Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.539
Filter
1.
Virol Sin ; 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38997087

ABSTRACT

Norovirus (NoV) infection is a major cause of gastroenteritis worldwide. The virus poses great challenges in developing vaccines with broad immune protection due to its genetic and antigenic diversity. To date, there are no approved NoV vaccines for clinical use. Here, we aimed to develop a broad-acting quadrivalent NoV vaccine based on a chimpanzee adenovirus vector, AdC68, carrying the major capsid protein (VP1) of noroviral GI and GII genotypes. Compared to intramuscular (i.m.), intranasal (i.n.), or other prime-boost immunization regimens (i.m. â€‹+ â€‹i.m., i.m. â€‹+ â€‹i.n., i.n. â€‹+ â€‹i.m.), AdC68-GI.1-GII.3 (E1)-GII.4-GII.17 (E3), administered via i.n. â€‹+ â€‹i.n. induced higher titers of serum IgG antibodies and higher IgA antibodies in bronchoalveolar lavage fluid (BALF) and saliva against the four homologous VP1s in mice. It also significantly stimulated the production of blocking antibodies against the four genotypes. In response to re-stimulation with virus-like particles (VLP)-GI.1, VLP-GII.3, VLP-GII.4, and VLP-GII.17, the quadrivalent vaccine administered according to the i.n. â€‹+ â€‹i.n. regimen effectively triggered specific cell-mediated immune responses, primarily characterized by IFN-γ secretion. Furthermore, the preparation of this novel quadrivalent NoV vaccine requires only a single recombinant adenovirus to provide broad preventive immunity against the major GI/GII epidemic strains, making it a promising vaccine candidate for further development.

2.
Sci Total Environ ; : 174884, 2024 Jul 19.
Article in English | MEDLINE | ID: mdl-39034007

ABSTRACT

Norovirus (NoV) is the primary cause of acute gastroenteritis (AGE) on a global scale. Numerous studies have demonstrated the immense potential of wastewater surveillance in monitoring the prevalence and spread of NoV within communities. This study employed a one-step reverse transcription-quantitative PCR to quantify NoV GI/GII in wastewater samples (n = 2574), which were collected once or twice a week from 38 wastewater treatment plants from March 2023 to February 2024 in Shenzhen. The concentrations of NoV GI and GII ranged from 5.0 × 104 to 1.7 × 106 copies/L and 4.1 × 105 to 4.5 × 106 copies/L, respectively. The concentrations of NoV GII were higher than those of NoV GI. Spearman's correlation analysis revealed a moderate correlation between the concentration of NoV in wastewater and the detection rates of NoV infections in sentinel hospitals. Baseline values were established for NoV concentrations in Shenzhen's wastewater, providing a crucial reference point for implementing early warning systems and nonpharmaceutical interventions to mitigate the impact of potential outbreaks. A total of 24 NoV genotypes were identified in 100 wastewater samples by sequencing. Nine genotypes of NoV GI were detected, with the major genotypes being GI.4 (38.6 %) and GI.3 (21.8 %); Fifteen genotypes of NoV GII were identified, with GII.4 (53.6 %) and GII.17 (26.0 %) being dominant. The trends in the relative abundance of NoV GI/GII were significantly different, and the trends in the relative abundance of NoV GII.4 over time were similar across all districts, suggesting a potential risk of cross-regional spread. Our findings underscore the effectiveness of wastewater surveillance in reflecting population-level NoV infections, capturing the diverse array of NoV genotypes, and utilizing NoV RNA in wastewater as a specific indicator to supplement clinical surveillance data, ultimately enhancing our ability to predict the timing and intensity of NoV epidemics.

3.
Sci Total Environ ; 946: 174419, 2024 Oct 10.
Article in English | MEDLINE | ID: mdl-38960169

ABSTRACT

Wastewater-based epidemiology (WBE) is a critical tool for monitoring community health. Although much attention has focused on severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), a causative agent of coronavirus disease 2019 (COVID-19), other pathogens also pose significant health risks. This study quantified the presence of SARS-CoV-2, influenza A virus (Inf-A), and noroviruses of genogroups I (NoV-GI) and II (NoV-GII) in wastewater samples collected weekly (n = 170) from July 2023 to February 2024 from five wastewater treatment plants (WWTPs) in Yamanashi Prefecture, Japan, by quantitative PCR. Inf-A RNA exhibited localized prevalence with positive ratios of 59 %-82 % in different WWTPs, suggesting regional outbreaks within specific areas. NoV-GI (94 %, 160/170) and NoV-GII (100 %, 170/170) RNA were highly prevalent, with NoV-GII (6.1 ± 0.8 log10 copies/L) consistently exceeding NoV-GI (5.4 ± 0.7 log10 copies/L) RNA concentrations. SARS-CoV-2 RNA was detected in 100 % of the samples, with mean concentrations of 5.3 ± 0.5 log10 copies/L in WWTP E and 5.8 ± 0.4 log10 copies/L each in other WWTPs. Seasonal variability was evident, with higher concentrations of all pathogenic viruses during winter. Non-normalized and normalized virus concentrations by fecal indicator bacteria (Escherichia coli and total coliforms), an indicator virus (pepper mild mottle virus (PMMoV)), and turbidity revealed significant positive associations with the reported disease cases. Inf-A and NoV-GI + GII RNA concentrations showed strong correlations with influenza and acute gastroenteritis cases, particularly when normalized to E. coli (Spearman's ρ = 0.70-0.81) and total coliforms (ρ = 0.70-0.81), respectively. For SARS-CoV-2, non-normalized concentrations showed a correlation of 0.61, decreasing to 0.31 when normalized to PMMoV, suggesting that PMMoV is unsuitable. Turbidity normalization also yielded suboptimal results. This study underscored the importance of selecting suitable normalization parameters tailored to specific pathogens for accurate disease trend monitoring using WBE, demonstrating its utility beyond COVID-19 surveillance.


Subject(s)
COVID-19 , SARS-CoV-2 , Wastewater , Wastewater/virology , Wastewater/microbiology , Japan/epidemiology , COVID-19/epidemiology , Norovirus/genetics , Norovirus/isolation & purification , Wastewater-Based Epidemiological Monitoring , Influenza A virus/genetics , Humans , Environmental Monitoring/methods
4.
Front Public Health ; 12: 1373322, 2024.
Article in English | MEDLINE | ID: mdl-38993708

ABSTRACT

Introduction: Norovirus is widely recognized as a leading cause of both sporadic cases and outbreaks of acute gastroenteritis (AGE) across all age groups. The GII.4 Sydney 2012 variant has consistently prevailed since 2012, distinguishing itself from other variants that typically circulate for a period of 2-4 years. Objective: This review aims to systematically summarize the prevalence of norovirus gastroenteritis following emergence of the GII.4 Sydney 2012 variant. Methods: Data were collected from PubMed, Embase, Web of Science, and Cochrane databases spanning the period between January 2012 and August 2022. A meta-analysis was conducted to investigate the global prevalence and distribution patterns of norovirus gastroenteritis from 2012 to 2022. Results: The global pooled prevalence of norovirus gastroenteritis was determined to be 19.04% (16.66-21.42%) based on a comprehensive analysis of 70 studies, which included a total of 85,798 sporadic cases with acute gastroenteritis and identified 15,089 positive cases for norovirus. The prevalence rate is higher in winter than other seasons, and there are great differences among countries and age groups. The pooled attack rate of norovirus infection is estimated to be 36.89% (95% CI, 36.24-37.55%), based on a sample of 6,992 individuals who tested positive for norovirus out of a total population of 17,958 individuals exposed during outbreak events. Conclusion: The global prevalence of norovirus gastroenteritis is always high, necessitating an increased emphasis on prevention and control strategies with vaccine development for this infectious disease, particularly among the children under 5 years old and the geriatric population (individuals over 60 years old).


Subject(s)
Caliciviridae Infections , Gastroenteritis , Norovirus , Gastroenteritis/epidemiology , Gastroenteritis/virology , Humans , Caliciviridae Infections/epidemiology , Caliciviridae Infections/virology , Norovirus/genetics , Prevalence , Disease Outbreaks/statistics & numerical data , Global Health/statistics & numerical data
5.
J Biochem ; 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-39012025

ABSTRACT

Noroviruses are a prevalent cause of human viral gastroenteritis, yet the precise mechanisms underlying their infection cycle, particularly their interactions with and entry into cells, remain poorly understood. Human norovirus (HuNoV) primarily targets human small intestinal epithelial cells, within which 3-O sulfogalactosylceramide (sulfatide) ranks among the most abundant glycosphingolipids (GSLs). While sulfatide involvement in the binding and infection mechanism of several viruses has been documented, its interaction with noroviruses remains underexplored. This study investigated whether noroviruses interact with sulfatide. We found that the recombinant viral capsid protein VP1 of HuNoV (genogroups I and II) and murine norovirus (genogroup V) exhibited robust binding to sulfatide compared with other tested GSLs using ELISA, TLC binding assay, and qRT-PCR binding assay. Notably, we found that sulfatide is a novel binding target for norovirus particles. Overall, our findings reveal a previously unknown norovirus-sulfatide interaction, proposing sulfatide as a potential candidate for norovirus infection receptors.

6.
Sci Rep ; 14(1): 15181, 2024 07 02.
Article in English | MEDLINE | ID: mdl-38956295

ABSTRACT

Human norovirus (HuNoV) is an enteric infectious pathogen belonging to the Caliciviridae family that causes occasional epidemics. Circulating alcohol-tolerant viral particles that are readily transmitted via food-borne routes significantly contribute to the global burden of HuNoV-induced gastroenteritis. Moreover, contact with enzymes secreted by other microorganisms in the environment can impact the infectivity of viruses. Hence, understanding the circulation dynamics of Caliciviridae is critical to mitigating epidemics. Accordingly, in this study, we screened whether environmentally abundant secretase components, particularly proteases, affect Caliciviridae infectivity. Results showed that combining Bacillaceae serine proteases with epsilon-poly-L-lysine (EPL) produced by Streptomyces-a natural antimicrobial-elicited anti-Caliciviridae properties, including against the epidemic HuNoV GII.4_Sydney_2012 strain. In vitro and in vivo biochemical and virological analyses revealed that EPL has two unique synergistic viral inactivation functions. First, it maintains an optimal pH to promote viral surface conformational changes to the protease-sensitive structure. Subsequently, it inhibits viral RNA genome release via partial protease digestion at the P2 and S domains in the VP1 capsid. This study provides new insights regarding the high-dimensional environmental interactions between bacteria and Caliciviridae, while promoting the development of protease-based anti-viral disinfectants.


Subject(s)
Bacillaceae , Polylysine , Serine Proteases , Streptomyces , Streptomyces/enzymology , Polylysine/pharmacology , Polylysine/chemistry , Polylysine/metabolism , Serine Proteases/metabolism , Bacillaceae/enzymology , RNA, Viral/genetics , RNA, Viral/metabolism , Humans , Genome, Viral , Animals , Norovirus/drug effects , Norovirus/genetics , Virus Inactivation/drug effects , Caliciviridae/genetics , Antiviral Agents/pharmacology
7.
BMC Public Health ; 24(1): 1755, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38956465

ABSTRACT

BACKGROUND: Norovirus gastroenteritis outbreaks were common in schools and kindergartens and were more related to faculty knowledge, attitude, and practice level. Gastroenteritis outbreaks caused by norovirus in educational institutions were the prominent cause of Public Health Emergency Events in China. This study aimed to explore the transformation in the contribution of KAP items related to outbreak prevention before and after intervention and the impact of demography factors on the intervention. METHODS: This study sampled 1095 kindergarten and 1028 school staff in Shenzhen, China. We created a questionnaire consisting of 35 items in 4 parts, and each item was rated on a scale of 1-5 according to the accuracy. Univariate analysis of non-parametric tests and binary logistic regression were used to estimate the score difference on demographic characteristics, each item and KAP. The odds ratios (OR) with 95% confidence and intervals (CI) for the association between statistical indicators were mainly used to explain the effects before and after intervention. RESULTS: Overall, 98.72% and 74.9% of the kindergarten and school participants were female, and all respondents had the highest scores difference of practice. Following intervention, univariate analysis indicated that primary school and female respondents achieved higher knowledge scores. Staff age beyond 35 (OR = 0.56, CI:0.34-0.92; OR = 0.67, CI:0.50-0.90) and with more than ten years of service (OR = 0.58, CI:0.36-0.91; OR = 0.38, CI:0.17-0.84) demonstrated a significantly lower post-intervention score for attitude and practice in both kindergartens and schools. The staff members exhibited a general lack of familiarity with the transmission of aerosols and the seasonal patterns of NoVs diarrhea pandemics. Item analysis revealed that kindergarten staff aged 26 and above demonstrated superior performance in terms of the efficacy of medical alcohol for inactivation (OR = 1.93, CI:1.13-3.31) and management strategies for unexplained vomiting among students (OR = 1.97, CI:1.21-3.18). Private school personnel displayed more significant improvement in their practices following educational interventions. School administrators' negative attitudes were primarily evident in their perspectives on morning inspections (OR = 0.11, CI:0.05-0.84). CONCLUSIONS: The potential negative impact of faculty age on NoVs-related knowledge can be mitigated by the positive attitudes fostered through seniority. Furthermore, it is imperative to urgently address the lack of knowledge among administrators, and the identification and treatment of vomiting symptoms should be emphasized as crucial aspects of school prevention strategies. Therefore, education authorities should implement comprehensive public health interventions in the future.


Subject(s)
Caliciviridae Infections , Disease Outbreaks , Health Knowledge, Attitudes, Practice , Norovirus , Schools , Humans , Female , Male , Caliciviridae Infections/prevention & control , Caliciviridae Infections/epidemiology , Adult , China/epidemiology , Surveys and Questionnaires , Disease Outbreaks/prevention & control , Diarrhea/prevention & control , Diarrhea/epidemiology , Gastroenteritis/prevention & control , Gastroenteritis/epidemiology , Gastroenteritis/virology , School Teachers/psychology , School Teachers/statistics & numerical data , Middle Aged
8.
Pediatr Transplant ; 28(5): e14821, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38992876

ABSTRACT

BACKGROUND: Norovirus is the most common cause of viral gastroenteritis. Studies in adult kidney recipients have documented significant morbidity associated with norovirus infection, but there are few studies in pediatric recipients. METHODS: Multicenter retrospective cohort study of pediatric kidney transplant recipients with norovirus, confirmed by stool PCR, between January 1, 2008, and December 31, 2018. Outcomes of interest included duration of diarrhea, incidence of chronic diarrhea, management strategies, and graft function. RESULTS: Forty pediatric kidney transplant recipients from four centers were identified for inclusion. Median age at transplant was 5.4 years (IQR 2.2-11.2 years), and median time post-transplant was 1.9 years (IQR 0.8-3.8 years). Median diarrheal duration was 16 days (IQR 6.0-41.5 days); 15 patients (43%) had acute diarrhea, 8 (23%) had persistent, and 12 (30%) had chronic diarrhea. Twenty-one (53%) patients developed acute kidney injury. Thirty-five (88%) patients required supplemental fluids, 8 (20%) patients underwent immunosuppression reduction for a median of 22 days, 5 (13%) were treated with nitazoxanide, and 5 (13%) received oral immunoglobulin. Acute rejection was diagnosed in 3 (8%) patients within 6 months of norovirus diagnosis. We observed no sustained decline in eGFR at 12 months after diarrhea resolution (median eGFR difference: 2.8 mL/min/1.73 m2 [IQR: -17.1, 7.4]). Of the patients in the cohort, two lost their graft at 6.8 and 30.0 months after the onset of diarrhea. CONCLUSION: Norovirus is associated with significant morbidity in pediatric kidney transplant recipients. Various treatment interventions are being employed for norovirus infection. Larger studies, both observational and interventional, are needed to determine the optimal treatment.


Subject(s)
Caliciviridae Infections , Diarrhea , Kidney Transplantation , Norovirus , Humans , Retrospective Studies , Child , Female , Male , Child, Preschool , Postoperative Complications/epidemiology , Gastroenteritis/virology , Treatment Outcome , Graft Rejection , Infant , Adolescent
9.
Heliyon ; 10(12): e32767, 2024 Jun 30.
Article in English | MEDLINE | ID: mdl-38975098

ABSTRACT

In June 2022, a gastroenteritis outbreak occurred in a town in Northern Italy, possibly associated with the ingestion of norovirus from public drinking water. Noroviruses are highly infectious RNA viruses, with high stability in the environment. They are the primary cause of non-bacterial gastroenteritis worldwide, and despite the fact that the disease is mainly self-limiting, norovirus infection can lead to severe illness in the immunocompromised, the elderly and children. Immediately after the notification of the suspected norovirus outbreak, faecal specimens were collected from hospitalised patients, and water samples were collected from public drinking fountains in the affected area, to confirm the presence of norovirus. Norovirus was detected in 80 % (95 % CI 0.58-0.91) of the faecal specimens, and in 50 % (95 % CI 0.28-0.72) of the water samples using RT (reverse transcription) Real-time PCR. The identification of GII genotype in all samples confirmed public drinking water as the source of norovirus contamination. In addition, in one faeces and one water sample, the co-presence of genotypes GI and GII was detected. The strains were typed by sequencing, with most of them belonging to the genotype GII.3. Immediately after the confirmation of norovirus contamination in public drinking water, the local competent authorities applied safety measures, resulting in a decline in number of cases. Moreover, after the application of disinfection protocols in the water plant, the sampling was repeated with negative results for norovirus in the affected area. However, positive samples were found in the neighbouring area (prevalence 10.00 %, 95 % CI 0.02-0.40) and in the water spring (prevalence 50.00 %, 95 % CI 0.21-0.78), suggesting norovirus persistence and spread from the water source. The prompt identification of the source of contamination, and collaboration with the local authorities guided the implementation of proper procedures to control viral spread, resulting in the successful control of the outbreak.

10.
Infect Genet Evol ; 123: 105637, 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38986824

ABSTRACT

Viral gastroenteritis is commonly reported in dogs and involves a great diversity of enteric viruses. In this research, viral diversity was investigated in dogs with diarrhea in Northern Brazil using shotgun metagenomics. Furthermore, the presence of norovirus (NoV) was investigated in 282 stool/rectal swabs of young/adult dogs with or without diarrhea from two public kennels, based on one-step reverse transcription polymerase chain reaction (RT-PCR) for genogroup VI and VII (GVI and GVII) and real-time RT-PCR for GI, GII, and GIV. Thirty-one viral families were identified, including bacteriophages. Phylogenetic analyses showed twelve complete or nearly complete genomes belonging to the species of Protoparvovirus carnivoran1, Mamastrovirus 5, Aichivirus A2, Alphacoronavirus 1, and Chipapillomavirus 1. This is the first description of the intestinal virome of dogs in Northern Brazil and the first detection of canine norovirus GVII in the country. These results are important for helping to understand the viral groups that circulate in the canine population.

11.
Article in English | MEDLINE | ID: mdl-39021123

ABSTRACT

Abstract: There were 108 norovirus-positive outbreaks in 2022, with 45 (41.7%) occurring during the first quarter (Q1), January-March. Aged care facilities accounted for 44.4% of norovirus-positive outbreaks; 43.5% were in childcare settings. Overall, the GII.P31/GII.4 genotype was the most common, involved in 39.4% of outbreaks; however, there were shifts in the most common genotype across the year. In Q1, the GII.P31/GII.4 genotype accounted for 73.3% of typed outbreaks, but by Q3 (July-September) the GII.P7/GII.6 was the most prominent genotype at 45.0%. In Q4 (October-December), the dominant genotype had changed again to GII.P16/GII.4 (52.6%). While the incidence of norovirus outbreaks in 2022 was average regarding overall prevalence and genotype diversity, there are still ongoing effects from the coronavirus disease 2019 (COVID-19) pandemic in relation to seasonality, outbreak demographics and specimen referral.


Subject(s)
COVID-19 , Caliciviridae Infections , Disease Outbreaks , Genotype , Norovirus , SARS-CoV-2 , Humans , Norovirus/genetics , Caliciviridae Infections/epidemiology , Caliciviridae Infections/virology , Incidence , COVID-19/epidemiology , COVID-19/virology , Victoria/epidemiology , SARS-CoV-2/genetics , Seasons , Gastroenteritis/epidemiology , Gastroenteritis/virology , Child , Aged
12.
Int J Mol Sci ; 25(13)2024 Jun 27.
Article in English | MEDLINE | ID: mdl-39000138

ABSTRACT

The ongoing battle against viral pandemics continues, with the possibility of future outbreaks. The search for effective antiviral compounds that can combat a diverse range of viruses continues to be a focal point of research. This study investigated the efficacy of two natural antimicrobial peptides (AMPs) (lactoferricin and LL-37), two synthetic AMPs (melimine and Mel4), and nine AMP mimics (758, 1091, 1096, 1083, 610, NAPL, 3-BIPL, 4-BIPL, and Sau-22) against influenza A virus strains H1N1 and H3N2, human adenovirus 5 (HAdV-5), and murine norovirus 1 (MNV-1). These compounds were tested using virus pre-treatment, cell pre-treatment, or post-cell entry treatment assays, electron microscopy, and circular dichroism (CD), alongside evaluations of cytotoxicity against the host cells. After virus pre-treatment, the AMP mimics 610 and Sau-22 had relatively low IC50 values for influenza strains H1N1 (2.35 and 6.93 µM, respectively) and H3N2 (3.7 and 5.34 µM, respectively). Conversely, natural and synthetic AMPs were not active against these strains. For the non-enveloped viruses, the AMP Mel4 and mimic 1083 had moderate activity against HAdV-5 (Mel4 IC50 = 47.4 µM; 1083 IC50 = 47.2 µM), whereas all AMPs, but none of the mimics, were active against norovirus (LL-37 IC50 = 4.2 µM; lactoferricin IC50 = 23.18 µM; melimine IC50 = 4.8 µM; Mel4 IC50 = 8.6 µM). Transmission electron microscopy demonstrated that the mimics targeted the outer envelope of influenza viruses, while the AMPs targeted the capsid of non-enveloped viruses. CD showed that Mel4 adopted an α-helical structure in a membrane mimetic environment, but mimic 758 remained unstructured. The diverse activity against different virus groups is probably influenced by charge, hydrophobicity, size, and, in the case of natural and synthetic AMPs, their secondary structure. These findings underscore the potential of peptides and mimics as promising candidates for antiviral therapeutics against both enveloped and non-enveloped viruses.


Subject(s)
Antiviral Agents , Norovirus , Norovirus/drug effects , Animals , Humans , Mice , Antiviral Agents/pharmacology , Antiviral Agents/chemistry , Influenza A virus/drug effects , Influenza A virus/physiology , Antimicrobial Peptides/pharmacology , Antimicrobial Peptides/chemistry , Influenza A Virus, H3N2 Subtype/drug effects , Dogs , Adenoviridae/drug effects , Influenza A Virus, H1N1 Subtype/drug effects , Madin Darby Canine Kidney Cells , Antimicrobial Cationic Peptides/pharmacology , Antimicrobial Cationic Peptides/chemistry
13.
Viruses ; 16(7)2024 Jun 26.
Article in English | MEDLINE | ID: mdl-39066189

ABSTRACT

Viruses impose a significant public health burden globally, and one of the key elements in controlling their transmission is the ability to inactivate them using disinfectants. However, numerous challenges to inactivating foodborne viruses exist due to inherent viral characteristics (such as recalcitrance to commonly used inactivation agents) and external factors (such as improper cleaning before application of inactivation agent, improper contact time, etc.). Given the potential for improper application of disinfectants (such as shorter than recommended contact time, improper disinfectant concentration, etc.), understanding the performance of a disinfectant in the presence of an organic load is important. To accomplish this, the introduction of simulated organic loads is often used when studying the efficacy of a disinfectant against different viruses. However, the different types of simulated organic loads used in foodborne virus inactivation studies or their relative effects on inactivation have not been reviewed. The purpose of this review is to survey different simulated organic load formulations used in studying foodborne virus inactivation, as well as present and compare the influence of these different formulations on viral inactivation. The findings included in this review suggest that many simulated organic load formulations can reduce disinfectants' efficacy against viruses. Based on the findings in this review, blood, particularly serum or feces, are among the most commonly used and efficacious forms of simulated organic load in many tests.


Subject(s)
Disinfectants , Virus Inactivation , Viruses , Virus Inactivation/drug effects , Disinfectants/pharmacology , Viruses/drug effects , Humans , Food Microbiology , Disinfection/methods , Foodborne Diseases/prevention & control , Foodborne Diseases/virology , Organic Chemicals/pharmacology , Organic Chemicals/chemistry
14.
J Infect Dis ; 230(1): 103-108, 2024 Jul 25.
Article in English | MEDLINE | ID: mdl-39052697

ABSTRACT

BACKGROUND: This study compared trends in norovirus cases to determine whether chief complaint-based emergency department (ED) visit data could reflect trends of norovirus in Korea. METHODS: The ED visits from the National Emergency Department Information System database and the weekly reported number of noroviruses from the sentinel surveillance system were collected between August 2017 and December 2020. The correlation between weekly norovirus cases and weekly ED visits considering the chief complaint and discharge diagnosis code was estimated using a 3-week moving average. RESULTS: In total, 6 399 774 patients with chief complaints related to digestive system disease visited an ED. A higher correlation between reported norovirus cases and ED visit with chief complaint of vomiting and discharge diagnosis code of gastroenteritis and colitis of unspecified origin or other and unspecified gastroenteritis and colitis of infectious origin was observed (R = 0.88, P < .0001). The correlation was highest for the age group 0-4 years (R = 0.89, P < .0001). However, no correlation was observed between the reported norovirus cases and the number of ED visits with norovirus identified as a discharge diagnosis code. CONCLUSIONS: ED visit data considering a combination of chief complaints and discharged diagnosis code would be useful for early detection of infectious disease trends.


Subject(s)
Caliciviridae Infections , Emergency Service, Hospital , Gastroenteritis , Norovirus , Humans , Caliciviridae Infections/epidemiology , Caliciviridae Infections/diagnosis , Emergency Service, Hospital/statistics & numerical data , Gastroenteritis/epidemiology , Gastroenteritis/virology , Child, Preschool , Infant , Republic of Korea/epidemiology , Adult , Adolescent , Child , Female , Male , Middle Aged , Young Adult , Aged , Sentinel Surveillance , Infant, Newborn
15.
J Virol ; 98(7): e0202023, 2024 Jul 23.
Article in English | MEDLINE | ID: mdl-38884472

ABSTRACT

Human noroviruses (HuNoVs) are a diverse group of RNA viruses that cause endemic and pandemic acute viral gastroenteritis. Previously, we reported that many HuNoV strains require bile or bile acid (BA) to infect human jejunal intestinal enteroid cultures. BA was not essential for the replication of a pandemic-causing GII.4 HuNoV strain. We found the hydrophobic BA glycochenodeoxycholic acid (GCDCA) promotes the replication of the BA-dependent strain GII.3 in jejunal enteroids. Furthermore, we found that inhibition of the G-protein-coupled BA receptor, sphingosine-1-phosphate receptor 2 (S1PR2), by JTE-013, reduced GII.3 infection dose-dependently and inhibited GII.3 cellular uptake in enteroids. Herein, we sought to determine whether S1PR2 is required for other BA-dependent HuNoV strains, the BA-independent GII.4, and whether S1PR2 is required for BA-dependent HuNoV infection in HIEs from other small intestinal segments. We found a second S1PR2 inhibitor, GLPG2938, reduces GII.3 infection dose-dependently, and an S1PR2 agonist (CYM-5520) enhances GII.3 replication in the absence of GCDCA. GII.3 replication also is abrogated in the presence of JTE-013 and CYM-5520. JTE-013 inhibition of S1PR2 in jejunal HIEs reduces GI.1, GII.3, and GII.17 (BA-dependent) but not GII.4 Sydney (BA-independent) infection, providing additional evidence of strain-specific differences in HuNoV infection. Finally, GII.3 infection of duodenal, jejunal, and ileal lines derived from the same individual is reduced with S1PR2 inhibition, indicating a common mechanism of BA-dependent infection among multiple segments of the small intestine. Our results support a model where BA-dependent HuNoVs exploit BA effects on S1PR2 to infect the entire small intestine.IMPORTANCEHuman noroviruses (HuNoVs) are important viral human pathogens that cause both outbreaks and sporadic gastroenteritis. These viruses are diverse, and many strains are capable of infecting humans. Our previous studies have identified strain-specific requirements for hydrophobic bile acids (BAs) to infect intestinal epithelial cells. Moreover, we identified a BA receptor, sphingosine-1-phosphate receptor 2 (S1PR2), required for infection by a BA-dependent strain. To better understand how various HuNoV strains enter and infect the small intestine and the role of S1PR2 in HuNoV infection, we evaluated infection by additional HuNoV strains using an expanded repertoire of intestinal enteroid cell lines. We found that multiple BA-dependent strains, but not a BA-independent strain, all require S1PR2 for infection. In addition, BA-dependent infection requires S1PR2 in multiple segments of the small intestine. Together, these results indicate that S1PR2 has value as a potential therapeutic target for BA-dependent HuNoV infection.


Subject(s)
Bile Acids and Salts , Norovirus , Sphingosine-1-Phosphate Receptors , Virus Replication , Humans , Norovirus/drug effects , Norovirus/physiology , Norovirus/genetics , Sphingosine-1-Phosphate Receptors/metabolism , Sphingosine-1-Phosphate Receptors/antagonists & inhibitors , Virus Replication/drug effects , Bile Acids and Salts/pharmacology , Bile Acids and Salts/metabolism , Caliciviridae Infections/virology , Caliciviridae Infections/metabolism , Pyridines/pharmacology , Gastroenteritis/virology , Jejunum/virology , Jejunum/metabolism , Organoids/virology , Organoids/metabolism , Pyrazoles
16.
Virol Sin ; 2024 May 30.
Article in English | MEDLINE | ID: mdl-38823781

ABSTRACT

Noroviruses (NoVs) are the most significant viral pathogens associated with waterborne and foodborne outbreaks of nonbacterial acute gastroenteritis in humans worldwide. This study aimed to investigate the prevalence and diversity of NoVs contaminated in the environmental water in Chiang Mai, Thailand. A total of 600 environmental water samples were collected from ten sampling sites in Chiang Mai from July 2020 to December 2022. The presence of NoV genogroups I (GI), GII, and GIV were examined using real-time RT-PCR assay. The genotype of the virus was determined by nucleotide sequencing and phylogenetic analysis. The results showed that NoV GI and GII were detected at 8.5% (51/600) and 11.7% (70/600) of the samples tested, respectively. However, NoV GIV was not detected in this study. NoV circulated throughout the year, with a higher detection rate during the winter season. Six NoV GI genotypes (GI.1-GI.6) and eight NoV GII genotypes (GII.2, GII.3, GII.7, GII.8, GII.10, GII.13, GII.17, and GII.21) were identified. Among 121 NoV strains detected, GII.17 was the most predominant genotype (24.8%, 30 strains), followed by GII.2 (21.5%, 26 strains), GI.3 (17.4%, 21 strains), and GI.4 (16.5%, 20 strains). Notably, NoV GII.3, GII.7, GII.8, and GII.10 were detected for the first time in water samples in this area. This study provides insight into the occurrence and seasonal pattern of NoV along with novel findings of NoV strains in environmental water in Thailand during the COVID-19 outbreak. Our findings emphasize the importance of further surveillance studies to monitor viral contamination in environmental water.

17.
Heliyon ; 10(11): e31946, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38882286

ABSTRACT

Norovirus (NoV) causing gastroenteritis symptoms, which has been reported in several hosts, including humans, pigs, and rats. This study was conducted to identify porcine viral infection and to characterize NoV strains from pigs in some provinces in north Vietnam. Totally, 102 fecal samples from diarrheal pigs on farms in six cities and provinces in northern Vietnam during July 2022 to March 2023 were collected. Polymerase chain reaction was used to identify the viral genome. Positive samples were used for nucleotide sequencing of the partial RNA-dependent RNA polymerase gene sequence. Five (4.9 %) positive stool samples were detected from animals farmed in five different farms, with one positive animal identified in each farm. Genetic analysis indicated that nucleotide identity was in the range 97.77-99.62 % among the 5 NoVs in this study. Phylogenetic analysis pointed out that the five NoVs were Genotype II.19 viruses. Genetically, these strains were closely related to porcine NoV strains that were reported in China in 2009.

18.
Infect Genet Evol ; 122: 105617, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38857640

ABSTRACT

Unlike pandemic GII.4 norovirus, GII.6 norovirus shows limited sequence variation in its major capsid protein VP1. In this study, we investigated the VP1 expression profiles, binding abilities, and cross-blocking effects of three GII.6 norovirus strains derived from three distinct variants. Norovirus VP1 was expressed using a recombinant baculovirus expression system and characterized by transmission electron microscopy, mass spectrometry, salivary histo-blood group antigen (HBGA)-virus like particles (VLPs) binding and binding blockade assays. Mass spectrometry revealed the expected molecular weight (MW) of full-length proteins and degraded or cleaved fragments of all three VP1 proteins. Peptide mapping showed loss of 2 and 3 amino acids from the N- and C-terminus, respectively. Further, the co-expression of VP1 and VP2 proteins did not lead to extra fragmentation during mass spectrometry. Salivary HBGA-VLP binding assay revealed similar binding patterns of the three GII.6 VP1 proteins. Salivary HBGA-VLP binding blockade assay induced cross-blocking effects. Our results demonstrate similar binding abilities against salivary HBGAs and specific cross-blocking effects for GII.6 norovirus strains derived from distinct variants, suggesting that fewer GII.6 strains from different evolutionary variants are needed for the development of norovirus vaccines.


Subject(s)
Capsid Proteins , Norovirus , Norovirus/genetics , Capsid Proteins/genetics , Capsid Proteins/metabolism , Capsid Proteins/chemistry , Humans , Blood Group Antigens/metabolism , Caliciviridae Infections/virology , Protein Binding
19.
Front Public Health ; 12: 1406133, 2024.
Article in English | MEDLINE | ID: mdl-38894991

ABSTRACT

Background: The outbreak of norovirus represents a significant public health emergency within densely populated, impoverished, and underdeveloped areas and countries. Our objective is to conduct an epidemiology study of a norovirus outbreak that occurred in a kindergarten located in rural western China. We aim to raise awareness and garner increased attention towards the prevention and control of norovirus, particularly in economically underdeveloped regions. Methods: Retrospective on-site epidemiological investigation results, including data on school layout, case symptoms, onset time, disposal methods and sample testing results, questionnaire surveys, and case-control study were conducted in a kindergarten to analyze the underlying causes of the norovirus outbreak. Results: A total of 15 cases were identified, with an attack rate of 44.12% (15/34). Among them, 10 cases were diagnosed through laboratory tests, and 5 cases were diagnosed clinically. Vomiting (100%, 15/15) and diarrhea (93.33%, 14/15) were the most common symptoms in the outbreak. Case control study revealed that cases who had close contact (<1 m) with the patient's vomitus (OR = 5.500) and those who had close contact with similar patients (OR = 8.000) had significantly higher ORs compared to the control participants. The current study demonstrated that improper handling of vomitus is positively associated with norovirus outbreak. The absence of standardized disinfection protocols heightens the risk of norovirus outbreaks. Conclusion: To our knowledge, this study represents the first investigation into a norovirus outbreak in rural areas of western China. We aspire that amidst rapid economic development, a greater emphasis will be placed on the prevention and control of infectious diseases in economically underdeveloped areas and countries.


Subject(s)
Caliciviridae Infections , Disease Outbreaks , Gastroenteritis , Norovirus , Rural Population , Humans , Caliciviridae Infections/epidemiology , Caliciviridae Infections/prevention & control , Disease Outbreaks/prevention & control , Disease Outbreaks/statistics & numerical data , China/epidemiology , Female , Male , Case-Control Studies , Retrospective Studies , Rural Population/statistics & numerical data , Gastroenteritis/epidemiology , Gastroenteritis/prevention & control , Gastroenteritis/virology , Gastroenteritis/economics , Child, Preschool , Surveys and Questionnaires , Schools , Child , Developing Countries/statistics & numerical data
20.
Infect Prev Pract ; 6(3): 100370, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38855735

ABSTRACT

Background: Gastroenteritis accounts for about 10% of the deaths among children, especially in immunocompromised children. Few studies on the prevalence of gastrointestinal infections caused by RNA viruses have been done in Iran. The aim of the study was to evaluate the detection of RNA viruses causing diarrhoea using a multiplex PCR. Methods: Stool samples were collected from 130 paediatric patients with diarrhoea who had acute lymphocytic leukaemia, non-Hodgkin lymphoma, and retinoblastoma. After RNA extraction and synthesis of cDNA, multiplex PCR was done to evaluate the presence of rotavirus, norovirus, astrovirus, and enterovirus. Results: There were 9 (6.9%), 7 (5.4%), 3 (2.3%), and 6 (4.6%) cases of rotavirus, norovirus, astrovirus, and enterovirus detected, respectively. One case of co-infection with astrovirus and norovirus was observed. Conclusions: This is the first report from Iran which identified the presence of common RNA viruses causing diarrhoea in immunocompromised children. Increased awareness of these viruses will enable healthcare professionals to improve strategies and policies to control spread and infection caused by these viruses.

SELECTION OF CITATIONS
SEARCH DETAIL
...