) Results: Subjects from the initial study cohort (n = 135) with PH who had long-term follow-up were divided into RV dysfunction (study, n = 20) and non-RV dysfunction (control, n = 22) groups. RV FAC in the study vs. control group (0.18 vs. 0.25) was lower (p = 0.00017). There was no statistically significant difference in NI either with RV dysfunction or lower RV FAC. Although not significant, RV dysfunction was associated with longer mean duration of mechanical ventilation, time on ECMO, and length of stay. In the initial cohort (135), mortality was 16.3% and the percentage of NI was 62%. (4) Conclusions: Neonatal pulmonary hypertension is associated with a high degree of neurodevelopment impairment. Early RV systolic dysfunction, as identified by RV FAC, was not an optimal predictive biomarker for infants with PH and neurodevelopmental impairment.

15.
Article in English | MEDLINE | ID: mdl-39340421

ABSTRACT

LiNiO2 (LNO) is a promising positive material for next-generation vehicle batteries because of its high theoretical capacity and lower cost compared to the Co analogues. However, its unstable performance such as Ni dissolution results in capacity fade and poor cycle life, impeding its practical application. Since hydrogen fluoride (HF), the hydrolysis product of LiPF6, is highly reactive with LNO positive electrodes, exploring LiPF6-free electrolytes is attractive to improve cycle stability and eliminate parasitic reactions. Herein, a series of ionic liquids (ILs) with Li[FSA] ([FSA]- = bis(fluorosulfonyl)amide) salts are investigated as electrolytes compatible with the LNO positive electrode. The use of IL electrolytes enhances cycle performance, achieving a high capacity retention of 73.1% in Li/LNO cells after 500 cycles with a high Li salt concentration. Further characterizations confirm that the cathode electrolyte interphase formed on the LNO positive electrode in the highly Li-salt concentrated ILs suppresses Ni dissolution, structural degradation, and side reactions. Meanwhile, the above electrolyte is capable of effectively alleviating Al corrosion at high potentials. This work highlights the role of electrolytes and contributes to addressing the stability concerns of positive electrode components at high voltages.

16.
Nanomicro Lett ; 17(1): 13, 2024 Sep 26.
Article in English | MEDLINE | ID: mdl-39325255

ABSTRACT

The development of low-temperature solid oxide fuel cells (LT-SOFCs) is of significant importance for realizing the widespread application of SOFCs. This has stimulated a substantial materials research effort in developing high oxide-ion conductivity in the electrolyte layer of SOFCs. In this context, for the first time, a dielectric material, CaCu3Ti4O12 (CCTO) is designed for LT-SOFCs electrolyte application in this study. Both individual CCTO and its heterostructure materials with a p-type Ni0.8Co0.15Al0.05LiO2-δ (NCAL) semiconductor are evaluated as alternative electrolytes in LT-SOFC at 450-550 °C. The single cell with the individual CCTO electrolyte exhibits a power output of approximately 263 mW cm-2 and an open-circuit voltage (OCV) of 0.95 V at 550 °C, while the cell with the CCTO-NCAL heterostructure electrolyte capably delivers an improved power output of approximately 605 mW cm-2 along with a higher OCV over 1.0 V, which indicates the introduction of high hole-conducting NCAL into the CCTO could enhance the cell performance rather than inducing any potential short-circuiting risk. It is found that these promising outcomes are due to the interplay of the dielectric material, its structure, and overall properties that led to improve electrochemical mechanism in CCTO-NCAL. Furthermore, density functional theory calculations provide the detailed information about the electronic and structural properties of the CCTO and NCAL and their heterostructure CCTO-NCAL. Our study thus provides a new approach for developing new advanced electrolytes for LT-SOFCs.

17.
Nanomaterials (Basel) ; 14(18)2024 Sep 13.
Article in English | MEDLINE | ID: mdl-39330646

ABSTRACT

Laser nanostructuring of thin films with ultrashort laser pulses is widely used for nanofabrication across various fields. A crucial parameter for optimizing and understanding the processes underlying laser processing is the absorbed laser fluence, which is essential for all damage phenomena such as melting, ablation, spallation, and delamination. While threshold fluences have been extensively studied for single compound thin films, advancements in ultrafast acoustics, magneto-acoustics, and acousto-magneto-plasmonics necessitate understanding the laser nanofabrication processes for functional multilayer films. In this work, we investigated the thickness dependence of ablation and delamination thresholds in Ni/Au bilayers by varying the thickness of the Ni layer. The results were compared with experimental data on Ni thin films. Additionally, we performed femtosecond time-resolved pump-probe measurements of transient reflectivity in Ni to determine the heat penetration depth and evaluate the melting threshold. Delamination thresholds for Ni films were found to exceed the surface melting threshold suggesting the thermal mechanism in a liquid phase. Damage thresholds for Ni/Au bilayers were found to be significantly lower than those for Ni and fingerprint the non-thermal mechanism without Ni melting, which we attribute to the much weaker mechanical adhesion at the Au/glass interface. This finding suggests the potential of femtosecond laser delamination for nondestructive, energy-efficient nanostructuring, enabling the creation of high-quality acoustic resonators and other functional nanostructures for applications in nanosciences.

18.
ACS Appl Mater Interfaces ; 16(38): 50811-50817, 2024 Sep 25.
Article in English | MEDLINE | ID: mdl-39270206

ABSTRACT

Ni-rich layer-structured materials are some of the most promising cathodes owing to their attractive reversible capacity and cost-effectiveness. When the Ni content is increased to 90% and higher, mechanical deterioration becomes serious and leads to accelerated cyclic degradation, since removable Li+ is ∼0.85, accompanied by large lattice variation during operation. Here, we investigate the influences of Ti4+ bulky substitution, Nb5+ surface treatment, and their coutilization on the behavior of LiNi0.925Co0.065Mn0.01O2 (NCM92). In contrast to the limited positive effects of monousage, the coutilization of Ti4+ and Nb5+ obviously suppresses particles' pulverization, relying on their synergistic effects of the shape of lattice variation and the protection of a tough shell layer. As a result, Ti & Nb-LiNi0.925Co0.065Mn0.01O2 (TiNb-NCM92) presents the best capacity retention, as high as 90.2% after 300 cycles, much higher than NCM92 (49.0%), Ti-NCM92 (76.3%), and Nb-NCM92 (72.4%). Our approaches demonstrate that the serious mechanical challenges of ultrahigh nickel cathodes could be alleviated by various remedies coutilized together.

19.
ACS Appl Mater Interfaces ; 16(38): 50961-50971, 2024 Sep 25.
Article in English | MEDLINE | ID: mdl-39271243

ABSTRACT

O3-type layered oxides hold significant promise as the material for cathodes in sodium-ion batteries for their favorable electrochemical properties, while irreversible structural degradation and harmful phase transitions during cyclic operation limit the practical application of these materials. In this work, we proposed a La3+/Al3+ codoping strategy in O3-Na(Ni1/3Mn1/3Fe1/3)O2 cathode materials and found that batteries with the Na (Ni1/3Mn1/3Fe1/3)0.998La0.001Al0.001O2 (NFM-La/Al) cathodes exhibited not only promoted capacity from 135.80 to 170.42 mAh g-1 at 0.2 C but also significantly enhanced cycling stability, with a 10% improvement in capacity retention compared with NFM cathodes after 300 cycles. Particularly, their rate performance was significantly improved as well. XRD and XPS tests indicated that La could expand the c-axis of NFM due to its larger ionic radius and thus significantly increased Na+ ion diffusion efficiency, and in addition, Al doping could effectively increase the content of Ni2+ and Mn4+ and thus greatly alleviated the negative Jahn-Teller effect caused by Mn3+. Moreover, consistent with XRD analyses, DFT calculations further substantiated the effectiveness of the La/Al codoping strategy by demonstrating the detailed atom substitution mechanism in the NFM crystal lattice. The boosted structure stability and Na+ diffusion kinetics may enhance the potential for practical applications of O3-type oxide cathodes.

20.
ACS Appl Mater Interfaces ; 16(38): 50747-50756, 2024 Sep 25.
Article in English | MEDLINE | ID: mdl-39276333

ABSTRACT

Lithium difluoro(oxalate) borate (LiDFOB) contributes actively to cathode-electrolyte interface (CEI) formation, particularly safeguarding high-voltage cathode materials. However, LiNixCozMnyO2-based batteries benefit from the LiDFOB and its derived CEI only with appropriate electrolyte design while a comprehensive understanding of the underlying interfacial mechanisms remains limited, which makes the rational design challenging. By performing ab initio calculations, the CEI evolution on the LiNi0.8Co0.1Mn0.1O2 has been investigated. The findings demonstrate that LiDFOB readily adheres to the cathode via semidissociative configuration, which elevates the Li deintercalation voltage and remains stable in solvent. Electrochemical processes are responsible for the subsequent cleavage of B-F and B-O bonds, while the B-F bond cleavage leading to LiF formation is dominant in the presence of adequate Li+ with a substantial Li intercalation energy. Thus, impregnation is established as an effective method to regulate the conversion channel for efficient CEI formation, which not only safeguards the cathode's structure but also counters electrolyte decomposition. Consequently, in comparison to utilizing LiDFOB as an electrolyte additive, employing LiDFOB impregnation in the NCM811/Li cell yields significantly improved cycling stability for over 2000 h.

SELECTION OF CITATIONS
SEARCH DETAIL