Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 45
Filter
1.
Curr Biol ; 34(6): 1161-1167.e3, 2024 03 25.
Article in English | MEDLINE | ID: mdl-38325374

ABSTRACT

Wood growth is key to understanding the feedback of forest ecosystems to the ongoing climate warming. An increase in spatial synchrony (i.e., coincident changes in distant populations) of spring phenology is one of the most prominent climate responses of forest trees. However, whether temperature variability contributes to an increase in the spatial synchrony of spring phenology and its underlying mechanisms remains largely unknown. Here, we analyzed an extensive dataset of xylem phenology observations of 20 conifer species from 75 sites over the Northern Hemisphere. Along the gradient of increase in temperature variability in the 75 sites, we observed a convergence in the onset of cell enlargement roughly toward the 5th of June, with a convergence in the onset of cell wall thickening toward the summer solstice. The increase in rainfall since the 5th of June is favorable for cell division and expansion, and as the most hours of sunlight are received around the summer solstice, it allows the optimization of carbon assimilation for cell wall thickening. Hence, the convergences can be considered as the result of matching xylem phenological activities to favorable conditions in regions with high temperature variability. Yet, forest trees relying on such consistent seasonal cues for xylem growth could constrain their ability to respond to climate warming, with consequences for the potential growing season length and, ultimately, forest productivity and survival in the future.


Subject(s)
Tracheophyta , Temperature , Ecosystem , Climate Change , Xylem , Seasons , Trees
2.
Sci Total Environ ; 914: 169963, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38215850

ABSTRACT

The use of frozen soil-vegetation feedback for predictive models is undergoing enormous changes under rapid climate warming. However, the influence of soil freeze-thaw (SFT) cycles on vegetation phenology and the underlying mechanisms remain poorly understood. By synthesizing a variety of satellite-derived data from 2002 to 2021 in the Northern Hemisphere (NH), we demonstrated a widespread positive correlation between soil thawing and the start of the growing season (SOS). Our results also showed that the SFT cycles had a significant impact on vegetation phenology mainly by altering the phenological sensitivities to daytime and nighttime temperatures, solar radiation and precipitation. Moreover, the effects of SFT cycles on the sensitivity of the SOS were more pronounced than those on the sensitivity of the end of the growing season (EOS) and the length of growing season (LOS). Furthermore, due to the degradation of frozen soil, the changes in phenological sensitivity in the grassland and tundra biomes were significantly larger than those in the forest. These findings highlighted the importance of incorporating the SFT as an intermediate process into process-based phenological models.


Subject(s)
Climate Change , Soil , Seasons , Plant Development , Ecosystem , Temperature
3.
J Hered ; 115(1): 149-154, 2024 Feb 03.
Article in English | MEDLINE | ID: mdl-37791665

ABSTRACT

The northern bat (Eptesicus nilssonii) is the most northern bat species in the world. Its distribution covers whole Eurasia, and the species is thus well adapted to different habitat types. However, recent population declines have been reported and rapid conservation efforts are needed. Here we present a high-quality de novo genome assembly of a female northern bat from Finland (BLF_Eptnil_asm_v1.0). The assembly was generated using a combination of Pacbio and Omni-C technologies. The primary assembly comprises 726 scaffolds spanning 2.0 Gb, represented by a scaffold N50 of 102 Mb, a contig N50 of 66.2 Mb, and a BUSCO completeness score of 93.73%. Annotation of the assembly identified 20,250 genes. This genome will be an important resource for the conservation and evolutionary genomic studies especially in understanding how rapid environmental changes affect northern species.


Subject(s)
Chiroptera , Animals , Female , Chiroptera/genetics , Genome , Genomics , Biological Evolution , Chromosomes
4.
Sci Bull (Beijing) ; 69(3): 367-374, 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38105165

ABSTRACT

The Tibetan Plateau (TP) exerts a profound influence on global climate over million-year timescales due to its past uplift. However, whether the ongoing climate changes over the TP, particularly the persistent reduction in its local albedo (referred to as "TP surface darkening"), can exert global impacts remains elusive. In this study, a state-of-the-art coupled land-atmosphere global climate model has been employed to scrutinize the impact of TP darkening on polar climate changes. Results indicate that the projected TP darkening has the potential to generate a stationary Rossby wave train, thereby modulating the atmospheric circulation in the high-latitudes of the Northern Hemisphere and instigating a dipole-like surface air temperature anomaly pattern around the Arctic region. An additional experiment suggests that the projected Arctic warming may in return warm the TP, thus forming a bi-directional linkage between these two climate systems. Given their association with vast ice reservoirs, the elucidation of this mechanism in our study is crucial in advancing our comprehension of Earth system climate projections.

5.
Sci Total Environ ; 903: 166607, 2023 Dec 10.
Article in English | MEDLINE | ID: mdl-37643705

ABSTRACT

Global climate change has led to significant changes in land surface phenology. At present, research on the factors influencing the start of the growing season (SOS) mainly focuses on single factor effects, such as temperature and precipitation, ignoring the combined action of multiple factors. The impact of multiple factors on the spatial and temporal patterns of the SOS in the Northern Hemisphere is not clear, and it is necessary to combine multiple factors to quantify the degrees of influence of different factors on the SOS. Based on the GIMMS3g NDVI dataset, CRU climate data and other factor data, we used geographic detector model, random forest regression model, multiple linear regression, partial correlation analysis and Sen + Mann-Kendall trend analysis to explore the variation of the SOS in the Northern Hemisphere to reveal the main driving factors and impact threshold of 17 influencing factors on the SOS. The results showed that (1) during the past 34 years (1982-2015), the SOS in Europe and Asia mainly showed an advancing trend, whereas the SOS in North America mainly showed a delaying trend. (2) The SOS was mainly controlled by frost frequency, temperature and humidity. Increasing frost frequency inhibited the advancement of the SOS, and increasing temperature and humidity promoted the advancement of the SOS. (3) There were thresholds for the influences of the driving factors on the SOS. Outside the threshold ranges, the response mechanism of the SOS to driving factors changed. The results are important for understanding the response of the SOS to global climate change.

6.
Mol Phylogenet Evol ; 186: 107870, 2023 09.
Article in English | MEDLINE | ID: mdl-37406952

ABSTRACT

The deciduous broad-leaved forests (DBLFs) cover large temperate and subtropical high-altitude regions in the Northern Hemisphere. They are home to rich biodiversity, especially to numerous endemic and relict species. However, we know little about how this vegetation in the Northern Hemisphere has developed through time. Here, we used Actaea (Ranunculaceae), an herbaceous genus almost exclusively growing in the understory of the Northern Hemisphere DBLFs, to shed light on the historical assembly of this biome in the Northern Hemisphere. We present a complete species-level phylogenetic analysis of Actaea based on five plastid and nuclear loci. Using the phylogenetic framework, we estimated divergence times, ancestral ranges, and diversification rates. Phylogenetic analyses strongly support Actaea as monophyletic. Sections Podocarpae and Oligocarpae compose a clade, sister to all other Actaea. The sister relationship between sections Chloranthae and Souliea is strongly supported. Section Dichanthera is not monophyletic unless section Cimicifuga is included. Actaea originated in East Asia, likely the Qinghai-Tibet Plateau, in the late Paleocene (c. 57 Ma), and subsequently dispersed into North America in the middle Eocene (c. 43 Ma) via the Thulean bridge. Actaea reached Europe twice, Japan twice, and Taiwan once, and all these five colonization events occurred in the late Miocene-early Pliocene, a period when sea level dropped. Actaea began to diversify at c. 43 Ma. The section-level diversification took place at c. 27-37 Ma and the species-level diversification experienced accelerations twice, which occurred at c. 15 Ma and c. 5 Ma, respectively. Our findings suggest that the Northern Hemisphere DBLFs might have risen in the middle Eocene and further diversified in the late Eocene-Oligocene, middle Miocene and early Pliocene, in association with climatic deterioration during these four periods.


Subject(s)
Actaea , Ranunculaceae , Phylogeny , Phylogeography , Forests
7.
Glob Chang Biol ; 29(14): 3924-3940, 2023 07.
Article in English | MEDLINE | ID: mdl-37165918

ABSTRACT

Forests are increasingly exposed to extreme global warming-induced climatic events. However, the immediate and carry-over effects of extreme events on forests are still poorly understood. Gross primary productivity (GPP) capacity is regarded as a good proxy of the ecosystem's functional stability, reflecting its physiological response to its surroundings. Using eddy covariance data from 34 forest sites in the Northern Hemisphere, we analyzed the immediate and carry-over effects of late-spring frost (LSF) and growing season drought on needle-leaf and broadleaf forests. Path analysis was applied to reveal the plausible reasons behind the varied responses of forests to extreme events. The results show that LSF had clear immediate effects on the GPP capacity of both needle-leaf and broadleaf forests. However, GPP capacity in needle-leaf forests was more sensitive to drought than in broadleaf forests. There was no interaction between LSF and drought in either needle-leaf or broadleaf forests. Drought effects were still visible when LSF and drought coexisted in needle-leaf forests. Path analysis further showed that the response of GPP capacity to drought differed between needle-leaf and broadleaf forests, mainly due to the difference in the sensitivity of canopy conductance. Moreover, LSF had a more severe and long-lasting carry-over effect on forests than drought. These results enrich our understanding of the mechanisms of forest response to extreme events across forest types.


Subject(s)
Droughts , Ecosystem , Seasons , Forests , Global Warming , Climate Change , Trees
8.
Sci Total Environ ; 874: 162425, 2023 May 20.
Article in English | MEDLINE | ID: mdl-36870485

ABSTRACT

Recent rapid warming has caused uneven impacts on the composition, structure, and functioning of northern ecosystems. It remains unknown how climatic drivers control linear and non-linear trends in ecosystem productivity. Based on a plant phenology index (PPI) product at a spatial resolution of 0.05° over 2000-2018, we used an automated polynomial fitting scheme to detect and characterize trend types (i.e., polynomial trends and no-trends) in the yearly-integrated PPI (PPIINT) for northern (> 30°N) ecosystems and their dependence on climatic drivers and ecosystem types. The averaged slope for the linear trends (p < 0.05) of PPIINT was positive across all the ecosystems, among which deciduous broadleaved forests and evergreen needle-leaved forests (ENF) showed the highest and lowest mean slopes, respectively. More than 50% of the pixels in ENF, arctic and boreal shrublands, and permanent wetlands (PW) had linear trends. A large fraction of PW also showed quadratic and cubic trends. These trend patterns agreed well with estimates of global vegetation productivity based on solar-induced chlorophyll fluorescence. Across all the biomes, PPIINT in pixels with linear trends showed lower mean values and higher partial correlation coefficients with temperature or precipitation than in pixels without linear trends. Overall, our study revealed the emergence of latitudinal convergence and divergence in climatic controls on the linear and non-linear trends of PPIINT, implying that northern shifts of vegetation and climate change may potentially increase the non-linear nature of climatic controls on ecosystem productivity. These results can improve our understanding and prediction of climate-induced changes in plant phenology and productivity and facilitate sustainable management of ecosystems by accounting for their resilience and vulnerability to future climate change.


Subject(s)
Ecosystem , Forests , Temperature , Arctic Regions , Plants , Climate Change , Seasons
9.
Am J Bot ; 110(3): 1-11, 2023 03.
Article in English | MEDLINE | ID: mdl-36794648

ABSTRACT

Biogeographic disjunction patterns, where multiple taxa are shared between isolated geographic areas, represent excellent systems for investigating the historical assembly of modern biotas and fundamental biological processes such as speciation, diversification, niche evolution, and evolutionary responses to climate change. Studies on plant genera disjunct across the northern hemisphere, particularly between eastern North America (ENA) and eastern Asia (EAS), have yielded tremendous insight on the geologic history and assembly of rich temperate floras. However, one of the most prevalent disjunction patterns involving ENA forests has been largely overlooked: that of taxa disjunct between ENA and cloud forests of Mesoamerica (MAM), with examples including Acer saccharum, Liquidambar styraciflua, Cercis canadensis, Fagus grandifolia, and Epifagus virginiana. Despite the remarkable nature of this disjunction pattern, which has been recognized for over 75 years, there have been few recent efforts to empirically examine its evolutionary and ecological origins. Here I synthesize previous systematic, paleobotanical, phylogenetic, and phylogeographic studies to establish what is known about this disjunction pattern to provide a roadmap for future research. I argue that this disjunction pattern, and the evolution and fossil record of the Mexican flora more broadly, represents a key missing piece in the broader puzzle of northern hemisphere biogeography. I also suggest that the ENA-MAM disjunction represents an excellent system for examining fundamental questions about how traits and life history strategies mediate plant evolutionary responses to climate change and for predicting how broadleaf temperate forests will respond to the ongoing climatic pressures of the Anthropocene.


Subject(s)
Plants , Phylogeny , Phylogeography , Asia, Eastern , Mexico
10.
Glob Chang Biol ; 29(8): 2227-2241, 2023 04.
Article in English | MEDLINE | ID: mdl-36602438

ABSTRACT

The start of the growing season (SOS) is essential to track the responses of vegetation to climate change. However, recent findings on whether the SOS in the middle-high latitudes of the Northern Hemisphere (NH) continued to advance or reversed during the global warming hiatus were not consistent. It is necessary to investigate the causes of this controversy and to examine the relationship between the SOS and preseason temperature trends. To this end, we first applied four widely used phenology extraction methods to derive the SOS from the GIMMS NDVI3g dataset and then used the ensemble empirical modal decomposition (EEMD) method to extract the nonlinear trends of the SOS and preseason temperature. Our results clarify, for the first time, that the limitations of the linear assumption-based trend analysis methods are an important but overlooked cause of the discrepancies among existing studies on whether the SOS was advanced or delayed in the NH (>30° N) during the global warming hiatus. We further revealed the range of the mismatches between the SOS and preseason temperature trends at the latitude, altitude and biome levels. Specifically, we discovered that the SOS in the NH (>30° N) obtained by the four phenology extraction methods showed a significant reversal from advance to delay during the global warming hiatus, and the corresponding average rate of change was very small. The area showing increasing preseason temperatures decreased during the global warming hiatus, but it always occupied most of the NH (>30° N). However, delayed SOS trends were dominant in the NH from 50° N to 60° N, above 3000 m and in biomes other than TBMF and BF. Accordingly, using an EEMD-like approach to evaluate the changes in the SOS and preseason temperature is necessary for improving our understanding of the changes in the SOS and their association with climate.


Subject(s)
Global Warming , Plant Development , Seasons , Ecosystem , Climate Change , Temperature
11.
Sci Total Environ ; 867: 161460, 2023 Apr 01.
Article in English | MEDLINE | ID: mdl-36626988

ABSTRACT

The rapid warming of Arctic is causing increased fire activities in the boreal Northern Hemisphere (NH), leading to unprecedent changes in the global carbon cycling, human health and ecosystems. Understanding the interaction between fire and climate in this far north region is crucial for predicting future changes of wildfires. However, fire records over geological time scales are still scarce in the high latitudes of NH to provide comprehensive pictures of the fire history in this region. Here, we used the flux of levoglucosan (Lev) and its isomers in a sediment profile YN from Svalbard, high Arctic, as proxies for the changes in biomass burning from ∼9-2 kyr BP (thousand years before present). Backward trajectories and comparison with charcoal syntheses from various regions confirmed that the Lev transport to the profile site is sourced from the fire activities in the boreal NH, especially in northern Europe and northern Siberia. The Lev flux exhibited a slight overall decreasing trend at ∼3 %/kyr (p = 0.09) over the study period, as well as centennial maxima at ∼9, 8-7, 6, 5, and 4-3 kyr BP (p = 0.06). On sub-orbital scales, the long-term decrease in fire activities corresponded to trends of summer temperature in the extratropics of the NH (p = 0.01, r = 0.42), reflecting their regulation of fuel availability and flammability. On centennial to sub-millennial time scales, high levels of biomass burning were associated with periods of increased North Atlantic ice-rafted debris (p = 0.02, r = 0.38), which were indicative of cold and dry conditions over most of the source regions, reflecting the impacts of dryness on fuel flammability. The results suggested that enhanced Arctic amplification on centennial time scales may reduce biomass burning in most of the boreal NH, although fires in some mid-latitude regions may be facilitated.

12.
Glob Chang Biol ; 29(6): 1606-1617, 2023 03.
Article in English | MEDLINE | ID: mdl-36451586

ABSTRACT

Despite growing interest in predicting plant phenological shifts, advanced spring phenology by global climate change remains debated. Evidence documenting either small or large advancement of spring phenology to rising temperature over the spatio-temporal scales implies a potential existence of a thermal threshold in the responses of forests to global warming. We collected a unique data set of xylem cell-wall-thickening onset dates in 20 coniferous species covering a broad mean annual temperature (MAT) gradient (-3.05 to 22.9°C) across the Northern Hemisphere (latitudes 23°-66° N). Along the MAT gradient, we identified a threshold temperature (using segmented regression) of 4.9 ± 1.1°C, above which the response of xylem phenology to rising temperatures significantly decline. This threshold separates the Northern Hemisphere conifers into cold and warm thermal niches, with MAT and spring forcing being the primary drivers for the onset dates (estimated by linear and Bayesian mixed-effect models), respectively. The identified thermal threshold should be integrated into the Earth-System-Models for a better understanding of spring phenology in response to global warming and an improved prediction of global climate-carbon feedbacks.


Subject(s)
Tracheophyta , Bayes Theorem , Forests , Cold Temperature , Temperature , Climate Change , Seasons
13.
Aerosol Air Qual Res ; 23(12): 1-15, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38264538

ABSTRACT

Future estimates of atmospheric pollutant concentrations serve as critical information for policy makers to formulate current policy indicators to achieve future targets. Tropospheric burden of O3 is modulated not only by anthropogenic and natural precursor emissions, but also by the downward transport of O3 associated with stratosphere to troposphere exchange (STE). Hence changes in the estimates of STE and its contributions are key to understand the nature and intensity of future ground level O3 concentrations. The difference in simulated O3 mixing ratios with and without the O3-Potential Vorticity (PV) parameterization scheme is used to represent the model estimated influence of STE on tropospheric O3 distributions. Though STE contributions remain constant in Northern hemisphere as a whole, regional differences exist with Europe (EUR) registering increased STE contribution in both spring and winter while Eastern China (ECH) reporting increased contribution in spring in 2050 (RCP8.5) as compared to 2015. Importance of climate change can be deduced from the fact that ECH and EUR recorded increased STE contribution to O3 in RCP8.5 compared to RCP4.5. Comparison of STE and non-STE meteorological process contributions to O3 due to climate change revealed that contributions of non-STE processes were highest in summer while STE contributions were highest in winter. EUR reported highest STE contribution while ECH reported highest non-STE contribution. None of the 3 regions show consistent low STE contribution due to future climate change (< 50%) in all seasons indicating the significance of STE to ground level O3.

14.
Sci Bull (Beijing) ; 67(5): 537-546, 2022 03 15.
Article in English | MEDLINE | ID: mdl-36546175

ABSTRACT

Lake ice thickness (LIT) is important for regional hydroclimate systems, lake ecosystems, and human activities on the ice, and is thought to be highly susceptible to global warming. However, the spatiotemporal variability in LIT is largely unknown due to the difficulty in deriving in situ measurements and the lack of an effective remote sensing platform. Despite intensive development and applications of lake ice models driven by general circulation model output, evaluation of the global LIT is mostly based on assumed "ideal" lakes in each grid cell of the climate forcing data. A method for calculating the actual global LIT is therefore urgently needed. Here we use satellite altimetry to retrieve ice thickness for 16 large lakes in the Northern Hemisphere (Lake Baikal, Great Slave Lake, and others) with an accuracy of ∼0.2 m for almost three decades. We then develop a 1-D lake ice model driven primarily by remotely sensed data and cross-validated with the altimetric LIT to provide a robust means of estimating LIT for lakes larger than 50 km2 across the Northern Hemisphere. Mean LIT (annual maximum ice thickness) for 1313 simulated lakes and reservoirs covering ∼840,000 km2 for 2003-2018 is 0.63 ± 0.02 m, corresponding to ∼485 Gt of water. LIT changes are projected for 2071-2099 under RCPs 2.6, 6.0, and 8.5, showing that the mean LIT could decrease by ∼0.35 m under the worst concentration pathway and the associated lower ice road availability could have a significant impact on socio-economic activities.


Subject(s)
Ice , Lakes , Humans , Ice/analysis , Ecosystem , Climate , Global Warming
15.
Hum Vaccin Immunother ; 18(6): 2125754, 2022 Nov 30.
Article in English | MEDLINE | ID: mdl-36162068

ABSTRACT

During the COVID-19 pandemic, immunization programs for other respiratory infections, notably influenza continued worldwide but attracted less public or political attention than COVID-19 vaccinations. Due to non-pharmaceutical intervention measures the global influenza burden decreased substantially; but with lifting of restrictions a rebound in other respiratory virus pathogens is both plausible and likely. This article discusses lessons identified from the UK and USA, and provides recommendations for future influenza vaccination programs in light of emerging data from the southern hemisphere and the need for harmonization with COVID-19 vaccination, focusing on operational delivery and messaging to practitioners and the public.


Subject(s)
COVID-19 , Influenza Vaccines , Influenza, Human , Viruses , Humans , COVID-19/epidemiology , COVID-19/prevention & control , Influenza, Human/epidemiology , Influenza, Human/prevention & control , Pandemics/prevention & control , COVID-19 Vaccines , Vaccination , United Kingdom/epidemiology
16.
Sci Total Environ ; 850: 157960, 2022 Dec 01.
Article in English | MEDLINE | ID: mdl-35964748

ABSTRACT

The climate aridity since the mid-20th century has raised concerns about water resources on the Chinese Loess Plateau (CLP). A lack of extended observation-like precipitation records for the eastern CLP (ECLP) means that it remains unclear whether or not the current arid state of the CLP is unprecedented, and the spatial-temporal characteristics of hydroclimatic variability across the CLP over past centuries are not well understood. Here we present a regional hydrological-year precipitation reconstruction for the Heichashan Mountains, which successfully captures hydroclimate changes on the ECLP since 1773 CE. The reconstruction explains 48.72 % of the observed variance for 1957-2019 CE and reveals a wetting trend since the early 2000s and shows 2014-2020 CE to have been the second wettest period over the past 248 years. 1910-1932 CE was the longest and driest period over the past centuries. Furthermore, the 19th century was relatively wet, whereas the 20th century was dry. We demonstrate that droughts tend to occur in warm periods. Combining our new reconstruction with previously published hydroclimatic reconstructions, we find that hydroclimate has changed synchronously on the ECLP and the western CLP (WCLP) for most of the past two centuries. Some regional differences do exist, for example in the 1890s-1920s, when aridity gradually intensified across the ECLP, no similar drying is evident in records for the WCLP, although the 1920s megadrought occurred in both the ECLP and WCLP. Another difference is in the onset of the 20th-century aridity, which began in the 1950s on the ECLP, around 20 years later than it began on the WCLP. In addition to the known influences of the Asian Summer Monsoon and related large-scale circulations, this work highlights a major finding that the 1920s megadrought may be related to a regime shift in Northern Hemisphere temperature.


Subject(s)
Climate Change , Climate , Hydrology , China , Droughts , Seasons
17.
Public Health ; 208: 105-110, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35753085

ABSTRACT

OBJECTIVE: The COVID-19 pandemic that emerged in December 2019 brought human life to a standstill. With over 2-year since the pandemic originated from Wuhan, SARS-CoV-2 has caused more than 6 million deaths worldwide. With the emergence of mutant strains and COVID-19 surge waves, it becomes critically important to conduct epidemiological studies that allow us to understand the role of various environmental factors on SARS-CoV-2 infectivity. Our earlier study reported a strong negative correlation between temperature and COVID-19 incidence. This research is an extension of our previous study with an attempt to understand the global analysis of COVID-19 in northern hemisphere countries. STUDY DESIGN: This research aims at achieving a better understanding of the correlation of environmental factors such as temperature, sunlight, and humidity with new cases of COVID-19 in northern hemisphere from March 2020 to February 2022. METHODS: To understand the relationship between the different environmental variants and COVID-19, a statistical approach was employed using Pearson, Spearman and Kendall analysis. RESULTS: Month-wise univariate analysis indicated a strong negative correlation of temperature and sunlight with SARS-CoV-2 infectivity, whereas inconsistencies were observed in correlation analysis in the case of humidity in winter months. Moreover, a strong negative correlation between average temperature of winter months and COVID-19 cases exists as evidenced by Pearson, Spearman, and Kendall analyses. In addition, correlation pattern between monthly temperature and COVID-19 cases of a country mimics to that of sunlight of a country. CONCLUSION: This pilot study proposes that low temperatures and low sunlight might be additional risk factors for SARS-CoV-2 infectivity, mostly in northern hemisphere countries.


Subject(s)
COVID-19 , COVID-19/epidemiology , Data Analysis , Humans , Pandemics , Pilot Projects , SARS-CoV-2
18.
Sci Total Environ ; 828: 154464, 2022 Jul 01.
Article in English | MEDLINE | ID: mdl-35278536

ABSTRACT

Large stocks of soil organic carbon (SOC) accumulated in the Northern Hemisphere permafrost regions may be vulnerable to climatic warming, but global estimates of SOC distribution and magnitude in permafrost regions still have large uncertainties. Based on multiple high-resolution environmental variables and a compiled soil sample dataset (>3000 soil profiles), we used machine-learning methods to estimate the size and spatial distribution of SOC for the top 3 m soils in the Northern Hemisphere permafrost regions. We also identified key environmental predictors of SOC. The results showed that the SOC storage for the top 3 m soil was 1079 ± 174 Pg C across the Northern Hemisphere permafrost regions (20.8 × 106 km2), including 1057 ± 167 Pg C in the northern permafrost regions and 22 ± 7 Pg C in the Third Pole permafrost regions. The mean annual air temperature and NDVI are the main controlling factors for the spatial distribution of SOC stocks in the northern and the Third Pole permafrost regions. Our estimations were more accurate than the existing global SOC stock maps. The results improve our understanding of the regional and global permafrost carbon cycle and their feedback to the climate system.


Subject(s)
Permafrost , Carbon , Soil , Temperature
19.
Environ Res ; 210: 112938, 2022 07.
Article in English | MEDLINE | ID: mdl-35176315

ABSTRACT

As the most important contributors to global warming in recent decades, anthropogenic carbon dioxide (CO2) and black carbon (BC) play significant roles in driving the global/regional hydrological cycle. Most of previous studies on the climate effects of CO2 and BC focused on tropics and monsoon regions. The influences and their differences of CO2 and BC on the precipitation in Northern Hemisphere mid-latitudes (NHML) have not been paid enough attention. Here we investigate the NHML precipitation responses to a tenfold increase in BC and a doubling of CO2 by analyzing the multi-model simulation results from the Precipitation Driver Response Model Intercomparison Project (PDRMIP). Our results show that the NHML precipitation changes induced by BC and CO2 distinctly differ in trends and seasons. The increased BC will reduce the NHML precipitation, especially in summer, whereas the doubled CO2 will enhance the regional precipitation, mainly in winter. The differences between the BC and CO2 induced NHML precipitation changes are most distinct in Central Asia and central North America. Further analyses reveal the underlying mechanisms of the distinct responses of precipitation: the decrease in NHML precipitation induced by BC aerosols mainly results from the dynamic effect by reducing the temperature gradient, thereby weakening the zonal wind, while the increased precipitation by CO2 is caused by the increase in atmospheric water vapor through the thermodynamic effect. The results of these simulations are helpful for understanding the mechanism of anthropogenic precipitation changes in mid-latitudes.


Subject(s)
Carbon Dioxide , Climate Change , Aerosols , Carbon Dioxide/analysis , Soot/analysis , Wind
20.
Sci Total Environ ; 804: 150182, 2022 Jan 15.
Article in English | MEDLINE | ID: mdl-34798735

ABSTRACT

Understanding the evolutions of the permafrost extent and active layer thickness (ALT) in the Northern Hemisphere (NH) are critical for global carbon flux simulation, climate change prediction, and engineering risk assessment. The temporal change characteristics of the permafrost extent and ALT for the NH have not been studied. We used the Kudryavtsev method, integrating a 0.5° × 0.5° spatial resolution of air temperature, soil texture, snow depth, vegetation type, soil volume moisture content, and organic content to simulate the changes of permafrost extent and ALT in the NH from 1969 to 2018. The results indicated that permafrost extent decreased from 23.25 × 106 km2 (average from 1969 to 1973) to 21.64 × 106 km2 (average from 2014 to 2018), with a linear rate of -0.023 × 106 km2/a. Siberia had the highest degradation rate of 0.014 × 106 km2/a, followed by Alaska, Mongolian Plateau, Qinghai-Tibet Plateau, Northern Canada, and Greenland, with linear rates of -0.012 × 106, -0.005 × 106, -0.004 × 106, -0.0014 × 106, and - 0.0004× 106 km2/a, respectively. The average ALT in the NH increased at a linear rate of 0.0086 m/a. Alaska and Mongolian Plateau had the highest thickening rate of 0.024 m/a, followed by Qinghai-Tibet Plateau, Siberia, Northern Canada, and Greenland, which had linear rates of 0.009, 0.008, 0.0072, and 0.003 m/a, respectively. The uncertainty of the results could be attributed to the inaccurate forcing data and limitations of the Kudryavtsev model.


Subject(s)
Permafrost , Climate Change , Soil , Temperature , Tibet
SELECTION OF CITATIONS
SEARCH DETAIL