Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.098
Filter
1.
Int J Mol Sci ; 25(13)2024 Jun 23.
Article in English | MEDLINE | ID: mdl-39000005

ABSTRACT

Hepatocellular carcinoma (HCC) has become the fourth leading cause of cancer-related deaths worldwide; annually, approximately 830,000 deaths related to liver cancer are diagnosed globally. Since early-stage HCC is clinically asymptomatic, traditional treatment modalities, including surgical ablation, are usually not applicable or result in recurrence. Immunotherapy, particularly immune checkpoint blockade (ICB), provides new hope for cancer therapy; however, immune evasion mechanisms counteract its efficiency. In addition to viral exposure and alcohol addiction, nonalcoholic steatohepatitis (NASH) has become a major cause of HCC. Owing to NASH-related aberrant T cell activation causing tissue damage that leads to impaired immune surveillance, NASH-associated HCC patients respond much less efficiently to ICB treatment than do patients with other etiologies. In addition, abnormal inflammation contributes to NASH progression and NASH-HCC transition, as well as to HCC immune evasion. Therefore, uncovering the detailed mechanism governing how NASH-associated immune cells contribute to NASH progression would benefit HCC prevention and improve HCC immunotherapy efficiency. In the following review, we focused our attention on summarizing the current knowledge of the role of CD4+T cells in NASH and HCC progression, and discuss potential therapeutic strategies involving the targeting of CD4+T cells for the treatment of NASH and HCC.


Subject(s)
CD4-Positive T-Lymphocytes , Carcinoma, Hepatocellular , Liver Neoplasms , Non-alcoholic Fatty Liver Disease , Humans , Carcinoma, Hepatocellular/immunology , Carcinoma, Hepatocellular/pathology , Carcinoma, Hepatocellular/etiology , Carcinoma, Hepatocellular/therapy , Liver Neoplasms/immunology , Liver Neoplasms/pathology , Liver Neoplasms/etiology , Non-alcoholic Fatty Liver Disease/pathology , Non-alcoholic Fatty Liver Disease/complications , Non-alcoholic Fatty Liver Disease/immunology , Non-alcoholic Fatty Liver Disease/therapy , CD4-Positive T-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/metabolism , Animals , Immunotherapy/methods , Disease Progression
2.
Foods ; 13(13)2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38998607

ABSTRACT

In recent years, there has been increasing interest in exploring the potential therapeutic advantages of Citrullus mucosospermus extracts (CME) for nonalcoholic steatohepatitis (NASH). In this study, we investigated the therapeutic effects of CME on NASH using a mice model. High-performance liquid chromatography (HPLC) was employed to identify cucurbitacin E and cucurbitacin E-2-O-glucoside from the CME. Although CME did not significantly alter the serum lipid levels in methionine- and choline-deficient (MCD) mice, it demonstrated a protective effect against MCD diet-induced liver damage. CME reduced histological markers, reduced alanine transaminase (ALT) and aspartame transaminase (AST) levels, and modulated key NASH-related genes, including C/EBPα, PPARγ, Fas, and aP2. In addition, CME was found to restore hormone-sensitive lipase (HSL) and adipose triglyceride lipase (ATGL) activity, both crucial for fat catabolism, and reduced the levels of pro-inflammatory cytokines. Furthermore, CME demonstrated the potential to mitigate oxidative stress by maintaining or enhancing the activation and expression of nuclear factor erythroid 2-related factor 2 (Nrf2) and superoxide dismutase (SOD), both pivotal players in antioxidant defense mechanisms. These findings underscore the promising therapeutic potential of CME in ameliorating liver damage, inflammation, and oxidative stress associated with NASH.

3.
J Ethnopharmacol ; 334: 118526, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38972531

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Lean nonalcoholic steatohepatitis (NASH) poses a serious threat to public health worldwide. Herbs of the genus Gentiana have been used for centuries to treat hepatic disease or have been consumed for hepatic protection efficiency. Gentiopicroside (GPS), the main bioactive component of Gentiana herbs, has been shown to be beneficial for protecting the liver, improving intestinal disorders, modulating bile acid profiles, ameliorating alcoholic hepatosteatosis, and so on. It is plausible to speculate that GPS may hold potential as a therapeutic strategy for lean NASH. However, no related studies have been conducted thus far. AIM OF THE STUDY: The present work aimed to investigate the benefit of GPS on NASH in a lean mouse model. MATERIALS AND METHODS: NASH in a lean mouse model was successfully established via a published method. GPS of 50 and 100 mg/kg were orally administered to verify the effect. Untargeted metabolomics, 16S rDNA sequencing and bile acid (BA) profiling, as well as qPCR and Western blotting analysis were employed to investigate the mechanism underlying the alleviating effect. RESULTS: GPS significantly reduced the increase in serum biochemicals and liver index, and attenuated the accumulation of fat in the livers of lean mice with NASH. Forty-two potential biomarkers were identified by metabolomics analysis, leading to abnormal metabolic pathways of primary bile acid biosynthesis and fatty acid biosynthesis, which were subsequently rebalanced by GPS. A decreased Firmicutes/Bacteroidetes (F/B) ratio and disturbed BA related GM profiles were revealed in lean mice with NASH but were partially recovered by GPS. Furthermore, serum profiling of 23 BAs confirmed that serum BA levels were elevated in the lean model but downregulated by GPS treatment. Pearson correlation analysis validated associations between BA profiles, serum biochemical indices and related GM. qPCR and Western blotting analysis further elucidated the regulation of genes associated with liver lipid synthesis and bile acid metabolism. CONCLUSIONS: GPS may ameliorate steatosis in lean mice with NASH, regulating the metabolomic profile, BA metabolism, fatty acid biosynthesis, and BA-related GM. All these factors may contribute to its beneficial effect.

4.
Gut ; 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38862216

ABSTRACT

Nuclear receptors (NRs) are ligand-dependent transcription factors required for liver development and function. As a consequence, NRs have emerged as attractive drug targets in a wide range of liver diseases. However, liver dysfunction and failure are linked to loss of hepatocyte identity characterised by deficient NR expression and activities. This might at least partly explain why several pharmacological NR modulators have proven insufficiently efficient to improve liver functionality in advanced stages of diseases such as metabolic dysfunction-associated steatotic liver disease (MASLD). In this perspective, we review the most recent advances in the hepatic NR field and discuss the contribution of multiomic approaches to our understanding of their role in the molecular organisation of an intricated transcriptional regulatory network, as well as in liver intercellular dialogues and interorgan cross-talks. We discuss the potential benefit of novel therapeutic approaches simultaneously targeting multiple NRs, which would not only reactivate the hepatic NR network and restore hepatocyte identity but also impact intercellular and interorgan interplays whose importance to control liver functions is further defined. Finally, we highlight the need of considering individual parameters such as sex and disease stage in the development of NR-based clinical strategies.

5.
Clin Nutr ; 43(8): 1769-1780, 2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38936303

ABSTRACT

BACKGROUND: Non-alcoholic fatty liver disease (NAFLD) has emerged as the most prevalent glocal cause of chronic hepatic disease, with incidence rates that continue to rise steadily. Treatment options for affected patients are currently limited to dietary changes and exercise interventions, with no drugs having been licensed for the treatment of this disease. There is thus a pressing need for the development of novel therapeutic strategies. Work from our group suggests that the primary bioactive ingredient in green tea, epigallocatechin gallate (EGCG), may help reduce liver fat content and protect against hepatic injury through the inhibition of dipeptidyl peptidase 4 (DPP4) expression and activity. The study investigated the potential pathways by which EGCG may improve NAFLD, identified the sites of interaction between EGCG and DPP4, and proposed novel clinical treatment strategies. METHODS: A clinical randomized controlled trial was conducted to investigate the potential efficacy of EGCG in NAFLD patients. The study compared relevant indices before and after EGCG administration. Animal models of NAFLD were constructed using male C57BL/6J mice fed a high-fat diet to observe the ameliorative effects of EGCG on the livers of the model mice and to investigate the potential pathways by which EGCG alleviates NAFLD. The interaction mechanism between EGCG and DPP4 was investigated using oleic acid and palmitic acid-treated HepG2 cell lines. Plasmids in which different sites had been disrupted were used to identify the effective interaction sites. RESULTS: ECGC was found to suppress the accumulation of lipids, inhibit inflammation, remediate dysregulated lipid metabolism, and improve the pathogenesis of NAFLD via the inhibition of the expression and activity of DPP4. CONCLUSIONS: The study results indicate that EGCG has a positive impact on improving NAFLD. These results highlight promising new opportunities to safely and effectively treat NAFLD in the clinic. STUDY ID NUMBER: ChiCTR2300076741; https://www.chictr.org.cn/.

6.
Drug Discov Today ; 29(8): 104064, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38901671

ABSTRACT

The Hedgehog (Hh) signaling plays a crucial role in adult liver repair by promoting the expansion and differentiation of hepatic progenitor cells into mature hepatocytes and cholangiocytes. Elevated Hh signaling is associated with severe chronic liver diseases, making Hh inhibitors a promising therapeutic option. Sonidegib and vismodegib, both FDA-approved Smoothened (Smo) inhibitors for basal cell carcinoma (BCC), have shown potential for application in chronic liver disorders based on clinical evidence. We highlight the vital role of the Hh pathway in metabolic dysfunction-associated steatotic liver disease (MASLD)/metabolic dysfunction-associated steatohepatitis (MASH), liver fibrosis, and hepatocellular carcinoma (HCC). Moreover, therapeutic strategies targeting the Hh pathway in chronic liver diseases have been discussed, providing a basis for improving disease management and outcomes.

7.
J Ethnopharmacol ; 333: 118487, 2024 Jun 24.
Article in English | MEDLINE | ID: mdl-38925322

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Nonalcoholic fatty liver disease (NAFLD) is the most prevalent chronic liver disease worldwide. Nonalcoholic steatohepatitis (NASH) is a crucial component of this disease spectrum. The Yanxiao Di'naer formula (YXDNE) is an Uyghur medical extract that has been used in folk medicine to treat hepatitis for a long time. However, the role and mechanism of action of YXDNE in NASH treatment remains unclear. OBJECTIVE: The objective of this study was to assess the effectiveness of YXDNE in treating NASH induced by injections of carbon tetrachloride combined with a high-fat high-cholesterol diet (HFHCD), and to clarify the underlying mechanisms. METHODS: The compounds in the YXDNE extract were analysed for classification and proportions using ultra-performance liquid chromatography-mass spectrometry. The efficacy of YXDNE in treating abnormal lipid metabolism was evaluated in L02 cells in vitro. In addition, a C57BL/6 mouse model of NASH was established to evaluate the therapeutic efficacy of YXDNE in vivo. Metabolomics and RNA sequencing were used to analyse the therapeutic effects of YXDNE on the liver. The corresponding signalling pathways were found to target AMPKα1, PPARα, and NF-κB. The efficacy of YXDNE was validated using inhibitors or silencing RNA (siRNA) against AMPKα1 and PPARα. RESULTS: This study confirmed that YXDNE treatment ameliorated NASH in a murine model of this disease. Metabolomics analysis suggested that YXDNE efficacy was associated with fatty acid catabolism and AMPK signalling pathways. RNA sequencing results showed that YXDNE efficacy in treating NASH was highly correlated with the AMPK, PPARα and NF-κB pathways. Both in vitro and in vivo experimental data demonstrated that YXDNE affected the expression of p-AMPKα1, PPARα, p-NF-κB, IκB, and p-IκB. The efficacy of YXDNE in treating NASH in vitro was cancelled when AMPK was inhibited with Compound C or PPARα was modulated via siRNA. CONCLUSIONS: YXDNE may have a therapeutic effect on abnormal lipid metabolism in L02 cells and in a murine model of NASH by affecting the AMPKα1/PPARα/NF-κB signalling pathway. Therefore, YXDNE has the potential for clinical application in the prevention and treatment of NASH.

8.
Intern Med ; 2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38925969

ABSTRACT

This case report describes a patient who received hormone replacement therapy for secondary panhypopituitarism and subsequently developed diabetes. His physician decided to discontinue growth hormone (GH) replacement, which was previously deemed contraindicated. Following the diagnosis of fatty liver, the patient began to exhibit liver damage that progressed over the ensuing years, ultimately leading to cirrhosis. Common factors linked to cirrhosis were excluded, leading to the belief that GH deficiency over several years was the primary contributor to cirrhosis. Therefore, when treating patients with GH insufficiency and diabetes, clinicians should carefully consider the potential implications of GH replacement therapy.

9.
Adv Sci (Weinh) ; : e2405955, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38924647

ABSTRACT

Obstructive sleep apnea syndrome (OSAS), characterized by chronic intermittent hypoxia (CIH), is an independent risk factor for aggravating non-alcoholic steatohepatitis (NASH). The prevailing mouse model employed in CIH research is inadequate for the comprehensive exploration of the impact of CIH on NASH development due to reduced food intake observed in CIH-exposed mice, which deviates from human responses. To address this issue, a pair-feeding investigation with CIH-exposed and normoxia-exposed mice is conducted. It is revealed that CIH exposure aggravates DNA damage, leading to hepatic fibrosis and inflammation. The analysis of genome-wide association study (GWAS) data also discloses the association between Eepd1, a DNA repair enzyme, and OSAS. Furthermore, it is revealed that CIH triggered selective autophagy, leading to the autophagic degradation of Eepd1, thereby exacerbating DNA damage in hepatocytes. Notably, Eepd1 liver-specific knockout mice exhibit aggravated hepatic DNA damage and further progression of NASH. To identify a therapeutic approach for CIH-induced NASH, a drug screening is conducted and it is found that Retigabine dihydrochloride suppresses CIH-mediated Eepd1 degradation, leading to alleviated DNA damage in hepatocytes. These findings imply that targeting CIH-mediated Eepd1 degradation can be an adjunctive approach in the treatment of NASH exacerbated by OSAS.

10.
Life Sci ; 351: 122806, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38852799

ABSTRACT

Nonalcoholic fatty liver disease (NAFLD) is a mainstream halting liver disease with high prevalence in North America, Europe, and other world regions. It is an advanced form of NAFLD caused by the amassing of fat in the liver and can progress to the more severe form known as non-alcoholic steatohepatitis (NASH). Until recently, there was no authorized pharmacotherapy reported for NASH, and to improve the patient's metabolic syndrome, the focus is mainly on lifestyle modification, weight loss, ensuring a healthy diet, and increased physical activity; however, the recent approval of Rezdiffra (Resmetirom) by the US FDA may change this narrative. As per the reported studies, there is an increased articulation of uptake and efflux transporters of the liver, including OATP and MRP, in NASH, leading to changes in the drug's pharmacokinetic properties. This increase leads to alterations in the pharmacokinetic properties of drugs. Furthermore, modifications in Cytochrome P450 (CYP) enzymes can have a significant impact on these properties. Xenobiotics are metabolized primarily in the liver and constitute liver enzymes and transporters. This review aims to delve into the role of metabolism, transport, and potential herb-drug interactions in the context of NASH.


Subject(s)
Herb-Drug Interactions , Liver , Non-alcoholic Fatty Liver Disease , Humans , Non-alcoholic Fatty Liver Disease/metabolism , Non-alcoholic Fatty Liver Disease/drug therapy , Liver/metabolism , Animals , Cytochrome P-450 Enzyme System/metabolism , Membrane Transport Proteins/metabolism
11.
Ecotoxicol Environ Saf ; 280: 116553, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38850699

ABSTRACT

The incidence of nonalcoholic steatohepatitis (NASH) is related with perfluorooctane sulfonate (PFOS), yet the mechanism remains ill-defined. Mounting evidence suggests that ferroptosis plays a crucial role in the initiation of NASH. In this study, we used mice and human hepatocytes L-02 to investigate the role of ferroptosis in PFOS-induced NASH and the effect and molecular mechanism of PFOS on liver ferroptosis. We found here that PFOS caused NASH in mice, and lipid accumulation and inflammatory response in the L-02 cells. PFOS induced hepatic ferroptosis in vivo and in vitro, as evidenced by the decrease in glutathione peroxidase 4 (GPX4), and the increases in cytosolic iron, acyl-CoA synthetase long-chain family member 4 (ACSL4) and lipid peroxidation. In the PFOS-treated cells, the increases in the inflammatory factors and lipid contents were reversed by ferroptosis inhibitor. PFOS-induced ferroptosis was relieved by autophagy inhibitor. The expression of mitochondrial calcium uniporter (MCU) was accelerated by PFOS, leading to subsequent mitochondrial calcium accumulation, and inhibiting autophagy reversed the increase in MCU. Inhibiting mitochondrial calcium reversed the variations in GPX4 and cytosolic iron, without influencing the change in ACSL4, induced by PFOS. MCU interacted with ACSL4 and the siRNA against MCU reversed the changes in ACSL4,GPX4 and cytosolic iron systemically. This study put forward the involvement of hepatic ferroptosis in PFOS-induced NASH and identified MCU as the mediator of the autophagy-dependent ferroptosis.


Subject(s)
Alkanesulfonic Acids , Autophagy , Calcium , Coenzyme A Ligases , Ferroptosis , Fluorocarbons , Non-alcoholic Fatty Liver Disease , Ferroptosis/drug effects , Fluorocarbons/toxicity , Animals , Alkanesulfonic Acids/toxicity , Mice , Non-alcoholic Fatty Liver Disease/chemically induced , Non-alcoholic Fatty Liver Disease/pathology , Autophagy/drug effects , Coenzyme A Ligases/metabolism , Humans , Calcium/metabolism , Calcium Channels/metabolism , Male , Mice, Inbred C57BL , Mitochondria/drug effects , Mitochondria/metabolism , Cell Line , Hepatocytes/drug effects
12.
Article in English | MEDLINE | ID: mdl-38895925
13.
BMJ Open Gastroenterol ; 11(1)2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38844374

ABSTRACT

INTRODUCTION: The management of non-alcoholic steatohepatitis (NASH) is an unmet clinical need. Misoprostol, a structural analogue of naturally occurring prostaglandin E1, has been reported to decrease proinflammatory cytokine production and may have a potential role in treating NASH. We aimed to evaluate the efficacy and safety of misoprostol in treating patients with NASH. METHODS: In this phase 2, double-blind, randomised, placebo-controlled trial, patients with NASH were randomly assigned in a 1:1 ratio to receive 200 µg of misoprostol or placebo thrice daily for 2 months. The primary endpoint was an improvement in liver function tests (LFTs), interleukin-6 (IL-6) and endotoxin levels. The secondary endpoint was improvement in insulin resistance, dyslipidaemia, hepatic fibrosis and hepatic steatosis. RESULTS: A total of 50 patients underwent randomisation, of whom 44 (88%) were males. The age range was 25-64 years (mean±SE of mean (SEM) 38.1±1.4). 19 (38%) patients had concomitant type 2 diabetes mellitus. 32 (64%) patients were either overweight or obese. At the end of 2 months' treatment, a reduction in total leucocyte count (TLC) (p=0.005), alanine aminotransferase (ALT) (p<0.001), aspartate aminotransferase (AST) (p=0.002) and controlled attenuation parameter (CAP) (p=0.003) was observed in the misoprostol group, whereas placebo ensued a decline in ALT (p<0.001), AST (p=0.018), gamma-glutamyl transferase (GGT) (p=0.003), CAP (p=0.010) and triglycerides (p=0.048). There was no diminution in insulin resistance, hepatic fibrosis (elastography) and dyslipidaemia in both groups. However, misoprostol resulted in a significant reduction in CAP as compared with the placebo group (p=0.039). Moreover, in the misoprostol group, pretreatment and post-treatment IL-6 and endotoxin levels remained stable, while in the placebo group, an increase in the IL-6 levels was noted (p=0.049). Six (12%) patients had at least one adverse event in the misoprostol group, as did five (10%) in the placebo group. The most common adverse event in the misoprostol group was diarrhoea. No life-threatening events or treatment-related deaths occurred in each group. CONCLUSION: Improvement in the biochemical profile was seen in both misoprostol and placebo groups without any statistically significant difference. However, there was more improvement in steatosis, as depicted by CAP, in the misoprostol group and worsening of IL-6 levels in the placebo group. TRIAL REGISTRATION NUMBER: NCT05804305.


Subject(s)
Insulin Resistance , Interleukin-6 , Misoprostol , Non-alcoholic Fatty Liver Disease , Humans , Male , Female , Non-alcoholic Fatty Liver Disease/drug therapy , Middle Aged , Double-Blind Method , Adult , Misoprostol/administration & dosage , Misoprostol/therapeutic use , Misoprostol/adverse effects , Interleukin-6/blood , Treatment Outcome , Insulin Resistance/physiology , Liver Cirrhosis/drug therapy , Liver Function Tests/methods , Liver/drug effects , Liver/pathology , Liver/metabolism
14.
J Ethnopharmacol ; 333: 118415, 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38848971

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Artemisia argyi (AA), a herbal medicine traditionally used in Asian countries, to treat inflammatory conditions such as eczema, dermatitis, arthritis, allergic asthma and colitis. However, the mechanism of action of this plant with regard to hepatitis and other liver-related diseases is still unclear. AIM: This study aimed to investigate the effects of AA ethanol extract on NASH-related fibrosis and gut microbiota in a choline-deficient, L-amino acid-defined, high-fat diet (CDAHFD)-induced mouse model. METHODS: Male C57BL/6J mice were fed CDAHFD, with or without AA ethanol extract treatment. Biochemical markers, lipid profiles, hepatic mRNA expression levels of key genes, and the fibrosis area were assessed. In vitro, TGF-ß-stimulated human hepatic stellate LX-2 cells and mouse primary hepatic stellate cells (mHSCs) were used to elucidate the effects of AA ethanol extract on fibrosis and steatosis. 16S rRNA sequencing, QIIME2, and PICRUST2 were employed to analyze gut microbial diversity, composition, and functional pathways. RESULTS: Treatment with the AA ethanol extract improved plasma and liver lipid profiles, modulated hepatic mRNA expression levels of antioxidant, lipolytic, and fibrosis-related genes, and significantly reduced CDAHFD-induced hepatic fibrosis. Gut microbiota analysis revealed a marked decrease in Acetivibrio ethanolgignens abundance upon treatment with the AA ethanol extract, and its functional pathways were significantly correlated with NASH/fibrosis markers. The AA ethanol extract and its active components (jaceosidin, eupatilin, and chlorogenic acid) inhibited fibrosis-related markers in LX-2 and mHSC. CONCLUSION: The AA ethanol extract exerted therapeutic effects on CDAHFD-induced liver disease by modulating NASH/fibrosis-related factors and gut microbiota composition. Notably, AA treatment reduced the abundance of the potentially profibrotic bacterium (A. ethanolgignens). These findings suggest that AA is a promising candidate for treating NASH-induced fibrosis.

15.
Ann Pharmacother ; : 10600280241259528, 2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38887011

ABSTRACT

OBJECTIVE: To review the literature leading to the Food and Drug Administration (FDA) approval of the first medication, resmetirom, for the treatment of nonalcoholic steatohepatitis (NASH), including the pharmacology, pharmacokinetics, clinical studies, dosing, and adverse effects. Relevant data will be used to discuss how resmetirom impacts clinical practice. DATA SOURCES: A literature search was conducted using MEDLINE from database inception to May 12, 2024. Keywords included non-alcoholic steatohepatitis, nonalcoholic fatty liver disease, and resmetirom. Study selection, data extraction and all English-language studies involving the use of resmetirom for nonalcoholic fatty liver disease (NAFLD)/NASH were included. DATA SYNTHESIS: Resmetirom, a thyroid hormone receptor agonist, is administered at daily doses of either 80 mg or 100 mg. The drug was shown to provide NASH resolution as assessed by the NAFLD activity score, 80 mg-24.2%, 100 mg-25.9% compared to 14.2% with the placebo group (P < 0.001). Resmetirom, improved liver fibrosis, 80 mg-25.9%, 100 mg-29.9% compared to 9.7% with the placebo group (P < 0.001). Resmetirom's ability to improve fibrosis in patients with F2-F3 fibrosis offers valuable benefit for patients at risk of progressing to cirrhosis. RELEVANCE TO PATIENT CARE AND CLINICAL PRACTICE: Resmetirom expands the medication options available to treat patients with NASH which can be given alongside other medications to optimize metabolic factors such as glucagon-like peptide-1 and hydroxymethylglutaryl-coenzyme A reductase inhibitors. Resmetirom was well tolerated in studies. CONCLUSION: Resmetirom serves as an attractive option in patients diagnosed with NASH with evidence of advanced fibrosis (F2-F3) in combination with exercise, diet, and other multimodal therapies targeting metabolic risk factors.

16.
J Lipid Res ; 65(6): 100558, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38729350

ABSTRACT

Metabolic dysfunction-associated steatotic liver disease is the most common form of liver disease and poses significant health risks to patients who progress to metabolic dysfunction-associated steatohepatitis. Fatty acid overload alters endoplasmic reticulum (ER) calcium stores and induces mitochondrial oxidative stress in hepatocytes, leading to hepatocellular inflammation and apoptosis. Obese mice have impaired liver sarco/ER Ca2+-ATPase (SERCA) function, which normally maintains intracellular calcium homeostasis by transporting Ca2+ ions from the cytoplasm to the ER. We hypothesized that restoration of SERCA activity would improve diet-induced steatohepatitis in mice by limiting ER stress and mitochondrial dysfunction. WT and melanocortin-4 receptor KO (Mc4r-/-) mice were placed on either chow or Western diet (WD) for 8 weeks. Half of the WD-fed mice were administered CDN1163 to activate SERCA, which reduced liver fibrosis and inflammation. SERCA activation also restored glucose tolerance and insulin sensitivity, improved histological markers of metabolic dysfunction-associated steatohepatitis, increased expression of antioxidant enzymes, and decreased expression of oxidative stress and ER stress genes. CDN1163 decreased hepatic citric acid cycle flux and liver pyruvate cycling, enhanced expression of mitochondrial respiratory genes, and shifted hepatocellular [NADH]/[NAD+] and [NADPH]/[NADP+] ratios to a less oxidized state, which was associated with elevated PUFA content of liver lipids. In sum, the data demonstrate that pharmacological SERCA activation limits metabolic dysfunction-associated steatotic liver disease progression and prevents metabolic dysfunction induced by WD feeding in mice.


Subject(s)
Liver , Sarcoplasmic Reticulum Calcium-Transporting ATPases , Animals , Sarcoplasmic Reticulum Calcium-Transporting ATPases/metabolism , Mice , Liver/metabolism , Liver/pathology , Male , Fatty Liver/metabolism , Fatty Liver/pathology , Endoplasmic Reticulum Stress , Mice, Inbred C57BL , Oxidative Stress/drug effects , Diet, Western/adverse effects , Mice, Knockout
17.
J Mol Med (Berl) ; 102(7): 841-858, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38753041

ABSTRACT

Liver cirrhosis due to nonalcoholic steatohepatitis (NASH) is a life-threatening condition with increasing incidence world-wide. Although its symptoms are unspecific, it can lead to decompensation events such as ascites, hepatic encephalopathy, variceal hemorrhage, and hepatocellular carcinoma (HCC). In addition, an increased risk for cardiovascular events has been demonstrated in patients with NASH. Pharmacological treatments for NASH cirrhosis are not yet available, one of the reasons being the lack in surrogate endpoints available in clinical trials of NASH cirrhosis. The feasibility of non-invasive prognostic biomarkers makes them interesting candidates as possible surrogate endpoints if their change following treatment would result in better outcomes for patients in future clinical trials of NASH cirrhosis. In this systematic literature review, a summary of the available literature on the prognostic performance of non-invasive biomarkers in terms of cardiovascular events, liver-related events, and mortality is outlined. Due to the scarcity of data specific for NASH cirrhosis, this review includes studies on NAFLD whose evaluation focuses on cirrhosis. Our search strategy identified the following non-invasive biomarkers with prognostic value in studies of NASH patients: NAFLD fibrosis score (NFS), Fibrosis-4 (FIB-4), aspartate aminotransferase (AST) to platelet ratio index (APRI), enhanced liver fibrosis (ELF™), BARD (BMI, AST/ALT (alanine aminotransferase) ratio, diabetes), Hepamet Fibrosis Score (HFS), liver enzymes (AST + ALT), alpha-fetoprotein, platelet count, neutrophil to lymphocyte ratio (NLR), Lysyl oxidase-like (LOXL) 2, miR-122, liver stiffness, MEFIB (liver stiffness measured with magnetic resonance elastography (MRE) + FIB-4), and PNPLA3 GG genotype. The aim of the present systematic literature review is to provide the reader with a summary of the non-invasive biomarkers with prognostic value in NASH cirrhosis and give an evaluation of their utility as treatment monitoring biomarkers in future clinical trials.


Subject(s)
Biomarkers , Liver Cirrhosis , Non-alcoholic Fatty Liver Disease , Humans , Non-alcoholic Fatty Liver Disease/complications , Non-alcoholic Fatty Liver Disease/diagnosis , Liver Cirrhosis/diagnosis , Liver Cirrhosis/complications , Liver Cirrhosis/etiology , Prognosis
18.
Gut ; 73(8): 1376-1387, 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-38777571

ABSTRACT

BACKGROUND: Metabolic disorders and inflammatory bowel diseases (IBD) have captured the globe during Westernisation of lifestyle and related dietary habits over the last decades. Both disease entities are characterised by complex and heterogeneous clinical spectra linked to distinct symptoms and organ systems which, on a first glimpse, do not have many commonalities in clinical practice. However, experimental studies indicate a common backbone of inflammatory mechanisms in metabolic diseases and gut inflammation, and emerging clinical evidence suggests an intricate interplay between metabolic disorders and IBD. OBJECTIVE: We depict parallels of IBD and metabolic diseases, easily overlooked in clinical routine. DESIGN: We provide an overview of the recent literature and discuss implications of metabolic morbidity in patients with IBD for researchers, clinicians and healthcare providers. CONCLUSION: The Western lifestyle and diet and related gut microbial perturbation serve as a fuel for metabolic inflammation in and beyond the gut. Metabolic disorders and the metabolic syndrome increasingly affect patients with IBD, with an expected negative impact for both disease entities and risk for complications. This concept implies that tackling the obesity pandemic exerts beneficial effects beyond metabolic health.


Subject(s)
Gastrointestinal Microbiome , Inflammatory Bowel Diseases , Metabolic Diseases , Humans , Inflammatory Bowel Diseases/complications , Metabolic Diseases/complications , Gastrointestinal Microbiome/physiology , Metabolic Syndrome/complications , Life Style , Obesity/complications
19.
Ann Hepatol ; 29(4): 101510, 2024.
Article in English | MEDLINE | ID: mdl-38714224

ABSTRACT

INTRODUCTION AND OBJECTIVES: Non-alcoholic fatty liver disease (NAFLD) is the most common liver disease worldwide and can progress to non-alcoholic steatohepatitis (NASH) and, ultimately, cirrhosis. Clostridioides difficile is the most common nosocomial cause of diarrhea and is associated with worse clinical outcomes in other liver diseases, including cirrhosis, but has not been extensively evaluated in concomitant NAFLD/NASH. MATERIALS AND METHODS: We conducted a retrospective cohort study using the National Inpatient Sample database from 2015 to 2017. Patients with a diagnosis of CDI, NAFLD, and NASH were identified using International Classification of Diseases (Tenth Revision) codes. The outcomes of our study include length of stay, hospitalization cost, mortality, and predictors of mortality. RESULTS: The CDI and NASH cohort had a higher degree of comorbidity burden and prevalence of peptic ulcer disease, congestive heart failure, diabetes mellitus, and cirrhosis. Patients with NASH and CDI had a significantly higher mortality rate compared to the CDI only cohort (mortality, 7.11 % vs. 6.36 %; P = 0.042). Patients with CDI and NASH were at increased risk for liver-related complications, acute kidney injury, and septic shock (P < 0.001) compared to patients with CDI only. Older age, intestinal complications, pneumonia, sepsis and septic shock, and liver failure conferred an increased risk of mortality among the CDI and NASH cohort. CONCLUSIONS: Patients with NASH had a higher rate of liver-related complications, progression to septic shock, and mortality rate following CDI infection compared to the CDI only cohort.


Subject(s)
Clostridium Infections , Non-alcoholic Fatty Liver Disease , Humans , Non-alcoholic Fatty Liver Disease/mortality , Non-alcoholic Fatty Liver Disease/epidemiology , Non-alcoholic Fatty Liver Disease/complications , Male , Female , Retrospective Studies , Risk Factors , Middle Aged , Clostridium Infections/mortality , Clostridium Infections/epidemiology , Clostridium Infections/diagnosis , Aged , Clostridioides difficile , United States/epidemiology , Databases, Factual , Length of Stay/statistics & numerical data , Adult , Comorbidity , Hospital Costs , Risk Assessment
20.
Future Microbiol ; 2024 May 03.
Article in English | MEDLINE | ID: mdl-38700288

ABSTRACT

Aim: Endogenous ethanol production emerges as a mechanism of nonalcoholic steatohepatitis, obesity, diabetes and auto-brewery syndrome. Methods: To identify ethanol-producing microbes in humans, we used the NCBI taxonomy browser and the PubMed database with an automatic query and manual verification. Results: 85 ethanol-producing microbes in human were identified. Saccharomyces cerevisiae, Candida and Pichia were the most represented fungi. Enterobacteriaceae was the most represented bacterial family with mainly Escherichia coli and Klebsiella pneumoniae. Species of the Lachnospiraceae and Clostridiaceae family, of the Lactobacillales order and of the Bifidobacterium genus were also identified. Conclusion: This catalog will help the study of ethanol-producing microbes in human in the pathophysiology, diagnosis, prevention and management of human diseases associated with endogenous ethanol production.


Our bodies are home to a community of tiny living organisms like bacteria, viruses and archaea, collectively known as the microbiota. These microbes are crucial for our well-being and the proper functioning of our bodies. Certain things, like antibiotics or an imbalanced diet, can disturb this microbial community, known as dysbiosis. This can lead to illness. This review focuses on dysbiosis related to the production of ethanol, a type of alcohol, within our bodies. While the disruption of the microbiota has been linked to several health issues, the role of ethanol production in this is not well explored. This review aims to shed light on the microbes involved in this process. We found 85 microbes capable of producing ethanol in the human body, including 61 bacterial and 24 yeast species. This review provides a detailed updated catalog of ethanol-producing microbes in humans. Understanding these microbes and their role in diseases related to ethanol production could pave the way for better diagnostic tools and treatments in the future.

SELECTION OF CITATIONS
SEARCH DETAIL
...