Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
J Hazard Mater ; 417: 126103, 2021 09 05.
Article in English | MEDLINE | ID: mdl-34229392

ABSTRACT

Over the past few decades, the La Paz aquifer system in Baja California Sur, Mexico, has been under severe pressure due to overexploitation for urban water supply and agriculture; this has caused seawater intrusion and deterioration in groundwater quality. Previous studies on the La Paz aquifer have focused mainly on seawater intrusion, resulting in limited information on nitrate and sulfate pollution. Therefore, pollution sources have not yet been identified sufficiently. In this study, an approach combining hydrochemical tools, multi-isotopes (δ2HH2O, δ18OH2O, δ15NNO3, δ18ONO3, δ34SSO4, δ18OSO4), and a Bayesian isotope mixing model was used to estimate the contribution of different nitrate and sulfate sources to groundwater. Results from the MixSIAR model revealed that seawater intrusion and soil-derived sulfates were the predominant sources of groundwater sulfate, with contributions of ~43.0% (UI90 = 0.29) and ~42.0% (UI90 = 0.38), respectively. Similarly, soil organic nitrogen (~81.5%, UI90 = 0.41) and urban sewage (~12.1%, UI90 = 0.25) were the primary contributors of nitrate pollution in groundwater. The dominant biogeochemical transformation for NO3- was nitrification. Denitrification and sulfate reduction were discarded due to the aerobic conditions in the study area. These results indicate that dual-isotope sulfate analysis combined with MixSIAR models is a powerful tool for estimating the contributions of sulfate sources (including seawater-derived sulfate) in the groundwater of coastal aquifer systems affected by seawater intrusion.


Subject(s)
Groundwater , Water Pollutants, Chemical , Bayes Theorem , Environmental Monitoring , Mexico , Nitrates/analysis , Nitrogen Isotopes/analysis , Seawater , Sulfates , Water Pollutants, Chemical/analysis
2.
Heliyon ; 6(5): e03970, 2020 May.
Article in English | MEDLINE | ID: mdl-32514480

ABSTRACT

Groundwater represents almost half of the drinking water worldwide and more than one third of water used for irrigation. Agro-industrial activities affect water resources in several manners; one of the most important is leaching of agrochemical residues. This research identifies the major contributors of changes in groundwater quality comparing two contrasting land uses in a karstic area of the Yucatan peninsula as case study. Using a multiple approach, we assess the impact of land use with physicochemical data, multivariate analyses, hydrogeochemistry and nitrate isotopic composition. We confirmed that agricultural land use has a greater impact on groundwater quality, observed in higher concentration of nitrates, ammonium, potassium and electrical conductivity. Seasonality has an influence on phosphates and the chemical composition of the groundwater, increasing the concentration of dissolved substances in the rainy season. There was a clear effect of manure application in the agricultural zone and the nitrate isotopic composition of groundwater points toward recharge in certain areas. We consider that seasonality and land use effects are intertwined and sometimes difficult to separate, likely because of land use intensity and hydrogeochemical process at a local scale. Finally, we observed poor groundwater quality in the agricultural area during the wet season; thus, it is desirable to maintain non-agricultural areas that provide groundwater of appropriate quality.

3.
Sci Total Environ ; 715: 136909, 2020 May 01.
Article in English | MEDLINE | ID: mdl-32018104

ABSTRACT

Eutrophication is a globally significant challenge facing aquatic ecosystems, mostly associated with human induced enrichment of these ecosystems with nitrogen and phosphorus. Given the complexity of assigning eutrophication issues to local primary N sources in field-based studies, this paper proposes a multi-stable isotope and biological framework to track nitrogen biogeochemical transformations, inputs and fate of nitrate in groundwater-dependent shallow lakes. Three representative freshwater ecosystems from the Pampa Plain (Argentina), with different land uses and topographic features were selected. Groundwater (N = 24), lake (N = 29) and stream (N = 20) samples were collected for isotope (δ15N-NO3- and δ18O-NO3-, δ18O-H2O) and hydrogeochemical (major ions and nutrients) determinations, and in the case of surface water, also for biological determinations (chlorophyll-a, fecal coliforms and nitrifying bacteria abundance). Both chemical and isotopic characteristics clearly indicated that denitrification was limited in lakes and streams, while evidence of assimilation in shallow lakes was confirmed. The results suggested that groundwater denitrification plays a role in the nitrate concentration pattern observed in the Pampeano Aquifer. The proportional contribution of nitrate sources to the inflow streams for all years were estimated by using Bayesian isotope mixing models, being ammonium nitrified in the system from soil and fertilizers ~50 - 75 %, sewage/manure ~20 - 40 % and atmospheric deposition ~5 - 15 %. In this sense, agricultural practices seem to have a relevant role in the eutrophication and water quality deterioration for these watersheds. However, limnological, bacterial and algal variables, assessed simultaneously with isotopic tracers, indicated spatio-temporal differences within and between these aquatic ecosystems. In the case of Nahuel Rucá Lake, animal manure was a significant source of nitrogen pollution, in contrast to La Brava Lake. In Los Padres Lake, agricultural practices were considered the main sources of nitrate input to the ecosystem.


Subject(s)
Eutrophication , Argentina , Bayes Theorem , Ecosystem , Environmental Monitoring , Groundwater , Nitrates , Nitrogen Isotopes , Water Pollutants, Chemical
SELECTION OF CITATIONS
SEARCH DETAIL