Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 26.854
Filter
1.
J Environ Sci (China) ; 147: 538-549, 2025 Jan.
Article in English | MEDLINE | ID: mdl-39003069

ABSTRACT

The multi-soil-layering (MSL) systems is an emerging solution for environmentally-friendly and cost-effective treatment of decentralized rural domestic wastewater. However, the role of the seemingly simple permeable layer has been overlooked, potentially holding the breakthroughs or directions to addressing suboptimal nitrogen removal performance in MSL systems. In this paper, the mechanism among diverse substrates (zeolite, green zeolite and biological ceramsite) coupled microorganisms in different systems (activated bacterial powder and activated sludge) for rural domestic wastewater purification was investigated. The removal efficiencies performed by zeolite coupled with microorganisms within 3 days were 93.8% for COD, 97.1% for TP, and 98.8% for NH4+-N. Notably, activated sludge showed better nitrification and comprehensive performance than specialized nitrifying bacteria powder. Zeolite attained an impressive 89.4% NH4+-N desorption efficiency, with a substantive fraction of NH4+-N manifesting as exchanged ammonium. High-throughput 16S rRNA gene sequencing revealed that aerobic and parthenogenetic anaerobic bacteria dominated the reactor, with anaerobic bacteria conspicuously absent. And the heterotrophic nitrification-aerobic denitrification (HN-AD) process was significant, with the presence of denitrifying phosphorus-accumulating organisms (DPAOs) for simultaneous nitrogen and phosphorus removal. This study not only raises awareness about the importance of the permeable layer and enhances comprehension of the HN-AD mechanism in MSL systems, but also provides valuable insights for optimizing MSL system construction, operation, and rural domestic wastewater treatment.


Subject(s)
Waste Disposal, Fluid , Waste Disposal, Fluid/methods , Nitrification , Nitrogen/metabolism , Soil/chemistry , Denitrification , Wastewater/chemistry , Sewage/microbiology , Soil Microbiology , Zeolites/chemistry , Phosphorus/metabolism , Bioreactors/microbiology , Bacteria/metabolism
2.
Sci Total Environ ; 948: 174655, 2024 Jul 14.
Article in English | MEDLINE | ID: mdl-39004375

ABSTRACT

Microplastics (MPs) are widely present in terrestrial ecosystems. However, how MPs impact carbon (C) and nitrogen (N) cycling within plant-soil system is still poorly understood. Here, we conducted a meta-analysis utilizing 3338 paired observations from 180 publications to estimate the effects of MPs on plant growth (biomass, nitrogen content, nitrogen uptake and nitrogen use efficiency), change in soil C content (total carbon (TC), soil organic carbon (SOC), dissolved organic carbon (DOC), microbial biomass carbon (MBC)), C losses (carbon dioxide (CO2) and methane), soil N content (total nitrogen, dissolved organic nitrogen, microbial biomass nitrogen, total dissolve nitrogen, ammonium, nitrate (NO3--N) and nitrite) and nitrogen losses (nitrous oxide, ammonia (NH3) volatilization and N leaching) comprehensively. Results showed that although MPs significantly increased CO2 emissions by 25.7 %, they also increased TC, SOC, MBC, DOC and CO2 by 53.3 %, 25.4 %, 19.6 % and 24.7 %, respectively, and thus increased soil carbon sink capacity. However, MPs significantly decreased NO3--N and NH3 volatilization by 14.7 % and 43.3 %, respectively. Meanwhile, MPs significantly decreased plant aboveground biomass, whereas no significant changes were detected in plant belowground biomass and plant N content. The impacts of MPs on soil C, N and plant growth varied depending on MP types, sizes, concentrations, and experimental durations, in part influenced by initial soil properties. Overall, although MPs enhanced soil carbon sink capacity, they may pose a significant threat to future agricultural productivity.

3.
Sci Total Environ ; 947: 174643, 2024 Jul 14.
Article in English | MEDLINE | ID: mdl-39009159

ABSTRACT

The impact of water level management via water retention on benthic carbon and nitrogen fluxes was studied in a wetland of the Seine estuary. Carbon and inorganic nitrogen fluxes at the sediment-water interface were determined during periods of intermittent and permanent immersion along a lateral gradient. In addition to fluxes, nitrate reduction rates, quantity and quality of both sedimentary and dissolved organic carbon, and organic matter lability via external enzymatic activities were analyzed. During both periods, the sediments subject to water level management facilitated nitrogen removal, with potential NO3- fluxes averaging -109 ± 31 nmol NO3- cm-2 h-1 under permanent immersion and -34 ± 13 nmol NO3- cm-2 h-1 under intermittent immersion. During permanent immersion, more water retention favors a higher input of dissolved organic matter including fresh and labile compounds, which most likely explained the significantly higher NO3- influxes. Intermittent immersion resulted in a lower quantity of retained dissolved organic matter, which likely explains the low N fluxes. The results of this study indicate the implementation of water retention strategies can markedly enhance NO3- removal by increasing the availability of organic matter. This underscores the importance of considering water-level management of wetlands to sustain the ecological functions of these valuable ecosystems, which are often the first barriers against environmental disturbance.

4.
Sci Rep ; 14(1): 16430, 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-39013924

ABSTRACT

The relationship between blood urea nitrogen to albumin ratio (BAR) and the prognosis of patients with tuberculosis (TB) complicated by sepsis remains unclear. This study aimed to explore the association between BAR and overall patient prognosis. This was a retrospective cohort study of patients with TB complicated by sepsis who were admitted to the intensive care unit (ICU) of the Public Health Clinical Center of Chengdu between January 2019 and February 2023. The relationship between BAR values and prognosis in these patients was investigated using multivariate Cox regression, stratified analysis with interaction, restricted cubic spline (RCS), and threshold effect analysis. Sensitivity analyses were conducted to assess the robustness of the results. Our study included 537 TB patients complicated by sepsis admitted in the ICU, with a median age of 63.0 (48.0, 72.0) years; 76.7% of whom were men. The multivariate-restricted cubic spline analysis showed a non-linear association between BAR and patient prognosis. In the threshold analysis, we found that TB patients complicated by sepsis and a BAR < 7.916 mg/g had an adjusted hazard ratio (HR) for prognosis of 1.163 (95% CI 1.038-1.303; P = 0.009). However, when the BAR was ≥ 7.916 mg/g, there was no significant increase in the risk of death. The results of the sensitivity analysis were stable.


Subject(s)
Blood Urea Nitrogen , Sepsis , Tuberculosis , Humans , Male , Sepsis/mortality , Sepsis/blood , Sepsis/complications , Female , Middle Aged , Aged , Retrospective Studies , Tuberculosis/mortality , Tuberculosis/blood , Tuberculosis/complications , Prognosis , Serum Albumin/analysis , Intensive Care Units , Proportional Hazards Models
5.
J Colloid Interface Sci ; 675: 1069-1079, 2024 Jul 14.
Article in English | MEDLINE | ID: mdl-39018634

ABSTRACT

Efficient charge transfer and effective separation of photo-generated charge carriers are crucial factors in photocatalysis. In this study, we present the design of a composite photocatalyst consisting of cobalt and bismuth (CoBi) bimetallic nanoparticles incorporated into a honeycomb nitrogen-doped graphitic carbon (N-GC) matrix. The ultra-thin porous N-GC matrix exhibits excellent electrical conductivity, a high number of active sites, and enables efficient absorption and multiple reflection of incident light. The CoBi bimetal-N-GC interface establishes a self-driven charge transport channel that effectively suppresses the backflow of photogenerated electrons, leading to prolonged separation of photo-generated carriers and a significant improvement in photocatalytic activity. The CoBi@N-GC catalyst showcases outstanding performance, producing CH4 and CO at rates of 36.07 µmol·g-1·h-1 and 44.09 µmol·g-1·h-1 respectively, confirming its superior photocatalytic capabilities.

6.
Int J Epidemiol ; 53(4)2024 Jun 12.
Article in English | MEDLINE | ID: mdl-39018665

ABSTRACT

BACKGROUND: The carcinogenicity of air pollution and its impact on the risk of lung cancer is well known; however, there are still knowledge gaps and mixed results for other sites of cancer. METHODS: The current study aimed to evaluate the associations between ambient air pollution [fine particulate matter (PM2.5) and nitrogen oxides (NOx)] and cancer incidence. Exposure assessment was based on historical addresses of >900 000 participants. Cancer incidence included primary cancer cases diagnosed from 2007 to 2015 (n = 30 979). Cox regression was used to evaluate the associations between ambient air pollution and cancer incidence [hazard ratio (HR), 95% CI]. RESULTS: In the single-pollutant models, an increase of one interquartile range (IQR) (2.11 µg/m3) of PM2.5 was associated with an increased risk of all cancer sites (HR = 1.51, 95% CI: 1.47-1.54), lung cancer (HR = 1.73, 95% CI: 1.60-1.87), bladder cancer (HR = 1.50, 95% CI: 1.37-1.65), breast cancer (HR = 1.50, 95% CI: 1.42-1.58) and prostate cancer (HR = 1.41, 95% CI: 1.31-1.52). In the single-pollutant and the co-pollutant models, the estimates for PM2.5 were stronger compared with NOx for all the investigated cancer sites. CONCLUSIONS: Our findings confirm the carcinogenicity of ambient air pollution on lung cancer and provide additional evidence for bladder, breast and prostate cancers. Further studies are needed to confirm our observation regarding prostate cancer. However, the need for more research should not be a barrier to implementing policies to limit the population's exposure to air pollution.


Subject(s)
Air Pollution , Breast Neoplasms , Environmental Exposure , Lung Neoplasms , Particulate Matter , Prostatic Neoplasms , Urinary Bladder Neoplasms , Humans , Male , Incidence , Female , Urinary Bladder Neoplasms/epidemiology , Urinary Bladder Neoplasms/chemically induced , Urinary Bladder Neoplasms/etiology , Air Pollution/adverse effects , Prostatic Neoplasms/epidemiology , Prostatic Neoplasms/etiology , Prostatic Neoplasms/chemically induced , Particulate Matter/adverse effects , Lung Neoplasms/epidemiology , Lung Neoplasms/chemically induced , Lung Neoplasms/etiology , Breast Neoplasms/epidemiology , Breast Neoplasms/chemically induced , Breast Neoplasms/etiology , Middle Aged , Aged , Environmental Exposure/adverse effects , Environmental Exposure/statistics & numerical data , Adult , Nitrogen Oxides/adverse effects , Air Pollutants/adverse effects , Proportional Hazards Models , Risk Factors
7.
Plant Physiol Biochem ; 214: 108936, 2024 Jul 14.
Article in English | MEDLINE | ID: mdl-39018775

ABSTRACT

Vicia villosa (VV) and Vicia sativa (VS) are legume forages highly valued for their excellent nitrogen fixation. However, no research has addressed the mechanisms underlying their differences in nitrogen fixation. This study employed physiological, cytological, and comparative transcriptomic approaches to elucidate the disparities in nitrogen fixation between them. Our results showed that the total amount of nitrogen fixed was 60.45% greater in VV than in VS, and the comprehensive nitrogen response performance was 94.19% greater, while the nitrogen fixation efficiency was the same. The infection zone and differentiated bacteroid proportion in mature VV root nodules were 33.76% and 19.35% greater, respectively, than those in VS. The size of the VV genome was 15.16% larger than that of the VS genome, consistent with its greater biomass. A significant enrichment of the flavonoid biosynthetic pathway was found only for VV-specific genes, among which chalcone-flavonone isomerase, caffeoyl-CoA-O-methyltransferase and stilbene synthase were extremely highly expressed. The VV-specific genes also exhibited significant enrichment in symbiotic nodulation; genes related to nodule-specific cysteine-rich peptides (NCRs) comprised 61.11% of the highly expressed genes. qRT‒PCR demonstrated that greater enrichment and expression of the dominant NCR (Unigene0004451) were associated with greater nodule bacteroid differentiation and greater nitrogen fixation in VV. Our findings suggest that the greater total nitrogen fixation of VV was attributed to its larger biomass, leading to a greater nitrogen demand and enhanced fixation physiology. This process is likely achieved by the synergistic effects of high bacteroid differentiation along with high expression of flavonoid and NCR genes.

8.
J Colloid Interface Sci ; 676: 22-32, 2024 Jul 14.
Article in English | MEDLINE | ID: mdl-39018807

ABSTRACT

The urgent need to prepare clean energy by environmentally friendly and efficient methods, which has led to widespread attention on electrocatalytic nitrogen reduction reaction (NRR) for ammonia production. At present, single atom catalytic nitrogen reduction has become the earliest promising method for industrial production due to its high atomic utilization rate, high selectivity, high controllability, and high stability. However, how to quickly screen catalysts with high catalytic efficiency and selectivity in single-atom catalysts (SACs) remains a challenge. Herein, the 29 SACs are constructed from C6N2 nanosheets doped with transition metals (TM@C6N2), which are analyzed for stability, adsorption performance, NRR catalytic activity, electronic properties, and competitiveness using first-principles calculations. The results show that Mo@C6N2 and Re@C6N2 exhibit the most outstanding catalytic performances, with limiting potentials (UL) of -0.29 and -0.31 V, respectively, in the solvent model. Machine learning is used to derive descriptors from the intrinsic features to predict the free energy changes for the potential-determining step. The importance of features is calculated, with the first ionisation energy (IE1) being the most significant influencing factor. Based on the guidance of machine learning and considering that IE1 is related to the ability of metal atoms to donate electrons, a four-step screening strategy using the Integrated Crystal Orbital Hamilton Populations (ICOHP) to screen catalysts instead of the traditional five-step screening not only improves the screening efficiency but also obtains completely consistent screening results. This work presents a new approach to predicting the catalytic performance of SACs and provides new insights into the influence of intrinsic properties on catalytic activity.

9.
J Environ Manage ; 366: 121877, 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-39018860

ABSTRACT

Sulfur-driven autotrophic denitrification (S0dAD) was employed to remove residual nitrogen from the biological effluent of landfill leachate after partial nitrification and denitrification pretreatment. The performance of S0dAD were assessed with various NOx--N (NO2--N and NO3--N) loadings over a 185-day operational period. The results demonstrated that a notable NOx--N removal efficiency of 97.8 ± 2.0% was achieved under nitrogen removal rates of 0.12 ± 0.02 kg N/(m3· d), leading to total nitrogen concentrations of 8.6 ± 3.8 mg/L in the effluent. Batch experiments revealed competitive utilization of nitrogenous electron acceptors, with NO2--N demonstrating 2-4 times higher denitrification rates than NO3--N under coexistence conditions. Genus-level microbial community identified that Thiobacillus and Sulfurovum was highly enriched with as key denitrifying bacteria in the S0dAD system. These findings provide insights for advanced nitrogen removal coupling S0dAD with partial nitrification and denitrification process for landfill leachate treatment.

10.
Int J Biol Macromol ; : 133729, 2024 Jul 12.
Article in English | MEDLINE | ID: mdl-39019699

ABSTRACT

Microfibrillated cellulose (MFC) as an attractive green bio-based material has attracted widespread attention in recent years due to its non-toxicity, degradability, excellent performance, and high aspect ratio. In this study, the g-C3N5 with a high nitrogen/carbon ratio was prepared as a catalyst through the self-polymerization of a nitrogen-rich precursor. The triazole groups at the edges of g-C3N5 were proven to exhibit strong adsorption to biomass and strong alkalinity. In a low-acidic aqueous system with g-C3N5, MFC with diameters of 100-200 nm and lengths up to 100 µm was fabricated from various biomasses within 5 min under microwave radiation. The ultimate yield of the MFC produced from viscose reached 90 %. Young's modulus of the MFC reaches 3.7 GPa. This work provides a particular method with high efficiency to prepare MFC with excellent properties from biomass by chemical method.

11.
ACS Appl Mater Interfaces ; 16(28): 36498-36508, 2024 Jul 17.
Article in English | MEDLINE | ID: mdl-38963822

ABSTRACT

The strategic design of catalysts for the oxygen evolution reaction (OER) is crucial in tackling the substantial energy demands associated with hydrogen production in electrolytic water splitting. Despite extensive research on birnessite (δ-MnO2) manganese oxides to enhance catalytic activity by modulating Mn3+ species, the ongoing challenge is to simultaneously stabilize Mn3+ while improving overall activity. Herein, oxygen (O) vacancies and nitrogen (N) doping have been simultaneously introduced into the MnO2 through a simple nitrogen plasma approach, resulting in efficient OER performance. The optimized N-MnO2v electrocatalyst exhibits outstanding OER activity in alkaline electrolyte, reducing the overpotential by nearly 160 mV compared to pure pristine MnO2 (from 476 to 312 mV) at 10 mA cm-2, and a small Tafel slope of 89 mV dec-1. Moreover, it demonstrates excellent durability over a 122 h stability test. The introduction of O vacancies and incorporation of N not only fine-tune the electronic structure of MnO2, increasing the Mn3+ content to enhance overall activity, but also play a crucial role in stabilizing Mn3+, thereby leading to exceptional stability over time. Subsequently, density functional theory calculations validate the optimized electronic structure of MnO2 achieved through the two engineering methods, effectively lowering the intermediate adsorption free energy barrier. Our synergistic approach, utilizing nitrogen plasma treatment, opens a pathway to concurrently enhance the activity and stability of OER electrocatalysts, applicable not only to Mn-based but also to other transition metal oxides.

12.
Sci Total Environ ; 947: 174641, 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38986714

ABSTRACT

The in-situ high-frequency monitoring of total nitrogen (TN) and total phosphorus (TP) in rivers is a challenge and key to instant water quality judgment and early warning. Based on the physical and chemical association between TN/TP and sensor-measurable predictors, we proposed a novel "indirect" measurement method for TN and TP in rivers. This method combines the timeliness of multi-sensor and the accuracy of intelligent algorithms, utilizing 188,629 data sets from 131 water monitoring stations across China. Under 5 algorithms and 4 predictor group scenarios, the results showed that: (1) extra tree regression (ETR) with 6 predictors exhibited the best precision, and the mean determination coefficient (R2) of TN and TP inversion across 131 stations reached 0.78 ± 0.25 and 0.79 ± 0.22 respectively; (2) among 6 potential predictors, the importance degrees of temperature, electrical conductivity, NH4-N, and turbidity were greater than that of pH and DO, and >80 % of stations exhibited acceptable prediction accuracy (R2 > 0.6) when the number of predictors (P) ranged from 4 to 6, which showed good tolerability to predictor variations; (3) the accurate classification rates of water quality standard (ACRws) of all stations based on TN and TP reached 90.41 ± 6.96 % and 92.33 ± 6.41 %; (4) in 9 regions/basins of China, this method showed universal application potential with no significant prediction difference. Compared with laboratory test, water quality automatic monitoring station, and remote sensing inversion, the proposed method offers high-frequency, high-precision, regional adaptability, low cost, and stable operation under rainy, cloudy, and nighttime conditions. The new method may provide important technological support for timely pollutant tracing, pre-warning, and emergency control for river pollution.

13.
Sci Total Environ ; 947: 174686, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38992360

ABSTRACT

Soil net nitrogen mineralization (Nmin), a microbial-mediated conversion of organic to inorganic N, is critical for grassland productivity and biogeochemical cycling. Enhanced atmospheric N deposition has been shown to substantially increase both plant and soil N content, leading to a major change in Nmin. However, the mechanisms underlying microbial properties, particularly microbial functional genes, which drive the response of Nmin to elevated N deposition are still being discussed. Besides, it is still uncertain whether the relative importance of plant carbon (C) input, microbial properties, and mineral protection in regulating Nmin under continuous N addition would vary with the soil depth. Here, based on a 13-year multi-level field N addition experiment conducted in a typical grassland on the Loess Plateau, we elucidated how N-induced changes in plant C input, soil physicochemical properties, mineral properties, soil microbial community, and the soil Nmin rate (Rmin)-related functional genes drove the responses of Rmin to N addition in the topsoil and subsoil. The results showed that Rmin increased significantly in both topsoil and subsoil with increasing rates of N addition. Such a response was mainly dominated by the rate of soil nitrification. Structural equation modeling (SEM) revealed that a combination of microbial properties (functional genes and diversity) and mineral properties regulated the response of Rmin to N addition at both soil depths, thus leading to changes in the soil N availability. More importantly, the regulatory impacts of microbial and mineral properties on Rmin were depth-dependent: the influences of microbial properties weakened with soil depth, whereas the effects of mineral protection enhanced with soil depth. Collectively, these results highlight the need to incorporate the effects of differential microbial and mineral properties on Rmin at different soil depths into the Earth system models to better predict soil N cycling under further scenarios of N deposition.

14.
Chemosphere ; 363: 142847, 2024 Jul 14.
Article in English | MEDLINE | ID: mdl-39009090

ABSTRACT

A combined process of coagulation pretreatment and three-stage membrane aeration biofilm reactor (MABR) system was successfully applied for the first time to treat actual municipal solid waste leachate (MSWL), which was characterized by high concentrations of toxic hard-to-degrade organics and salinity. The results showed that 9.8%-21.3% of organics could be removed from actual MSWL by coagulation with polymeric aluminum chloride (PAC). Three-stage MABR contributed 95.6% of the chemical oxygen demand (COD) removal, with the influent COD concentration ranging from 6000 to 7000 mg/L. At the same time, the removal efficiencies of total nitrogen (TN) and ammonia (NH4+-N) could reach to 84.3% and 79.9% without the addition of external carbon source, respectively. The nitrifying/denitrifying bacteria were enriched in the biofilm including Thiobacillus, Azoarcus and Methyloversatilis, which supported the MABR with high nitrogen removal efficiency and significantly toxic tolerance. Principal component analysis (PCA) and the Pearson correlation coefficients (r) illustrated that aeration pressure is a crucial operational parameter, exhibiting a strong correlation between the MABR performance and microbial communities. This work demonstrates that MABR is an effective and low-energy option for simultaneous removal of carbon and nitrogen in the treatment of MSWL.

15.
J Basic Microbiol ; : e2400327, 2024 Jul 17.
Article in English | MEDLINE | ID: mdl-39021277

ABSTRACT

Three strains of Gram-negative bacterium, Rhizobium, were developed by gamma (γ)-irradiation random mutagenesis. The developed strains were evaluated for their augmented features for symbiotic association, nitrogen fixation, and crop yield of three leguminous plants-chickpea, field-pea, and lentil-in agricultural fields of the northern Indian state of Haryana. Crops treated with developed mutants exhibited significant improvement in plant features and the yield of crops when compared to the control-uninoculated crops and crops grown with indigenous or commercial crop-specific strains of Rhizobium. This improvement was attributed to generated mutants, MbPrRz1 (on chickpea), MbPrRz2 (on lentil), and MbPrRz3 (on field-pea). Additionally, the cocultured symbiotic response of MbPrRz1 and MbPrRz2 mutants was found to be more pronounced on all three crops. The statistical analysis using Pearson's correlation coefficients revealed that nodulation and plant biomass were the most related parameters of crop yield. Among the effectiveness of developed mutants, MbPrRz1 yielded the best results for all three tested crops. Moreover, the developed mutants enhanced macro- and micronutrients of the experimental fields when compared with fields harboring the indigenous rhizobial community. These developed mutants were further genetically characterized, predominantly expressing nitrogen fixation marker, nifH, and appeared to belong to Mesorhizobium ciceri (MbPrRz1) and Rhizobium leguminosarum (both MbPrRz2 and MbPrRz3). In summary, this study highlights the potential of developed Rhizobium mutants as effective biofertilizers for sustainable agriculture, showcasing their ability to enhance symbiotic relationships, crop yield, and soil fertility.

16.
Glob Chang Biol ; 30(7): e17427, 2024 Jul.
Article in English | MEDLINE | ID: mdl-39021313

ABSTRACT

Atmospheric nitrogen (N) deposition in forests can affect soil microbial growth and turnover directly through increasing N availability and indirectly through altering plant-derived carbon (C) availability for microbes. This impacts microbial residues (i.e., amino sugars), a major component of soil organic carbon (SOC). Previous studies in forests have so far focused on the impact of understory N addition on microbes and microbial residues, but the effect of N deposition through plant canopy, the major pathway of N deposition in nature, has not been explicitly explored. In this study, we investigated whether and how the quantities (25 and 50 kg N ha-1 year-1) and modes (canopy and understory) of N addition affect soil microbial residues in a temperate broadleaf forest under 10-year N additions. Our results showed that N addition enhanced the concentrations of soil amino sugars and microbial residual C (MRC) but not their relative contributions to SOC, and this effect on amino sugars and MRC was closely related to the quantities and modes of N addition. In the topsoil, high-N addition significantly increased the concentrations of amino sugars and MRC, regardless of the N addition mode. In the subsoil, only canopy N addition positively affected amino sugars and MRC, implying that the indirect pathway via plants plays a more important role. Neither canopy nor understory N addition significantly affected soil microbial biomass (as represented by phospholipid fatty acids), community composition and activity, suggesting that enhanced microbial residues under N deposition likely stem from increased microbial turnover. These findings indicate that understory N addition may underestimate the impact of N deposition on microbial residues and SOC, highlighting that the processes of canopy N uptake and plant-derived C availability to microbes should be taken into consideration when predicting the impact of N deposition on the C sequestration in temperate forests.


Subject(s)
Carbon , Forests , Nitrogen , Soil Microbiology , Soil , Nitrogen/metabolism , Carbon/metabolism , Carbon/analysis , Soil/chemistry , Amino Sugars/metabolism , Amino Sugars/analysis , Trees/growth & development , Trees/metabolism
17.
Glob Chang Biol ; 30(7): e17428, 2024 Jul.
Article in English | MEDLINE | ID: mdl-39021355

ABSTRACT

Global hydroclimatic variability is increasing with more frequent extreme dry and wet years, severely destabilizing terrestrial ecosystem productivity. However, what regulates the consequence of precipitation extremes on productivity remains unclear. Based on a 9-year field manipulation experiment on the Qinghai-Tibetan Plateau, we found that the responses of gross primary productivity (GPP) to extreme drought and wetness were differentially regulated by nitrogen (N) deposition. Over increasing N deposition, extreme dry events reduced GPP more. Among the 12 biotic and abiotic factors examined, this was mostly explained by the increased plant canopy height and proportion of drought-sensitive species under N deposition, making photosynthesis more sensitive to hydraulic stress. While extreme wet events increased GPP, their effect did not shift over N deposition. These site observations were complemented by a global synthesis derived from the GOSIF GPP dataset, which showed that GPP sensitivity to extreme drought was larger in ecosystems with higher N deposition, but GPP sensitivity to extreme wetness did not change with N deposition. Our findings indicate that intensified hydroclimatic variability would lead to a greater loss of land carbon sinks in the context of increasing N deposition, due to that GPP losses during extreme dry years are more pronounced, yet without a synchronous increase in GPP gains during extreme wet years. The study implies that the conservation and management against climate extremes merit particular attention in ecosystems subject to N deposition.


Subject(s)
Droughts , Nitrogen , Nitrogen/metabolism , Nitrogen/analysis , Ecosystem , Climate Change , Photosynthesis , China , Tibet
18.
Huan Jing Ke Xue ; 45(7): 3799-3807, 2024 Jul 08.
Article in Chinese | MEDLINE | ID: mdl-39022928

ABSTRACT

The sensitivity analysis of ozone generation in key ozone-polluted regions and cities is an important basis for the prevention and control of near-surface ozone (O3) pollution. Based on the five-year data of ozone, VOCs, and NOx from three typical stations in Shanghai, namely Dianshan Lake Station (suburban area), Pudong Station (urban area), and Xinlian Station (industrial area) from 2016 to 2020, the nonlinear relationship between ozone and precursors (VOCs and NOx) during the high-ozone season in the five years was quantitatively analyzed using an observation model. The results showed that the peak months of near-surface ozone in Shanghai were from April to September during 2016 to 2020, with the highest values appearing from June to August. The volume fraction of VOCs and NO2 concentration had a strong indicative significance for the O3 concentration at Pudong Station. The O3 concentration at Dianshan Lake Station was mainly influenced by regional environment, meteorological factors, and cross-regional transmission. The ozone concentration at Xinlian Station was a combination of environmental background concentration and industrial area photochemical pollution. Pudong Station and Dianshan Lake Station were in the VOCs control zone. Xinlian Station was gradually closer to the NOx control zone from 2016 to 2019, transitioning to the VOCs control zone since 2020. The L·OH of Pudong Station, Dianshan Lake Station, and Xinlian Station were: NOx control area>collaborative control area>VOCs control area.

19.
Huan Jing Ke Xue ; 45(7): 4023-4031, 2024 Jul 08.
Article in Chinese | MEDLINE | ID: mdl-39022950

ABSTRACT

Nitrogen loss from rice systems is an important source of agricultural non-point source pollution. Many studies revolve around reducing the rate of nitrogen fertilizer application. However, studies examining the characteristics of nitrogen loss in multiple loss paths (runoff, leaching, and lateral seepage) under different straw and fertilizer managements are lacking. Therefore, a study was carried out based on a rice field planted for more than 20 years with straw continuously returned to the field for more than 5 years in Taihu lake basin. The effects of straw and fertilizer managements on nitrogen loss in different paths during the whole growth period of rice were studied. Moreover, straw and fertilizer managements were evaluated by their production suitability and environmental friendliness based on crop yield, nitrogen use efficiency, and nitrogen loss. The results showed that straw removal from the field increased the response sensitivity of nitrogen accumulation in plant tissue to nitrogen application. The nitrogen loss in the rice season was 9-17 kg·hm-2, accounting for 5%-7% of the nitrogen application rate. Straw removal increased the risk of nitrogen loss when soaking water discharged. Straw returning could decrease the nitrogen loss by more than 15%, though the effect of straw on nitrogen loss via lateral seepage was not clear. Furthermore, the suitable substitution of organic fertilizer (30% in this study) could respectively reduce the amount of nitrogen loss via runoff, leaching, and lateral seepage by 16%, 26%, and 37% compared with the fertilizer application under the same nitrogen gradient. In conclusion, the implementation of straw returning and fertilizer type optimization measures effectively reduced the nitrogen loss for unit weight of rice production and realized the balance between agricultural production and environmental protection.


Subject(s)
Fertilizers , Lakes , Nitrogen , Oryza , Plant Stems , Oryza/growth & development , Oryza/metabolism , Nitrogen/metabolism , China , Plant Stems/metabolism , Plant Stems/growth & development , Plant Stems/chemistry , Agriculture/methods , Fragaria/growth & development , Fragaria/metabolism
20.
Huan Jing Ke Xue ; 45(7): 3995-4005, 2024 Jul 08.
Article in Chinese | MEDLINE | ID: mdl-39022947

ABSTRACT

Danjiangkou Reservoir is a critical water source for the South-to-North Water Diversion Project, which harbors a diverse bacterioplankton community with varying depths, and the understanding of its nitrogen and phosphorus cycle and associated driving factors remains limited. In this study, we selected five ecological sites within Danjiangkou Reservoir and conducted metagenomics analysis to investigate the vertical distribution of bacterioplankton communities in the surface, middle, and bottom layers. Furthermore, we analyzed and predicted the function of nitrogen and phosphorus cycles, along with their driving factors. Our findings revealed the dominance of Proteobacteria, Actinobacteria, and Planctomycetes in the Danjiangkou Reservoir. Significant differences were observed in the structure of bacterioplankton communities across different depths, with temperature (T), oxidation-reduction potential (ORP), dissolved oxygen (DO), and Chla identified as primary factors influencing the bacterioplankton composition. Analysis of nitrogen cycle functional genes identified 39 genes, including gltB, glnA, gltD, gdhA, NRT, etc., which were involved in seven main pathways, encompassing nitrogen fixation, nitrification, denitrification, and dissimilatory nitrate reduction. Phosphorus cycle function gene analysis identified 54 genes, including pstS, ppx-gppA, glpQ, ppk1, etc., primarily participating in six main pathways, including organic P mineralization, inorganic P solubilization, and regulatory. Cluster analysis indicated that different depths were significant factors influencing the composition and abundance of nitrogen and phosphorus cycle functional genes. The composition and abundance of nitrogen and phosphorus cycle functional genes in the surface and bottom layers differed and were generally higher than those in the middle layer. Deinococcus, Hydrogenophaga, Limnohabitans, Clavibacter, and others were identified as key species involved in the nitrogen and phosphorus cycle. Additionally, we found significant correlations between nitrogen and phosphorus cycle functional genes and environmental factors such as DO, pH, T, total dissolved solids (TDS), electrical conductivity (EC), and Chla. Furthermore, the content of these environmental factors exhibited depth-related changes in the Danjiangkou Reservoir, resulting in a distinct vertical distribution pattern of bacterioplankton nitrogen and phosphorus cycle functional genes. Overall, this study sheds light on the composition, function, and influencing factors of bacterioplankton communities across different layers of Danjiangkou Reservoir, offering valuable insights for the ecological function and diversity protection of bacterioplankton in this crucial reservoir ecosystem.


Subject(s)
Nitrogen , Phosphorus , Plankton , Phosphorus/metabolism , China , Nitrogen/metabolism , Plankton/genetics , Plankton/metabolism , Bacteria/genetics , Bacteria/metabolism , Bacteria/classification , Proteobacteria/genetics , Nitrogen Cycle , Actinobacteria/genetics , Actinobacteria/metabolism , Genes, Bacterial
SELECTION OF CITATIONS
SEARCH DETAIL
...