Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 116
Filter
1.
Compr Rev Food Sci Food Saf ; 23(4): e13376, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38923698

ABSTRACT

Cold plasma treatment is an innovative technology in the food processing and preservation sectors. It is primarily employed to deactivate microorganisms and enzymes without heat and chemical additives; hence, it is often termed a "clean and green" technology. However, food quality and safety challenges may arise during cold plasma processing due to potential chemical interactions between the plasma reactive species and food components. This review aims to consolidate and discuss data on the impact of cold plasma on the chemical constituents and physical and functional properties of major food products, including dairy, meat, nuts, fruits, vegetables, and grains. We emphasize how cold plasma induces chemical modification of key food components, such as water, proteins, lipids, carbohydrates, vitamins, polyphenols, and volatile organic compounds. Additionally, we discuss changes in color, pH, and organoleptic properties induced by cold plasma treatment and their correlation with chemical modification. Current studies demonstrate that reactive oxygen and nitrogen species in cold plasma oxidize proteins, lipids, and bioactive compounds upon direct contact with the food matrix. Reductions in nutrients and bioactive compounds, including polyunsaturated fatty acids, sugars, polyphenols, and vitamins, have been observed in dairy products, vegetables, fruits, and beverages following cold plasma treatment. Furthermore, structural alterations and the generation of volatile and non-volatile oxidation products were observed, impacting the color, flavor, and texture of food products. However, the effects on dry foods, such as seeds and nuts, are comparatively less pronounced. Overall, this review highlights the drawbacks, challenges, and opportunities associated with cold plasma treatment in food processing.


Subject(s)
Food Handling , Plasma Gases , Plasma Gases/chemistry , Food Handling/methods , Fruit/chemistry , Vegetables/chemistry , Food Preservation/methods
2.
Chemosphere ; 362: 142613, 2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38880258

ABSTRACT

The suggested nonthermal plasma has been employed for organic pollutants remediation and bacterial inactivation with catalyst (CuFe2O4) via reactive oxygen and nitrogen species, along with catalytic density functional theory processing. The plasma generated species O2- (g.), OH• (g.), H2O2 (aq.), and NOx (aq.) are used for the remediation of organic pollutants, such as reactive black5 and bromocresol green with catalytic oxidative and reductive transformation, like as from Fe2+ (aq.) to Fe3+ (aq.) and from Cu2+ (aq.) to Cu1+ (aq.), respectively. In the presence of plasma with CuFe2O4, the pollutants remediation enhanced more, which is 95 ± 0.78%, rather than only plasma. After removal of pollutants, the plasma processing catalyzed by CuFe2O4 was highly inactivated the E. coli. bacterial growth, which inhibition rate is 100 ± 0.87% and 100 ± 0.69% for reactive black5 and bromocresol green, rather than only plasma, such as 86.41 ± 0.91% and 73.91 ± 0.56%, respectively. The CuFe2O4 generated super oxides (O2- (aq.)) and hydroxides (H+(aq.), OH⦁(aq.), and OOH⦁(aq.)) are rapidly react with bacteria to damage the bacterial cell membrane via catalytic redox process. However, the plasma generated species were react with catalyst to produce the e- charge densities under the redox transformation of spin orientation (±) 0.58 e-, which is 0.007, 0.009, and 0.005 electrons per cubic Angstrom, for CuFe2O4, H2O2(aq.), and NOx(aq.). The plasma generated species concentrations were quantified in the deionized water, which are H2O2(aq.) (145 ± 0.91 µM) and NOx(aq.) (112 ± 0.56 µM), respectively. After eradication of pollutants, the water pH was observed, which is near to the neutral at 6.57 ± 0.27 under the catalytic binary redox process. Moreover, the catalytic stability examined via reusability test, which were four cycles for reactive black5 and three cycles for bromocresol green. Furthermore, the CuFe2O4 nanoparticles conducted several characterizations to analyze the various properties, such as crystal, surface, functional, and elemental.

3.
Environ Pollut ; 356: 124390, 2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38897278

ABSTRACT

Microplastics (MPs) have become an environmental and health threat to aquatic species and humans because they are small and can easily reach water bodies for municipal and agricultural uses. MPs have been traced in food commodities and products derived from animals and even found in bottles of drinking water. Current treatment techniques for permanently destroying MPs require high energy inputs and thus are generally cost-inefficient. Atmospheric cold plasma (ACP) is a low-cost energy-efficient technology to produce highly reactive species that can induce physicochemical changes in plastic polymers. This study, for the first time, used ACP as a novel method for MPs treatment. Polypropylene (PP) and low-density polyethylene (LDPE) were used to prepare model MPs. The effects of plasma working gas (oxygen, nitrogen, or their mixture) and post-ACP treatment storage (24 h) on MPs were studied. ACP treatments for 30 min successfully degraded both MPs, by 1.4-11.3% in weight. PP MPs had larger weight reduction than LDPE and the ACP of mixture gas was most effective. PP MPs also showed increased carbonyl index after treatments, to up to 6.89, indicating hydrolytic degradation. For LDPE MPs, oxygen ACP caused more oxidation, but storage did not have an enhancing effect. The results of physicochemical analyses indicated that MPs degradation by ACP was possibly mainly through oxidative and hydrolytic reactions, but further characterizations are needed. This study proves that ACP is a promising strategy to remediate MPs pollution, and thus has great potential for addressing the severe challenges of MPs that the food and agriculture sectors are currently facing.

4.
J Colloid Interface Sci ; 674: 39-48, 2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38909593

ABSTRACT

Although the recent emergence of decoupled water electrolysis prevents typical H2/O2 mixing, the further development of decoupled water electrolysis has been confined by the lack of reliable redox mediator (RM) electrodes to support sustainable H2 production. As energy storage electrodes, layered double hydroxides (LDHs) possess inherently poor conductivity/stability, which can be improved by growing LDHs on graphene substrates in situ. The proper modification of the graphene surface structure can improve the electron transport and energy storage capacity of composite electrodes, while current methods are usually cumbersome and require high temperatures/chemical reagents. Therefore, in this study, dip coating was adopted to grow graphene oxide (GO) on nickel foam (NF). Then, the GO was reduced using nonthermal plasma (NTP) to reduced GO (rGO) in situ while simultaneously implementing N doping to obtain plasma-assisted N-doped rGO on NF (PNrGO/NF). The uniform conductive substrate ensured the subsequent growth of less-aggregated NiCo-LDH nanowires, which improved the conductivity and energy storage capacity (5.93 C/cm2 at 5 mA/cm2) of the NiCo-LDH@PNrGO/NF. For the decoupled system, the composite RM electrode exhibited a high buffering capacity for 1300 s during the decoupled H2/O2 evolution, and in the conventional coupled system, the necessary input voltage of 1.67 V was separated into two lower ones, 1.42/0.33 V for H2/O2 evolutions, respectively. Simultaneously, the RM possessed outstanding redox reversibility and structural stability during long-term cycling. This work could offer a feasible strategy for using NTP to synthesize excellent RM electrodes for application to decoupled water electrolysis.

5.
J Med Virol ; 96(5): e29655, 2024 May.
Article in English | MEDLINE | ID: mdl-38727091

ABSTRACT

Viruses can spread through contaminated aerosols and contaminated surface materials, and effective disinfection techniques are essential for virus inactivation. Nonthermal plasma-generated reactive oxygen and nitrogen species can effectively inactivate the coronavirus. We aim to interpret the coronavirus inactivation level and mechanism of surface interaction with materials with and without dielectric barrier discharge (DBD) plasma treatment. Nonthermal plasma, particularly surface-type DBD plasma, can inactivate human coronavirus 229E (HCoV-229E) on porous (paper, wood, mask) and nonporous (plastic, stainless steel, glass, Cu) materials. Virus inactivation was analyzed using a 50% tissue culture infectivity dose (TCID50) using cell line, flow cytometry, and immunofluorescence. Surfaces contaminated with HCoV-229E were treated at different time intervals (0-5 h) with and without plasma exposure (natural decay in ambient air conditions). HCoV-229E persistence conformed to the following order: plastic > cover glass > stainless steel > mask > wood > paper > Cu with and without plasma exposure. HCoV-229E was more stable in plastic, cover glass, and stainless steel in 5 h, and the viable virus titer gradually decreased from its initial log10 order of 6.892 to 1.72, 1.53, and 1.32 TCID50/mL, respectively, under plasma exposure. No virus was observed in Cu after treatment for 5 h. The use of airflow, ambient nitrogen, and argon did not promote virus inactivation. Flow cytometry and immunofluorescence analysis demonstrated a low expression level of spike protein (fluorescence intensity) during plasma treatment and in E and M genes expression compared with the virus control.


Subject(s)
Coronavirus 229E, Human , Plasma Gases , Virus Inactivation , Humans , Coronavirus 229E, Human/drug effects , Coronavirus 229E, Human/physiology , Virus Inactivation/drug effects , Plasma Gases/pharmacology , Cell Line , Porosity , Disinfection/methods , Stainless Steel
6.
J Appl Microbiol ; 135(5)2024 May 01.
Article in English | MEDLINE | ID: mdl-38749678

ABSTRACT

AIM: The main objective of the study was to develop and validate a model for the growth of Aspergillus brasiliensis on surfaces, specifically on agar culture medium. An additional aim was to determine conditions for complete growth inhibition of this micromycete using two different nonthermal plasma (NTP) sources. METHODS AND RESULTS: The developed model uses two key parameters, namely the growth rate and growth delay, which depend on the cultivation temperature and the amount of inoculum. These parameters well describe the growth of A. brasiliensis and the effect of NTP on it. For complete fungus inactivation, a single 10-minute exposure to a diffuse coplanar surface barrier discharge was sufficient, while a point-to-ring corona discharge required several repeated 10-minute exposures at 24-h intervals. CONCLUSIONS: The article presents a model for simulating the surface growth of A. brasiliensis and evaluates the effectiveness of two NTP sources in deactivating fungi on agar media.


Subject(s)
Aspergillus , Culture Media , Plasma Gases , Aspergillus/growth & development , Aspergillus/drug effects , Plasma Gases/pharmacology , Models, Biological , Temperature , Agar
7.
ACS Biomater Sci Eng ; 10(5): 3255-3267, 2024 05 13.
Article in English | MEDLINE | ID: mdl-38684056

ABSTRACT

Osteoporosis is a metabolic disease characterized by bone density and trabecular bone loss. Bone loss may affect dental implant osseointegration in patients with osteoporosis. To promote implant osseointegration in osteoporotic patients, we further used a nonthermal atmospheric plasma (NTAP) treatment device previously developed by our research group. After the titanium implant (Ti) is placed into the device, the working gas flow and the electrode switches are turned on, and the treatment is completed in 30 s. Previous studies showed that this NTAP device can remove carbon contamination from the implant surface, increase the hydroxyl groups, and improve its wettability to promote osseointegration in normal conditions. In this study, we demonstrated the tremendous osteogenic enhancement effect of NTAP-Ti in osteoporotic conditions in rats for the first time. Compared to Ti, the proliferative potential of osteoporotic bone marrow mesenchymal stem cells on NTAP-Ti increased by 180% at 1 day (P = 0.004), while their osteogenic differentiation increased by 149% at 14 days (P < 0.001). In addition, the results indicated that NTAP-Ti significantly improved osseointegration in osteoporotic rats in vivo. Compared to the Ti, the bone volume fraction (BV/TV) and trabecular number (Tb.N) values of NTAP-Ti in osteoporotic rats, respectively, increased by 18% (P < 0.001) and 25% (P = 0.007) at 6 weeks and the trabecular separation (Tb.Sp) value decreased by 26% (P = 0.02) at 6 weeks. In conclusion, this study proved a novel NTAP irradiation titanium implant that can significantly promote osseointegration in osteoporotic conditions.


Subject(s)
Mesenchymal Stem Cells , Osseointegration , Osteogenesis , Osteoporosis , Plasma Gases , Rats, Sprague-Dawley , Titanium , Titanium/pharmacology , Animals , Osteogenesis/drug effects , Osteoporosis/pathology , Osteoporosis/therapy , Osteoporosis/drug therapy , Plasma Gases/pharmacology , Plasma Gases/therapeutic use , Osseointegration/drug effects , Female , Rats , Mesenchymal Stem Cells/drug effects , Cell Differentiation/drug effects , Cell Proliferation/drug effects , Prostheses and Implants
8.
Bioengineering (Basel) ; 11(4)2024 Mar 27.
Article in English | MEDLINE | ID: mdl-38671741

ABSTRACT

The energy state of endosteal implants is dependent on the material, manufacturing technique, cleaning procedure, sterilization method, and surgical manipulation. An implant surface carrying a positive charge renders hydrophilic properties, thereby facilitating the absorption of vital plasma proteins crucial for osteogenic interactions. Techniques to control the surface charge involve processes like oxidation, chemical and topographical adjustments as well as the application of nonthermal plasma (NTP) treatment. NTP at atmospheric pressure and at room temperature can induce chemical and/or physical reactions that enhance wettability through surface energy changes. NTP has thus been used to modify the oxide layer of endosteal implants that interface with adjacent tissue cells and proteins. Results have indicated that if applied prior to implantation, NTP strengthens the interaction with surrounding hard tissue structures during the critical phases of early healing, thereby promoting rapid bone formation. Also, during this time period, NTP has been found to result in enhanced biomechanical fixation. As such, the application of NTP may serve as a practical and reliable method to improve healing outcomes. This review aims to provide an in-depth exploration of the parameters to be considered in the application of NTP on endosteal implants. In addition, the short- and long-term effects of NTP on osseointegration are addressed, as well as recent advances in the utilization of NTP in the treatment of periodontal disease.

9.
J Appl Microbiol ; 135(4)2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38520159

ABSTRACT

AIMS: Airborne transmission of diseases presents a serious threat to human health, so effective air disinfection technology to eliminate microorganisms in indoor air is very important. This study evaluated the effectiveness of a non-thermal plasma (NTP) air disinfector in both laboratory experiments and real environments. METHODS AND RESULTS: An experimental chamber was artificially polluted with a bioaerosol containing bacteria or viruses. Additionally, classroom environments with and without people present were used in field tests. Airborne microbial and particle concentrations were quantified. A 3.0 log10 reduction in the initial load was achieved when a virus-containing aerosol was disinfected for 60 min and a bacteria-containing aerosol was disinfected for 90 min. In the field test, when no people were present in the room, NTP disinfection decreased the airborne microbial and particle concentrations (P < 0.05). When people were present in the room, their constant activity continuously contaminated the indoor air, but all airborne indicators decreased (P < 0.05) except for planktonic bacteria (P = 0.094). CONCLUSIONS: NTP effectively inactivated microorganisms and particles in indoor air.


Subject(s)
Air Microbiology , Air Pollution, Indoor , Bacteria , Disinfection , Plasma Gases , Disinfection/methods , Air Pollution, Indoor/prevention & control , Bacteria/isolation & purification , Bacteria/drug effects , Humans , Plasma Gases/pharmacology , Aerosols , Disinfectants/pharmacology , Viruses/drug effects , Viruses/isolation & purification
10.
Nanomaterials (Basel) ; 14(3)2024 Jan 26.
Article in English | MEDLINE | ID: mdl-38334535

ABSTRACT

Nanoscale metallic titanium (Ti) offers unique energetic and biocompatible characteristics for the aerospace and biomedical industries. A rapid and sustainable method to form purified Ti nanocrystals is still in demand due to their high oxygen affinity. Herein, we report the production of highly purified Ti nanoparticles with a nonequilibrium face center cubic (FCC) structure from titanium tetrachloride (TiCl4) via a capacitively coupled plasma (CCP) route. Furthermore, we demonstrate a secondary H2 treatment plasma as an effective strategy to improve the air stability of a thin layer of nanoparticles by further removal of chlorine from the particle surface. Hexagonal and cubic-shaped Ti nanocrystals of high purity were maintained in the air after the secondary H2 plasma treatment. The FCC phase potentially originates from small-sized grains in the initial stage of nucleation inside the plasma environment, which is revealed by a size evolution study with variations of plasma power input.

11.
Dent Mater ; 40(3): 531-545, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38281846

ABSTRACT

OBJECTIVES: Nonthermal atmospheric or low-pressure plasma (NTP) can improve the surface characteristics of dental materials without affecting their bulk properties. This study aimed to systematically review the available scientific evidence on the effectiveness of using NTP for the surface treatment of etchable, silica-based dental ceramics before cementation, and elucidate its potential to replace the hazardous and technically demanding protocol of hydrofluoric acid (HF) etching. METHODS: A valid search query was developed with the help of PubMed's Medical Subject Headings (MeSH) vocabulary thesaurus and translated to three electronic databases: PubMed, Web of Science, and Scopus. The methodological quality of the studies was assessed according to an adapted version of the Methodological Index for Non-Randomized Studies (MINORS). RESULTS: Thirteen in vitro study reports published between 2008 and 2023 were selected for the qualitative and quantitative data synthesis. The implemented methodologies were diverse, comprising 19 different plasma treatment protocols with various device settings. Argon, helium, oxygen, or atmospheric air plasma may significantly increase the wettability and roughness of silicate ceramics by plasma cleaning, etching, and activation, but the treatment generally results in inferior bond strength values after cementation compared to those achieved with HF etching. The technically demanding protocol of plasma-enhanced chemical vapor deposition was employed more commonly, in which the surface deposition of hexamethyl disiloxane with subsequent oxygen plasma activation proved the most promising, yielding bond strengths comparable to those of the positive control. Lack of power analysis, missing adequate control, absence of examiner blinding, and non-performance of specimen aging were common methodological frailties that contributed most to the increase in bias risk (mean MINORS score 15.3 ± 1.1). SIGNIFICANCE: NTP can potentially improve the adhesive surface characteristics of dental silicate ceramics in laboratory conditions, but the conventional protocol of HF etching still performs better in terms of the resin-ceramic bond strength and longevity. More preclinical research is needed to determine the optimal NTP treatment settings and assess the aging of plasma-treated ceramic surfaces in atmospheric conditions.


Subject(s)
Dental Bonding , Dental Porcelain , Dental Porcelain/chemistry , Surface Properties , Resin Cements , Ceramics/chemistry , Silicates , Oxygen , Materials Testing , Hydrofluoric Acid/chemistry , Silanes/chemistry
12.
ACS Appl Mater Interfaces ; 16(4): 4561-4569, 2024 Jan 31.
Article in English | MEDLINE | ID: mdl-38240076

ABSTRACT

Polycrystalline Ni, Pd, Cu, Ag, and Au foils exposed to nonthermal plasma (NTP)-activated N2 are found to exhibit a vibrational feature near 2200 cm-1 in polarization-modulation infrared reflection-absorption spectroscopy (PM-IRAS) observations that are not present in the same materials exposed to N2 under nonplasma conditions. The feature is similar to that reported elsewhere and is typically assigned to chemisorbed N2. We employ a combination of temperature-dependent experiments, sequential dosing, X-ray photoelectron spectroscopy, isotopic labeling, and density functional theory calculations to characterize the feature. Results are most consistent with a triatomic species, likely NCO, with the C and O likely originating from ppm-level impurities in the ultrahigh-purity (UHP) Ar and/or N2 gas cylinders. The work highlights the potential for nonthermal plasmas to access adsorbates inaccessible thermally as well as the potential contributions of ppm-level impurities to corrupt the interpretation of plasma catalytic chemistry.

13.
Article in English | MEDLINE | ID: mdl-37899592

ABSTRACT

The hydrogenation of metal nanoparticles provides a pathway toward tuning their combustion characteristics. Metal hydrides have been employed as solid-fuel additives for rocket propellants, pyrotechnics, and explosives. Gas generation during combustion is beneficial to prevent aggregation and sintering of particles, enabling a more complete fuel utilization. Here, we discuss a novel approach for the synthesis of magnesium hydride nanoparticles based on a two-step aerosol process. Mg particles are first nucleated and grown via thermal evaporation, followed immediately by in-flight exposure to a hydrogen-rich low-temperature plasma. During the second step, atomic hydrogen generated by the plasma rapidly diffuses into the Mg lattice, forming particles with a significant fraction of MgH2. We find that hydrogenated Mg nanoparticles have an ignition temperature that is reduced by ∼200 °C when combusted with potassium perchlorate as an oxidizer, compared to the non-hydrogenated Mg material. This is due to the release of hydrogen from the fuel, jumpstarting its combustion. In addition, characterization of the plasma processes suggests that a careful balance between the dissociation of molecular hydrogen and heating of the nanoparticles must be achieved to avoid hydrogen desorption during production and achieve a significant degree of hydrogenation.

14.
Biosens Bioelectron ; 241: 115674, 2023 Dec 01.
Article in English | MEDLINE | ID: mdl-37717423

ABSTRACT

Chronic wounds caused due to bacterial biofilms are detrimental to a patient, and an immediate diagnosis of these bacteria can aid in an effective treatment, which is still an unmet clinical need. An instant and accurate identification of bacterial type could be made by utilizing the Toll-Like Receptors (TLRs) combined with Myeloid Differentiation factor 2 (MD-2). Given this, we have developed an electrochemical sensing platform to identify the gram-negative (gram-ve) bacteria using TLR4/MD-2 complex. The nonthermal plasma (NTP) technique was utilized to functionalize amine groups onto the carbon surface to fabricate cost-effective carbon paste working electrodes (CPEs). The proposed electrochemical sensor platform with a specially engineered electrochemical cell (E-Cell) identified the Escherichia coli (E. coli) in a wide linear range of 1.5×10° - 1.5×106 C.F.U./mL, accounting for a very low detection limit of 0.087 C.F.U./mL. The novel and cost-effective sensor platform identified gram-ve bacteria predominantly in a mixture of gram positive (gram+ve) bacteria and fungi. Further, towards real-time detection of bacteria and point-of-care (PoC) applications, the effect of the pond water matrix was studied, which was minimal, and the sensor could identify E. coli concentrations selectively, showing the potential application of the proposed platform towards real-time bacterial detection.

15.
ACS Appl Mater Interfaces ; 15(38): 44984-44995, 2023 Sep 27.
Article in English | MEDLINE | ID: mdl-37703171

ABSTRACT

Nonthermal plasma (NTP)-assisted catalytic dry reforming of methane (DRM) is considered a powerful single-stage reaction mechanism because of its ability to activate normally stable CO2 and CH4 at a low temperature under ambient conditions. The thermodynamic barrier of DRM requires a high operating temperature (>700 °C), which can be reduced by nonequilibrium plasma. Herein, we present a method for the wet-impregnation synthesis of CeO2 nanorod (NR)-supported 5 and 15 wt % NiO catalysts for efficient NTP-promoted DRM with an applied power in the range of 24.9-25.8 W (frequency: 20 kHz), a CH4:CO2 feed gas ratio of 100:250 sccm, and a total flow rate of 350 sccm. The presence of NTP dramatically increased the reaction activity, even at 150 °C, which is usually inaccessible for thermally catalyzed DRM. The CH4 and CO2 conversion reaches a maximum of 66 and 48%, respectively, at 500 °C with the 15 wt % NiO/CeO2 NR catalyst, which are much higher than the values obtained for the 5 wt % NiO/CeO2 NR catalyst under the same conditions. According to the X-ray photoelectron spectroscopy profile for 15 wt % NiO/CeO2 NR, a higher concentration of NiO on CeO2 increases the proportion of Ce3+ in the catalyst, suggesting enhanced oxygen vacancy concentration with an increased amount of NiO loading. Additionally, a higher NiO loading promotes a higher rate of replacement of Ce4+ with Ni2+, which generates more oxygen vacancies due to the induced charge imbalance and lattice distortion within the CeO2 lattice. As a result, it can be inferred that the incorporation of Ni ions into the CeO2 structure resulted in inhibited growth of CeO2 crystals due to the creation of a NixCe1-xO2-α solid solution and the production of oxygen vacancies.

16.
J Agric Food Chem ; 71(38): 14057-14067, 2023 Sep 27.
Article in English | MEDLINE | ID: mdl-37723886

ABSTRACT

Nonthermal plasma is a mild processing technology for food preservation. Its impact on lipid oxidation was investigated in this study. Stripped methylesters were considered as a basic lipid model system and were treated by a multihollow surface dielectric barrier discharge. In dry air plasma, O3, ·NO2, ·NO3, and 1O2 were identified as the main reactive species reaching the sample surface. Treatment time was the most prominent parameter affecting lipid oxidation, followed by the (specific) power input and the plasma-sample distance. In humid air plasma, less O3 was detected, but ONOOH and O2NOOH were generated and presumed to play a role in lipid oxidation. Ozone mainly resulted in the formation of carbonyl substances via the trioxolane pathway, while reactive nitrogen species (i.e., ·NO2, ·NO3, ONOOH, and O2NOOH) led to the formation of hydroperoxides. The impact of short-living radicals (e.g., ·O, ·N, ·OH, and ·OOH) was restricted in general, since they dissipated too fast to reach the sample.·NO, HNO3, H2O2, and UV radiation did not induce lipid oxidation. All the reactive species identified in this study were associated with the presence of O2 in the input gas.


Subject(s)
Hydrogen Peroxide , Nitrogen Dioxide , Lipid Metabolism , Plasma , Lipids
17.
Environ Res ; 238(Pt 1): 117176, 2023 12 01.
Article in English | MEDLINE | ID: mdl-37729962

ABSTRACT

Although nonthermal plasma (NTP) technology has high removal efficiency for volatile organic compounds (VOCs), it has limited carbon dioxide (CO2) selectivity, which hinders its practical application. In this study, α-MnO2 nanorods with tunable oxygen vacancies and hydroxyl groups were synthesized by two-step hydrothermal process to enhance their activity for deep oxidation of toluene. Hydrochloric acid (HCl) was used to assist in synthesis of α-MnO2 nanorods with tunable oxygen vacancies, furtherly, more hydroxyl groups were introduced to HCl-assisted synthesized α-MnO2 by K+ supplement. The results showed that the as-synthesized nanorods exhibited superior activity, improved by nearly 30% removal efficiency of toluene compared to pristine MnO2 at SIE = 339 J/L, and reaching high COx selectivity of 72% at SIE = 483 J/L, successfully promoting the deep oxidation of toluene. It was affirmed that oxygen vacancies played an important role in toluene conversion, improving the conversion of ozone (O3) and resulting in higher mobility of surface lattice oxygen species. Besides, the enhancement of deep oxidation performance was caused by the increase of hydroxyl groups concentration. In-situ DRIFTS experiments revealed that the adsorbed toluene on catalyst surface was oxidized to benzyl alcohol by surface lattice oxygen, and hydroxyl groups were also found participating in toluene adsorption. Overall, this study provides a new approach to designing catalysts for deep oxidation of VOCs.


Subject(s)
Nanotubes , Volatile Organic Compounds , Oxygen , Oxides , Manganese Compounds , Toluene , Catalysis
18.
Small ; : e2305383, 2023 Sep 03.
Article in English | MEDLINE | ID: mdl-37661349

ABSTRACT

2D transition metal carbides and nitrides (MXenes) are actively pursued as pseudocapacitive materials for supercapacitors owing to their advantages in electronic conductivity and surface reactivity. Increasing the fraction of ─O terminal groups in Ti3 C2 Tx is a promising approach to improve the pseudocapacitive charge storage in H2 SO4 electrolytes, but it suffers from a lack of effective functionalization methods and stability of the groups in practical operation. Here a low-temperature and environment-friendly approach via the interaction of nonequilibrium plasmas with Ti3 C2 Tx dispersion is demonstrated to generate abundant and stable surface-terminating O groups. The impact of the discharge environment (Ar, O2 , and H2 ) on the structural characteristics and electrochemical performance of Ti3 C2 Tx nanosheets is studied. The Ti3 C2 Tx modified in Ar and H2 maintains their original morphology but a significantly lower F content. Consequently, an extraordinarily high content (78.5%) of surface-terminating O groups is revealed by the high-resolution X-ray photoelectron spectroscopy spectra for the Ti3 C2 Tx samples modified in H2 plasma-treated solutions. Additionally, the Ti3 C2 Tx treated using H2 plasmas exhibits the best capacitive performance of 418.3 F g-1 at 2 mV s-1 , which can maintain 95.88% capacity after 10 000 cycles. These results contribute to the development of advanced nanostructured pseudocapacitive electrode materials for renewable energy storage applications.

19.
J Food Sci ; 88(11): 4403-4423, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37755601

ABSTRACT

Forward feed multilayered perception and central composite rotatable design were used to model the nonthermal plasma (NTP) experimental data in artificial neural network (ANN) and response surface methodology, respectively. The ANN was found to be more accurate in modeling the experimental dataset. The NTP process parameters (voltage and time) were optimized for pineapple juice within the range of 25-45 kV and 120-900 s using an ANN coupled with the genetic algorithm (ANN-GA). After 176 generations of GA, the ANN-GA approach produced the optimal condition, 38 kV and 631 s, and caused the inactivation of peroxidase (POD) and bromelain by 87.24% and 51.04%, respectively. However, 100.32% of the overall antioxidant capacity and 89.96% of the ascorbic acid were maintained in the optimized sample with a total color change (ΔE) of less than 1.97 at all plasma treatment conditions. Based on optimal conditions, NTP provides a sufficient level of POD inactivation combined with excellent phenolic component extractability and high antioxidant retention. Furthermore, plasma treatment had an insignificant effect (p > 0.05) on the physicochemical attributes (pH, total soluble solid, and titratable acidity) of juice samples. From the intensity peak of the Fourier-transform infrared spectroscopy analysis, it was found that the sugar components and phenolic compounds of plasma-treated juice were effectively preserved compared to the thermal-treated juice.


Subject(s)
Ananas , Antioxidants , Antioxidants/analysis , Ananas/chemistry , Ascorbic Acid/analysis , Fruit and Vegetable Juices/analysis , Phytochemicals
20.
Cells ; 12(16)2023 08 21.
Article in English | MEDLINE | ID: mdl-37626923

ABSTRACT

Although melanoma accounts for only 5.3% of skin cancer, it results in >75% of skin-cancer-related deaths. To avoid disfiguring surgeries on the head and neck associated with surgical excision, there is a clear unmet need for other strategies to selectively remove cutaneous melanoma lesions. Mohs surgery is the current treatment for cutaneous melanoma lesions and squamous and basal cell carcinoma. While Mohs surgery is an effective way to remove melanomas in situ, normal tissue is also excised to achieve histologically negative margins. This paper describes a novel combination therapy of nonthermal plasma (NTP) which emits a multitude of reactive oxygen species (ROS) and the injection of a pharmaceutical agent. We have shown that the effects of NTP are augmented by the DNA-damaging prodrug, tirapazamine (TPZ), which becomes a free radical only in conditions of hypoxemia, which is often enhanced in the tumor microenvironment. In this study, we demonstrate the efficacy of the combination therapy through experiments with B16-F10 and 1205 Lu metastatic melanoma cells both in vitro and in vivo. We also show the safety parameters of the therapy with no significant effects of the therapy when applied to porcine skin. We show the need for the intratumor delivery of TPZ in combination with the surface treatment of NTP and present a model of a medical device to deliver this combination therapy. The importance of functional gap junctions is indicated as a mechanism to promote the therapeutic effect. Collectively, the data support a novel therapeutic combination to treat melanoma and the development of a medical device to deliver the treatment in situ.


Subject(s)
Melanoma , Skin Neoplasms , Swine , Animals , Melanoma/drug therapy , Skin Neoplasms/drug therapy , Tirapazamine/pharmacology , Combined Modality Therapy , Tumor Microenvironment , Melanoma, Cutaneous Malignant
SELECTION OF CITATIONS
SEARCH DETAIL
...