Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 27
Filter
1.
Polymers (Basel) ; 16(13)2024 Jun 23.
Article in English | MEDLINE | ID: mdl-39000633

ABSTRACT

Aqueous suspensions rely on electrostatic interactions among suspended solids, posing a significant challenge to maintaining stability during storage, particularly in the food and pharmaceutical industries, where synthetic stabilizers are commonly employed. However, there is a growing interest in exploring new materials derived from natural and environmentally friendly sources. This study aimed to optimize the stability parameters of a novel Altoandino Nostoc Sphaericum hydrocolloid (NSH) extracted via micro atomization. Suspensions were prepared by varying the pH, gelatinization temperature and NSH dosage using a 23 factorial arrangement, resulting in eight treatments stored under non-controlled conditions for 20 days. Stability was assessed through turbidity, sedimentation (as sediment transmittance), ζ potential, particle size, color and UV-Vis scanning. Optimization of parameters was conducted using empirical equations, with evaluation based on the correlation coefficient (R2), average relative error (ARE) and X2. The suspensions exhibited high stability throughout the storage period, with optimized control parameters identified at a pH of 4.5, gelatinization temperature of 84.55 °C and NSH dosage of 0.08 g/L. Simulated values included turbidity (99.00%), sedimentation (72.34%), ζ potential (-25.64 mV), particle size (300.00 nm) and color index (-2.00), with simulated results aligning with practical application. These findings suggest the potential use of NSH as a substitute for commercial hydrocolloids, albeit with consideration for color limitations that require further investigation.

2.
Antioxidants (Basel) ; 13(6)2024 May 31.
Article in English | MEDLINE | ID: mdl-38929119

ABSTRACT

Cushuro (Nostoc sphaericum) polysaccharide was used to co-microencapsulate sacha inchi oil, natural antioxidant extracts from the oleoresin of charapita chili peppers (Capsicum frutescens L.) and grape orujo (Vitis vinifera L.). Encapsulation efficiency, moisture, particle size, morphology, oxidative stability, shelf-life, solubility, essential fatty acid profile, sterol content and antioxidant capacity were evaluated. The formulations with grape orujo extract showed higher oxidative stability (4908 ± 184 h), antioxidant capacity (4835.33 ± 40.02 µg Trolox/g ms), higher phenolic contents (960.11 ± 53.59 µg AGE/g ms) and a smaller particle size (7.55 µm) than the other formulations, as well as good solubility and a low moisture content. Therefore, grape orujo extracts can be used as natural antioxidants. The fatty acid composition (ω-3) remained quite stable in all the formulations carried out, which also occurred for sterols and tocopherols. In combination with gum arabic, grape orujo extract offered oxidative protection to sacha inchi oil during the first week of storage.

3.
J Phycol ; 59(6): 1237-1257, 2023 12.
Article in English | MEDLINE | ID: mdl-37889842

ABSTRACT

The present study describes two new Nostoc species, N. montejanii and N. tlalocii, based on a polyphasic approach that combines morphological, ecological, and genetic characteristics. The five investigated populations, including those from newly collected material from central Mexico, were observed to possess morphological features characteristic of the Nostoc genus. Results showed that both new species are strictly associated with running water, and they show clear differences in their habitat preferences. The 16S rRNA gene sequences of the five strains displayed between 98% and 99% similarity to the genus Nostoc sensu stricto. The 16S rRNA gene phylogenetic analyses inferred using Bayesian inference, maximum likelihood, and parsimony methods, placed these five strains in two separate clades distinct from other Nostoc species. The secondary structures of the 16S-23S internal transcribed spacer rRNA region in the two new species showed >10.5% dissimilarities in the operons when compared with other Nostoc species. In addition, clear morphological differences were observed between the two Mexican species, including the color of the colonies (black in N. montejanii and green in N. tlalocii), the size of the cells (greater in N. montejanii), and the number of polyphosphate granules present in the cells (one in N. montejanii and up to four in N. tlalocii).


Subject(s)
Nostoc , Nostoc/genetics , RNA, Ribosomal, 16S/genetics , Phylogeny , Bayes Theorem , Mexico , DNA, Bacterial/genetics , Sequence Analysis, DNA , Bacterial Typing Techniques , RNA, Ribosomal, 23S/genetics
4.
J Fungi (Basel) ; 9(3)2023 Mar 18.
Article in English | MEDLINE | ID: mdl-36983540

ABSTRACT

Peltigera lichens can colonize extreme habitats, such as high-elevation ecosystems, but their biodiversity is still largely unknown in these environments, especially in the southern hemi- sphere. We assessed the genetic diversity of mycobionts and cyanobionts of 60 Peltigera lichens collected in three high Andean steppes of southern Chile using LSU, ß-tubulin, COR3 and ITS loci for mycobionts, and SSU and rbcLX loci for cyanobionts. We obtained 240 sequences for the different mycobiont markers and 118 for the cyanobiont markers, including the first report of ß-tubulin sequences of P. patagonica through modifying a previously designed primer. Phylogenetic analyses, ITS scrutiny and variability of haplotypes were used to compare the sequences with those previously reported. We found seven mycobiont species and eleven cyanobiont haplotypes, including considerable novel symbionts. This was reflected by ~30% of mycobionts and ~20% of cyanobionts haplotypes that yielded less than 99% BLASTn sequence identity, 15 new sequences of the ITS1-HR, and a putative new Peltigera species associated with 3 Nostoc haplotypes not previously reported. Our results suggest that high Andean steppe ecosystems are habitats of unknown or little-explored lichen species and thus valuable environments to enhance our understanding of global Peltigera biodiversity.

5.
Foods ; 11(11)2022 Jun 01.
Article in English | MEDLINE | ID: mdl-35681390

ABSTRACT

The search for new natural sources of hydrocolloids with stabilizing, thickening, and good binding capacity, from raw materials that are environmentally friendly and that contribute to the circular economy is a challenge for the food industry. The aim of the study was the preliminary characterization of a spray-dried hydrocolloid from high Andean algae Nostoc sphaericum. Four ecotypes of algae from Peruvian high Andean lagoons located above 4000 m were considered. The samples were collected in the period March−April 2021 and were subjected to a spray drying process in an aqueous medium. The characterization showed that the dehydrated nostoc ecotypes presented high protein and carbohydrate content, making it a potential material for direct use as a functional food for humans. The spray-dried product presented good stability for its use as a hydrocolloid, with zeta potential values (ζ), around 30 mV, evidencing the presence of -CO-, -OH, -COO-, and -CH groups, characteristic of polysaccharides, representing 40% of total organic carbon on average, giving it low water activity values and particle size at the nanometric level. Major minerals such as Ca (>277 mg/100 g), Mg (>19.7 mg/100 g), and Fe (>7.7 mg/100 g) were reported. Spray-dried nostoc is a hydrocolloid material with high potential for the food industry, with good nutritional content and techno-functional behavior.

6.
Toxics ; 10(5)2022 Apr 22.
Article in English | MEDLINE | ID: mdl-35622623

ABSTRACT

Insulating oil contaminated with polychlorinated biphenyls (PCBs) is an environmentally important pollutant. This research focused on the establishment of the optimum conditions under which photocatalytic oxidation can be used together with biotreatment using the Nostoc sp. microorganism to degrade PCBs present in used dielectric oils. Among the optimal conditions studied were PCB concentration, initial pH, and titanium dioxide (TiO2) concentration for the photocatalytic step, and PCB concentration and photoperiod for the biotreatment step. The results indicate that the optimal conditions necessary for photocatalytic degradation were a pH of 6.10, 113 mg/L TiO2, and 765 mg/L PCBs, achieving close to 90% removal. For the biotreatment step, the results showed that PCBs progressively inhibited the microbiological growth, with the lowest cellular growth observed in the medium with the highest PCB concentration.

7.
Molecules ; 28(1)2022 Dec 28.
Article in English | MEDLINE | ID: mdl-36615462

ABSTRACT

A new biosorbent based on Nostoc commune (NC) cyanobacteria, chemically modified with NaOH (NCM), has been prepared, characterized and tested as an effective biomass to remove Pb(II) in aqueous media. The adsorption capacity of NCM was determined to be qe = 384.6 mg g−1. It is higher than several other biosorbents reported in the literature. Structural and morphological characterization were performed by FTIR, SEM/EDX and point zero of charge pH (pHPZC) measurements. NCM biosorbent showed more porous surfaces than those NC with heterogeneous plates including functional adsorption groups such as OH, C = O, COO−, COH or NH. Optimal Pb(II) adsorption occurred at pH 4.5 and 5.5 with a biomass dose of 0.5 g L−1. The experimental data of the adsorption process were well fitted with the Freundlich-isotherm model and pseudo-2nd order kinetics, which indicated that Pb(II) adsorption was a chemisorption process on heterogeneous surfaces of NCM. According to the thermodynamic parameters, this process was exothermic (∆H0 < 0), feasible and spontaneous (∆G0 < 0). NCM can be regenerated and efficiently reused up to 4 times (%D > 92%). NCM was also tested to remove Pb (%R~98%) and Ca (%R~64%) from real wastewater.


Subject(s)
Nostoc commune , Water Pollutants, Chemical , Lead , Biomass , Water Pollutants, Chemical/chemistry , Thermodynamics , Kinetics , Adsorption , Hydrogen-Ion Concentration
8.
J Phycol ; 57(1): 39-50, 2021 02.
Article in English | MEDLINE | ID: mdl-33070358

ABSTRACT

Prokaryotic Nostoc, one of the world's most conspicuous and widespread algal genera (similar to eukaryotic algae, plants, and animals) is known to support a microbiome that influences host ecological roles. Past taxonomic characterizations of surface microbiota (epimicrobiota) of free-living Nostoc sampled from freshwater systems employed 16S rRNA genes, typically amplicons. We compared taxa identified from 16S, 18S, 23S, and 28S rRNA gene sequences filtered from shotgun metagenomic sequence and used microscopy to illuminate epimicrobiota diversity for Nostoc sampled from a wetland in the northern Chilean Altiplano. Phylogenetic analysis and rRNA gene sequence abundance estimates indicated that the host was related to Nostoc punctiforme PCC 73102. Epimicrobiota were inferred to include 18 epicyanobacterial genera or uncultured taxa, six epieukaryotic algal genera, and 66 anoxygenic bacterial genera, all having average genomic coverage ≥90X. The epicyanobacteria Geitlerinemia, Oscillatoria, Phormidium, and an uncultured taxon were detected only by 16S rRNA gene; Gloeobacter and Pseudanabaena were detected using 16S and 23S; and Phormididesmis, Neosynechococcus, Symphothece, Aphanizomenon, Nodularia, Spirulina, Nodosilinea, Synechococcus, Cyanobium, and Anabaena (the latter corroborated by microscopy), plus two uncultured cyanobacterial taxa (JSC12, O77) were detected only by 23S rRNA gene sequences. Three chlamydomonad and two heterotrophic stramenopiles genera were inferred from 18S; the streptophyte green alga Chaetosphaeridium globosum was detected by microscopy and 28S rRNA genes, but not 18S rRNA genes. Overall, >60% of epimicrobial taxa were detected by markers other than 16S rRNA genes. Some algal taxa observed microscopically were not detected from sequence data. Results indicate that multiple taxonomic markers derived from metagenomic sequence data and microscopy increase epimicrobiota detection.


Subject(s)
Nostoc , Animals , Chile , Metagenomics , Microscopy , Nostoc/genetics , Phylogeny , RNA, Ribosomal, 16S/genetics , Wetlands
9.
Sci. agric. ; 78(1): e20180292, 2021. ilus, tab
Article in English | VETINDEX | ID: vti-27059

ABSTRACT

Greenhouses and nurseries provide ideal environments for facilitating the formation of nuisance algal mats. Algal growth poses safety concerns to horticulturists and stimulates the propagation of unwanted plant pests and pathogens. To date, few strategies and data are available to effectively manage algal problems. The effectiveness of five algaecides was tested on two varying surfaces of greenhouses in situ to elucidate the efficacy of chemical methods of removing algae. Moreover, Nostoc commune (Vaucher ex Bornet & Flahault) was treated on ceramic tiles in vitro , as it is a common alga in greenhouses and nurseries. We found that each algaecide had different effects, depending on the chemical applied, the surface to which the chemical was applied, and finally the types of algae that were targeted. Algaecides across the surfaces tested demonstrated that algal cell characteristics and communal makeup played an important role in algaecide efficacy, where mucilaginous algae were replaced by sheath-forming filamentous cyanobacteria. We found sodium carbonate peroxyhydrate to be the most effective chemical in terms of controlling Nostoc on tarp, gravel, and ceramic surfaces.(AU)


Subject(s)
Harmful Algal Bloom , Eutrophication , Herbicides/administration & dosage
10.
Sci. agric ; 78(1): e20180292, 2021. ilus, tab
Article in English | VETINDEX | ID: biblio-1497925

ABSTRACT

Greenhouses and nurseries provide ideal environments for facilitating the formation of nuisance algal mats. Algal growth poses safety concerns to horticulturists and stimulates the propagation of unwanted plant pests and pathogens. To date, few strategies and data are available to effectively manage algal problems. The effectiveness of five algaecides was tested on two varying surfaces of greenhouses in situ to elucidate the efficacy of chemical methods of removing algae. Moreover, Nostoc commune (Vaucher ex Bornet & Flahault) was treated on ceramic tiles in vitro , as it is a common alga in greenhouses and nurseries. We found that each algaecide had different effects, depending on the chemical applied, the surface to which the chemical was applied, and finally the types of algae that were targeted. Algaecides across the surfaces tested demonstrated that algal cell characteristics and communal makeup played an important role in algaecide efficacy, where mucilaginous algae were replaced by sheath-forming filamentous cyanobacteria. We found sodium carbonate peroxyhydrate to be the most effective chemical in terms of controlling Nostoc on tarp, gravel, and ceramic surfaces.


Subject(s)
Eutrophication , Herbicides/administration & dosage , Harmful Algal Bloom
11.
Int J Biol Macromol ; 161: 1516-1525, 2020 Oct 15.
Article in English | MEDLINE | ID: mdl-32755710

ABSTRACT

Broadband dielectric spectroscopy was used to investigate the molecular α-relaxation of the exopolysaccharides (EPS) extracted from Nostoc commune cyanobacteria. The EPS were modified in different ways. EPS were carboxymethylated to obtain carboxymethyl-exopolysaccharides (CEPS). EPS and CEPS were doped with ammonium iodide and 1-butyl-3-methylimidazolium chloride. An α relaxation process was observed for all specimens. The temperature dependence of the relaxation times for pure and doped, EPS and CEPS polymers exhibited non-Arrhenius behavior. This relaxation process was associated with the glass transition of the complex heteropolysaccharides produced by the cyanobacteria. The molecular mobility at the glass transition, Tg, was affected by both the carboxymethylation treatment and the doping. The fragility index also decreased for the doped specimens, which may be attributed to an increase in the mobility of the polymer chains due to the plasticizing effect of the doping agents.


Subject(s)
Nostoc commune/chemistry , Polysaccharides, Bacterial/chemistry , Polysaccharides, Bacterial/isolation & purification , Chemical Fractionation , Monosaccharides/chemistry , Polysaccharides, Bacterial/ultrastructure , Spectrum Analysis , Temperature
12.
Toxins (Basel) ; 12(6)2020 06 09.
Article in English | MEDLINE | ID: mdl-32526918

ABSTRACT

Edible Llayta are cyanobacterial colonies consumed in the Andes highlands. Llayta and four isolated cyanobacteria strains were tested for cyanotoxins (microcystin, nodularin, cylindrospermopsin, saxitoxin and ß-N-methylamino-L-alanine-BMAA) using molecular and chemical methods. All isolates were free of target genes involved in toxin biosynthesis. Only DNA from Llayta amplified the mcyE gene. Presence of microcystin-LR and BMAA in Llayta extracts was discarded by LC/MS analyses. The analysed Llayta colonies have an incomplete microcystin biosynthetic pathway and are a safe food ingredient.


Subject(s)
Bacterial Toxins/analysis , Dietary Supplements/analysis , Nostoc/metabolism , Altitude , Nostoc/classification , Nostoc/genetics , Wetlands
13.
Toxins (Basel) ; 12(1)2019 12 24.
Article in English | MEDLINE | ID: mdl-31878347

ABSTRACT

Cyanobacteria are photosynthetic organisms that produce a large diversity of natural products with interesting bioactivities for biotechnological and pharmaceutical applications. Cyanobacterial extracts exhibit toxicity towards other microorganisms and cancer cells and, therefore, represent a source of potentially novel natural products for drug discovery. We tested 62 cyanobacterial strains isolated from various Brazilian biomes for antileukemic and antimicrobial activities. Extracts from 39 strains induced selective apoptosis in acute myeloid leukemia (AML) cancer cell lines. Five of these extracts also exhibited antifungal and antibacterial activities. Chemical and dereplication analyses revealed the production of nine known natural products. Natural products possibly responsible for the observed bioactivities and five unknown, chemically related chlorinated compounds present only in Brazilian cyanobacteria were illustrated in a molecular network. Our results provide new information on the vast biosynthetic potential of cyanobacteria isolated from Brazilian environments.


Subject(s)
Anti-Infective Agents/pharmacology , Antineoplastic Agents/pharmacology , Biological Products/pharmacology , Cyanobacteria/chemistry , Anti-Bacterial Agents/pharmacology , Anti-Infective Agents/isolation & purification , Antifungal Agents/pharmacology , Antineoplastic Agents/isolation & purification , Biological Products/chemistry , Brazil , Cell Line, Tumor , Cyanobacteria/classification , Cyanobacteria/genetics , Drug Discovery , Drug Screening Assays, Antitumor , Gene Regulatory Networks , Humans , Leukemia, Myeloid, Acute/drug therapy , Microbial Sensitivity Tests
14.
Front Microbiol ; 9: 2770, 2018.
Article in English | MEDLINE | ID: mdl-30505297

ABSTRACT

Species circumscription is key to the characterization of patterns of specificity in symbiotic systems at a macroevolutionary scale. Here, a worldwide phylogenetic framework was used to assess the biodiversity and symbiotic patterns of association among partners in trimembered lichens from the genus Peltigera, section Chloropeltigera. We sequenced six loci of the main fungal partner and performed species discovery and validation analyses to establish putative species boundaries. Single locus phylogenies were used to establish the identity of both photobionts, Nostoc (cyanobacterium) and Coccomyxa (green alga). Distribution and specificity patterns were compared to the closely related clade, section Peltidea, which includes mainly Peltigera species with trimembered thalli. For section Chloropeltigera, eight fungal species (including five newly delimited putative species) were found in association with nine Nostoc phylogroups and two Coccomyxa species. In contrast, eight fungal species (including three newly delimited putative species) in section Peltidea were found in association with only four Nostoc phylogroups and the same two Coccomyxa species as for section Chloropeltigera. This difference in cyanobiont biodiversity between these two sections can potentially be explained by a significantly higher frequency of sexual reproductive structures in species from section Chloropeltigera compared to section Peltidea. Therefore, horizontal transmission of the cyanobiont might be more prevalent in Chloropeltigera species, while vertical transmission might be more common in Peltidea species. All Peltigera species in section Chloropeltigera are generalists in their association with Nostoc compared to more specialized Peltigera species in section Peltidea. Constrained distributions of Peltigera species that associate strictly with one species of green algae (Coccomyxa subellipsoidea) indicate that the availability of the green alga and the specificity of the interaction might be important factors limiting geographic ranges of trimembered Peltigera, in addition to constraints imposed by their interaction with Nostoc partners and by climatic factors.

15.
Foods ; 7(12)2018 Dec 09.
Article in English | MEDLINE | ID: mdl-30544858

ABSTRACT

Llayta is a dietary supplement that has been used by rural communities in Perú and northern Chile since pre-Columbian days. Llayta is the biomass of colonies of a Nostoc cyanobacterium grown in wetlands of the Andean highlands, harvested, sun-dried and sold as an ingredient for human consumption. The biomass has a substantial content of essential amino acids (58% of total amino acids) and polyunsaturated fatty acids (33% total fatty acids). This ancestral practice is being lost and the causes were investigated by an ethnographic approach to register the social representations of Llayta, to document how this Andean feeding practice is perceived and how much the community knows about Llayta. Only 37% of the participants (mostly adults) have had a direct experience with Llayta; other participants (mostly children) did not have any knowledge about it. These social responses reflect anthropological and cultural tensions associated with a lack of knowledge on Andean algae, sites where to find Llayta, where it is commercialized, how it is cooked and on its nutritional benefits. The loss of this ancestral feeding practice, mostly in northern Chile, is probably associated with cultural changes, migration of the rural communities, and very limited access to the available information. We propose that Llayta consumption can be revitalized by developing appropriate educational strategies and investigating potential new food derivatives based on the biomass from the isolated Llayta cyanobacterium.

16.
Int J Syst Evol Microbiol ; 68(9): 2770-2782, 2018 Sep.
Article in English | MEDLINE | ID: mdl-29985124

ABSTRACT

Cyanobacteria is an ancient phylum of oxygenic photosynthetic microorganisms found in almost all environments of Earth. In recent years, the taxonomic placement of some cyanobacterial strains, including those belonging to the genus Nostocsensu lato, have been reevaluated by means of a polyphasic approach. Thus, 16S rRNA gene phylogeny and 16S-23S internal transcribed spacer (ITS) secondary structures coupled with morphological, ecological and physiological data are considered powerful tools for a better taxonomic and systematics resolution, leading to the description of novel genera and species. Additionally, underexplored and harsh environments, such as saline-alkaline lakes, have received special attention given they can be a source of novel cyanobacterial taxa. Here, a filamentous heterocytous strain, Nostocaceae CCM-UFV059, isolated from Laguna Amarga, Chile, was characterized applying the polyphasic approach; its fatty acid profile and physiological responses to salt (NaCl) were also determined. Morphologically, this strain was related to morphotypes of the Nostocsensu lato group, being phylogenetically placed into the typical cluster of the genus Desmonostoc. CCM-UFV059 showed identity of the 16S rRNA gene as well as 16S-23S secondary structures that did not match those from known described species of the genus Desmonostoc, as well as distinct ecological and physiological traits. Taken together, these data allowed the description of the first strain of a member of the genus Desmonostoc from a saline-alkaline lake, named Desmonostoc salinum sp. nov., under the provisions of the International Code of Nomenclature for algae, fungi and plants. This finding extends the ecological coverage of the genus Desmonostoc, contributing to a better understanding of cyanobacterial diversity and systematics.


Subject(s)
Cyanobacteria/classification , Lakes/microbiology , Phylogeny , Salinity , Alkalies , Bacterial Typing Techniques , Chile , Cyanobacteria/genetics , Cyanobacteria/isolation & purification , DNA, Bacterial/genetics , DNA, Ribosomal Spacer/genetics , Fatty Acids/chemistry , Hydrogen-Ion Concentration , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA
17.
Front Microbiol ; 8: 1963, 2017.
Article in English | MEDLINE | ID: mdl-29062311

ABSTRACT

Nostoc is a cyanobacterial genus, common in soils and a prolific producer of natural products. This research project aimed to explore and characterize Brazilian cyanobacteria for new bioactive compounds. Here we report the production of hepatotoxins and new protease inhibitors from benthic Nostoc sp. CENA543 isolated from a small, shallow, saline-alkaline lake in the Nhecolândia, Pantanal wetland area in Brazil. Nostoc sp. CENA543 produces exceptionally high amounts of nodularin-R. This is the first free-living Nostoc that produces nodularin at comparable levels as the toxic, bloom-forming, Nodularia spumigena. We also characterized pseudospumigins A-F, which are a novel family of linear tetrapeptides. Pseudospumigins are structurally related to linear tetrapeptide spumigins and aeruginosins both present in N. spumigena but differ in respect to their diagnostic amino acid, which is Ile/Leu/Val in pseudospumigins, Pro/mPro in spumigins, and Choi in aeruginosins. The pseudospumigin gene cluster is more similar to the spumigin biosynthetic gene cluster than the aeruginosin gene cluster. Pseudospumigin A inhibited trypsin (IC50 4.5 µM after 1 h) in a similar manner as spumigin E from N. spumigena but was almost two orders of magnitude less potent. This study identifies another location and environment where the hepatotoxic nodularin has the potential to cause the death of eukaryotic organisms.

18.
Microb Ecol ; 74(3): 561-569, 2017 Oct.
Article in English | MEDLINE | ID: mdl-28349162

ABSTRACT

Photobiont availability is one of the main factors determining the success of the lichenization process. Although multiple sources of photobionts have been proposed, there is no substantial evidence confirming that the substrates on which lichens grow are one of them. In this work, we obtained cyanobacterial 16S ribosomal RNA gene sequences from the substrates underlying 186 terricolous Peltigera cyanolichens from localities in Southern Chile and maritime Antarctica and compared them with the sequences of the cyanobionts of these lichens, in order to determine if cyanobacteria potentially available for lichenization were present in the substrates. A phylogenetic analysis of the sequences showed that Nostoc phylotypes dominated the cyanobacterial communities of the substrates in all sites. Among them, an overlap was observed between the phylotypes of the lichen cyanobionts and those of the cyanobacteria present in their substrates, suggesting that they could be a possible source of lichen photobionts. Also, in most cases, higher Nostoc diversity was observed in the lichens than in the substrates from each site. A better understanding of cyanobacterial diversity in lichen substrates and their relatives in the lichens would bring insights into mycobiont selection and the distribution patterns of lichens, providing a background for hypothesis testing and theory development for future studies of the lichenization process.


Subject(s)
Cyanobacteria/genetics , Lichens/physiology , Soil Microbiology , Symbiosis , Lichens/microbiology , Nostoc/genetics , RNA, Bacterial/genetics , RNA, Ribosomal, 16S/genetics , Sequence Analysis, RNA
19.
Extremophiles ; 21(3): 573-580, 2017 May.
Article in English | MEDLINE | ID: mdl-28321614

ABSTRACT

This is the first study of the highest elevation cyanobacteria-dominated microbial mat yet described. The desiccated mat was sampled in 2010 from an ephemeral rock pool at 5500 m above sea level in the Cordillera Vilcanota of southern Perú. After being frozen for 6 years at -20 °C in the lab, pieces of the mat were sequenced to fully characterize both the 16 and 18S microbial communities and experiments were conducted to determine if organisms in the mat could revive and become active under the extreme freeze-thaw conditions that these mats experience in the field. Sequencing revealed an unexpectedly diverse, multi-trophic microbial community with 16S OTU richness comparable to similar, seasonally desiccated mats from the Dry Valleys of Antarctica and low elevation sites in the Atacama Desert region. The bacterial community of the mat was dominated by phototrophs in the Cyanobacteria (Nostoc) and the Rhodospirillales, whereas the eukaryotic community was dominated by predators such as bdelloid rotifers (Philodinidae). Microcosm experiments showed that bdelloid rotifers in the mat were able to come out of dormancy and actively forage even under realistic field conditions (diurnal temperature fluctuations of -12 °C at night to + 27 °C during the day), and after being frozen for 6 years. Our results broaden our understanding of the diversity of life in periodically desiccated, high-elevation habitats and demonstrate that extreme freeze-thaw cycles per se are not a major factor limiting the development of at least some members of these unique microbial mat systems.


Subject(s)
Biodiversity , Cyanobacteria/isolation & purification , Ice Cover/microbiology , Rhodospirillales/isolation & purification , Rotifera/isolation & purification , Altitude , Animals , Cyanobacteria/genetics , Desiccation , Extreme Environments , Freezing , Peru , RNA, Ribosomal, 16S/genetics , RNA, Ribosomal, 18S/genetics , Rhodospirillales/genetics , Rotifera/genetics
20.
Int J Biol Macromol ; 97: 411-417, 2017 Apr.
Article in English | MEDLINE | ID: mdl-28104370

ABSTRACT

Nostoc commune cyanobacteria grow in extreme conditions of desiccation and nutrient-poor soils. Their colonies form spherical gelatinous bodies are composed of a variety of polysaccharides that allow them to store water and nutrients. In this paper, we study this type of biological gel that shows characteristics of both chemical and physical gels. The structure of this gel was assessed by means of scanning electron microscopy, plate-plate rheometry, Fourier transform infrared spectroscopy and absorption/desorption tests. The storage modulus of this gel was found to be frequency independent, as is usual for chemical gels. The stress sweeps showed a reversible stress softening behaviour that was explained in terms of the physical nature of the interactions of this network. The high density of physical crosslinks probably allows this physical network to behave as a highly elastomeric chemical network, limiting the relaxation of individual chains. On the other hand, reversibility is associated with the physical nature of its bonds.


Subject(s)
Elastomers/chemistry , Nostoc commune/chemistry , Gels
SELECTION OF CITATIONS
SEARCH DETAIL